
Economical Caching With Stochastic Prices?

Matthias Englert1, Berthold Vöcking2, Melanie Winkler2

1 DIMAP and Department of Computer Science, University of Warwick
englert@dcs.warwick.ac.uk

2 Department of Computer Science, RWTH Aachen University
{voecking,winkler}@cs.rwth-aachen.de

Abstract. In the economical caching problem, an online algorithm is
given a sequence of prices for a certain commodity. The algorithm has
to manage a buffer of fixed capacity over time. We assume that time
proceeds in discrete steps. In step i, the commodity is available at price
ci ∈ [α, β], where β > α ≥ 0 and ci ∈ N. One unit of the commodity is
consumed per step. The algorithm can buy this unit at the current price
ci, can take a previously bought unit from the storage, or can buy more
than one unit at price ci and put the remaining units into the storage.
In this paper, we study the economical caching problem in a probabilistic
analysis, that is, we assume that the prices are generated by a random
walk with reflecting boundaries α and β. We are able to identify the opti-
mal online algorithm in this probabilistic model and analyze its expected
cost and its expected savings, i.e., the cost that it saves in comparison
to the cost that would arise without having a buffer. In particular, we
compare the savings of the optimal online algorithm with the savings of
the optimal offline algorithm in a probabilistic competitive analysis and
obtain tight bounds (up to constant factors) on the ratio between the
expected savings of these two algorithms.

1 Introduction

We study a stochastic version of the economical caching problem dealing with the
management of a storage for a commodity whose price varies over time. An online
algorithm is given a sequence of prices for a certain commodity. The algorithm
has to manage a buffer of fixed capacity over time. We assume that time proceeds
in discrete steps. In step i, the commodity is available at price ci ∈ [α, β], where
β > α ≥ 0 and ci ∈ N. One unit of the commodity is consumed per step. The
algorithm can buy this unit at the current price ci, can take a previously bought
unit from the storage, or can buy more than one unit at price ci and put the
remaining units into the storage.

A slightly more general version of this problem has been introduced in [2],
where it is assumed that the consume per step is not fixed to one but varies
over time. The motivation for introducing this problem was the battery man-
agement of a hybrid car with two engines, one operated with petrol, the other
? Supported by the DFG GK/1298 “AlgoSyn” and EPSRC grant EP/F043333/1.

with electrical energy. An algorithm has to decide at which time the battery for
the electrical energy should be recharged by the combustion engine. In this con-
text, prices correspond to the combustion efficiency which, e.g., depends on the
rotational speed. Obviously, the economical caching problem is quite generic and
one can think of multiple other applications beyond hybrid cars, e.g., purchasing
petrol at gas stations where prices vary on a daily basis, caching data streams
in a mobile environment in which services that operate at different price levels
are available in a dynamic fashion etc. The problem is related to the well-known
one-way trading problem [1].

In [2], the economical caching problem has been analyzed in a worst case
competitive analysis as introduced by [4]. Let h = β/α and assume β > α > 0.
It is shown that no memoryless algorithm (as formalized in [2]) can achieve a
competitive factor better than

√
h. This competitive factor is guaranteed by a

simple threshold scheme that purchases as much as possible units if the price is
smaller than

√
αβ and purchases as few as possible units if the price is above√

αβ. This is, however, not the best possible competitive factor: It is shown that
there is an online algorithm that takes into account the history in its buying
decisions and, this way, achieves a competitive factor of W

(
1−h
eh + 1

)−1
, where

W denotes the LambertW function. This competitive factor beats
√
h by a factor

of about
√

2. Moreover, it is shown that this competitive factor is, in fact, best
possible for any online algorithm.

The results from [2] determine the competitive factor for economical caching
with respect to worst-case prices. The given bounds are tight. Nevertheless, the
practical relevance of these results is questionable as the presented online algo-
rithm optimizes against an adversary that generates a worst-case price sequence
in response to the decisions of the algorithm. In contrast, in the aforementioned
applications, the prices are set by a process that is (at least to a large extend)
independent of the decisions of the online algorithm. We believe that a model in
which prices are determined by a stochastic process can lead to more algorithms
that perform better in practice.

In this paper, we assume that prices are generated by a random walk with
reflecting barriers α and β. We do not claim that this is exactly the right process
for any of the aforementioned applications. We hope, however, that our analysis
is a first step towards analyzing more realistic, and possibly more complicated
input distributions. Before stating our results, we give a formal description of
the problem.

1.1 Formal description of the problem

We consider a finite process of n steps. In step i ∈ {1, . . . , n} the algorithm
can purchase the commodity at price ci per unit. Prices c1, c2, . . . , cn, cn+1 are
natural numbers generated by a random walk with reflecting boundaries α ∈ N
and β ∈ N, β > α ≥ 0. Price cn+1 is used to valuate the units in the storage at
the end of the process.

We assume that the random walk starts at a position chosen uniformly at
random from {α, . . . , β}. This is justified by the fact that this allocation corre-

sponds to the steady state distribution of the random walk. If ci ∈ {α+1, β−1}
then Pr [ci+1 = ci − 1] = Pr [ci+1 = ci + 1] = 1

2 ; if ci = α then Pr [ci+1 = α] =
Pr [ci+1 = α+ 1] = 1

2 ; and if ci = β then Pr [ci+1 = β − 1] = Pr [ci+1 = β] = 1
2 .

It is well known that, under these conditions, for every 1 ≤ i ≤ n+1, α ≤ j ≤ β,
Pr [ci = j] = t−1, where t = |{α, . . . , β}| = β − α+ 1.

The capacity of the storage is denoted by b ∈ N. Let si ∈ [0, b] denote
the amount stored in the storage at the end of step i. Initially, the storage
is assumed to be empty, that is, s0 = 0. Consider an algorithm A. Let ui ∈
{0, . . . , b − si−1 + 1} denote the number of units that A purchases in step i. In
each step, one unit of the commodity is consumed. Thus, si = si−1 +ui− 1 ≤ b.
Furthermore, if si−1 = 0 at least one unit has to be purchased in step i. The
cost of the algorithm is

∑n
i=1 ui · ci − sn · cn+1. Observe that we value the units

in the buffer at the end of the process with the price cn+1.
An algorithm is called online when ui, the amount purchased in step i de-

pends only on the prices c1, . . . , ci but not on the prices ci+1, . . . , cn+1. An al-
gorithm that is allowed to take into account knowledge about the full price
sequence is called offline.

1.2 Preliminaries

Algorithm NoBuffer is an example of a very simple online algorithm. It sets ui =
1, regardless of how the prices are chosen. As its name suggest, this algorithm
does not exploit the storage. For this reason, its expected cost can be easily
calculated. In every step i, the expected price is α+β

2 since Pr [ci = j] = t−1.
Hence, by linearity of expectation, the expected cost of algorithm NoBuffer are
n · α+β

2 .
The savings of an algorithm A are defined to be the cost of NoBuffer minus

the cost of the algorithm A. The savings are of particular relevance as this
quantity describes the reduction in cost due to the availability of a buffer. For
an algorithm A, let φi(A), 0 ≤ i ≤ n, denote the savings accumulated until step
i, i.e., the savings of A assuming that A as well as NoBuffer terminate after step
i. Let ∆φi(A) = φi(A)− φi−1(A) be the savings achieved in step i.

Proposition 1. For 1 ≤ i ≤ n, ∆φi = si(ci+1 − ci).

Proof. The increase in cost of the NoBuffer algorithm during step i is ci. The
increase in cost of A during the same step, taking into account the change in the
value of the storage, is

ui · ci − si · ci+1 + si−1 · ci = ci − si(ci+1 − ci) ,

where the last equation follows from si = si−1 +ui− 1. Subtracting the increase
in cost of A from the increase in cost of NoBuffer gives the proposition. ut

The proposition shows that the savings achieved in step i correspond to the
(possibly negative) increase of the value of the storage due to the change of the
cost from ci to ci+1 during the step.

1.3 Our results

We are able to identify the optimal online algorithm, i.e., the algorithm that
achieves the smallest possible expected cost among all online algorithms. This
algorithm works as follows: It fills the storage completely if ci = α and uses units
from the storage if ci > α, cf. Algorithm 1. The algorithm is called Cautious as it

Algorithm 1 (Cautious)
Input: ci
1: if ci = α then
2: ui := b− si−1 + 1
3: else
4: ui := 1−min{1, si}
5: end if

only stores units bought at the lowest possible price. Obviously, there is no risk
in buying these units. Somewhat surprisingly, this approach is the best possible
online strategy.

We estimate the expected cost of the Cautious algorithm in the limiting case,
i.e., assuming that n is sufficiently large. Per step, the expected cost of Cautious
are

α+ t · 2−Θ(b/t2) .

Observe, if b is of order ω(t2) then 2−Θ(b/t2) = o(1). That is, the expected cost
per step approach the lower boundary α. If b = O(t2) then 2−Θ(b/t2) = Θ(1).
Thus, in this case, the expected cost of Cautious are α+Θ(t), which, however, is
not a very significant result as it does not show the dependence of the expected
cost on b, for b = O(t2).

To get more meaningful results we investigate the expected savings rather
than the expected cost of the Cautious algorithm and compare it with the ex-
pected savings of an optimal offline algorithm. We get tight lower and upper
bounds on the expected savings for both of these algorithms. The expected sav-
ings of the Cautious algorithm are Θ(min{ bt , t}) per step, while the expected
savings of the optimal offline algorithm are Θ(min{

√
b, t}) per step. Thus the

competitive factor, i.e., the ratio between the expected savings of Cautious and
the expected savings of the optimal online algorithm, is of order

min
{
b
t , t
}

min
{√

b, t
} = Θ

(
min

{√
b

t
, 1

})
.

2 Cautious is the optimal online algorithm

In this section, we show that Cautious achieves the smallest possible expected
cost among all online algorithms.

Theorem 1. For every n ∈ N, there is no online algorithm achieving smaller
expected cost than Cautious.

Proof. Consider any online algorithm A. We assume that A is reasonable, i.e.,
it completely fills the storage in every step in which the price per unit is α. We
can make this assumption w.l.o.g. since buying units at cost α instead of buying
them later at possibly higher cost or buying additional units that are valuated
at a price of cn+1 ≥ α after step n cannot increase the cost of the algorithm.

We will show, for every 1 ≤ i ≤ n, Cautious achieves larger expected sav-
ings in step i than A, that is, E [∆φi(A)] ≤ E [∆φi(Cautious)]. By linearity of
expectation, this implies E [φn(A)] ≤ E [φn(Cautious)]. In words, the expected
savings of A over all steps are not larger than the expected savings of Cautious,
which implies the theorem.

Towards this end, we study the expected savings of A per step. Firstly, we
analyze E [∆φi(A)] conditioned on ci being fixed to some value. For k ∈ {α +
1, . . . , β − 1}, Proposition 1 gives

E [∆φi(A) | ci = k] = (E [ci+1 | ci = k]− k) ·E [si | ci = k] = 0

because E [ci+1 | ci = k] = k. In contrast,

E [∆φi(A) | ci = α] = (E [ci+1 | ci = α]− α) ·E [si | ci = α] =
1
2
·E [si | ci = α]

because E [ci+1 | ci = α] = α+ 1
2 , and

E [∆φi(A) | ci = β] = (E [ci+1 | ci = β]−β) ·E [si | ci = β] = −1
2
·E [si | ci = β]

because E [ci+1 | ci = β] = β − 1
2 .

Applying these equations, the expected savings of A in step i can be calcu-
lated as

E [∆φi(A)] = Pr [ci = α] ·E [∆φi(A) | ci = α] + Pr [ci = β] ·E [∆φi(A) | ci = β]

=
1
2t

(E [si | ci = α]−E [si | ci = β]) .

Now observe that E [si | ci = α] = b because of our initial assumption that A is
reasonable. Thus, the expected savings are maximized if E [si | ci = β] is mini-
mized, which is achieved if A has the property that for every step j with cj > α,
uj ≤ β−cj−sj−1 +1. Cautious has this property. Thus Theorem 1 is shown. ut

3 Expected cost of Cautious

We now calculate the expected cost of Cautious.

Theorem 2. As n tends to infinity, the expected cost per step of Cautious tend
to α+ t · 2−Θ(b/t2).

Proof. To simplify notation we will assume that (β+α)/2 is integral. Fix an arbi-
trary step i > b. We will show that E [ci − (si−1 − si)(ci − α)] = α+ t ·2−Θ(b/t2)

which corresponds to the expected cost of Cautious per step in the limiting case,
that is, if we ignore an additive error that does not depend on the sequence length
n (but may depend on b, α, and β). To see that E [ci − (si−1 − si)(ci − α)] is
indeed related to the expected cost per step we take the sum over all steps j > b
and obtain

n∑
j=b+1

E [cj − (sj−1 − sj)(cj − α)] = E

 n∑
j=b+1

(cj − (sj−1 − sj)(cj − α))


= E

 n∑
j=b+1

(uj(cj − α) + α)


= E

 n∑
j=b+1

ujcj − (sn − sb) · α



which approximates the expected total cost of Cautious E
[∑n

j=1 ujcj − sncn+1

]
within an additive error of 2b · β.

From the definition of the Cautious algorithm it follows immediately that
ci − (si−1 − si)(ci − α) equals α if si−1 > 0 and equals ci otherwise. Therefore
E [ci − (si−1 − si)(ci − α)] is equal to

β∑
x=α

Pr [ci = x] · (Pr [si−1 = 0 | ci = x] · x+ (1−Pr [si−1 = 0 | ci = x]) · α)

= α+
β∑

x=α

Pr [ci = x] ·Pr [si−1 = 0 | ci = x] · (x− α)

= α+
1
t

β∑
x=α

Pr [si−1 = 0 | ci = x] · (x− α) ,

Note that Pr [si−1 = 0 | ci = x] is the probability that the price was strictly
larger than α for the last b steps, i.e., ci−b > α, . . . , ci−1 > α. In the following
we will show that Pr [si−1 = 0 | ci = x] = 2−Θ(b/t2), for x ≥ (α + β)/2, which

implies the theorem since on one hand

α+
1
t

β∑
x=α

Pr [si−1 = 0 | ci = x] · (x− α)

≤ α+
1
t

β∑
x=α

Pr [si−1 = 0 | ci = β] · (x− α)

= α+
2−Θ(b/t2)

t

β∑
x=α

(x− α)

= α+ t · 2−Θ(b/t2)

and on the other hand

α+
1
t

β∑
x=α

Pr [si−1 = 0 | ci = x] · (x− α)

≥ α+
1
t

β∑
x=(α+β)/2

Pr [si−1 = 0 | ci = (α+ β)/2] · (x− α)

= α+
2−Θ(b/t2)

t

β∑
x=(α+β)/2

(x− α)

= α+ t · 2−Θ(b/t2) .

First we show Pr [si−1 = 0 | ci = x] = 2−Ω(b/t2) for any x. For simplicity we
assume that b is a multiple of 2(t− 1)2 and we divide the b previous steps into
b/(2(t− 1)2) phases of length 2(t− 1)2. It is well-known that if the random walk
starts with a price x′ in the beginning of a phase, the expected time until the
random walk will reach a price of α will be (x′−α) · (2β−α−x′− 1) [3, p. 349].
Using Markov’s inequality we know that the probability not to reach α in two
times as many steps is at most 1/2. The number of steps is maximized for x′ = β
which gives us that the probability not to reach α in 2 · (β − α) · (β − α− 1) ≤
2(t − 1)2 steps is at most 1/2. In other words, if we fix one of the phases, the
probability that the price is strictly larger than α in every step of this phase is
at most 1/2 and because our argument does not depend on the price x′ a phase
starts with, this holds independently for every phase. Therefore, the probability
not to have a price of α in any of the b/(2(t−1)2) phases is bounded from above
by 2−b/(2(t−1)2) = 2−Ω(b/t2).

It only remains to show that Pr [si−1 = 0 | ci = x] = 2−O(b/t2) for x ≥ (α +
β)/2. For this we divide the b previous steps into d16 ·b/(t−1)2e phases of length
at most (t − 1)2/16. We call a phase starting with some price above (α + β)/2
successful if the price at the end of the phase is above (α+ β)/2 as well and no
step of the phase has a price of α. If we can show that the success probability
for a fixed phase can be bounded from below by some constant c > 0, we can

conclude that the probability for all d16 · b/(t − 1)2e phases to be successful is
at least cd16·b/(t−1)2e = 2−O(b/t2) which is the desired result and concludes the
proof of the theorem.

Fix a phase, let A denote the event that no step in the phase has a price of
α, and let B denote the event that the price at the end of the phase is above
(α + β)/2. We will show that the probability for the phase to be successful
Pr [A ∧B] = Pr [B] · Pr [A | B] is at least 1/64. Clearly Pr [B] ≥ 1/2. Now
assume for contradiction that Pr [A | B] ≤ 1/32. Let X be the random variable
describing the number of steps it takes a random walk starting from (α+β)/2 to
hit a price of α. We already know that E [X] = 3(t−1)2/4 (as before this follows
from [3, p. 349]) and that Pr

[
X ≥ j · 2(t− 1)2

]
≤ 2−j , for any integral j > 1.

Furthermore, the assumption Pr [A | B] ≤ 1/32 implies Pr
[
X ≤ (t− 1)2/16

]
≥

31/32, which gives Pr
[
X > (t− 1)2/16

]
≤ 1/32. Thus, we can conclude

– Pr
[
X ∈ [0, (t− 1)2/16]

]
≤ 1,

– Pr
[
X ∈ ((t− 1)2/16, 16 · (t− 1)2

]
≤ 1/32, and

– for any integral j ≥ 1, Pr
[
X ∈ (2 · j · (t− 1)2, 2 · (j + 1) · (t− 1)2

]
≤ 2−j .

This gives us the following contradiction

E [X] ≤ (t− 1)2

16
+

(t− 1)2

2
+
∞∑
j=8

(j + 1) · (t− 1)2

2j−1
<

3(t− 1)2

4
= E [X]

and completes the proof of the theorem. ut

Note that the above arguments in the proof of Theorem 2 also directly imply
the following lemma, which will be useful later in the proof of Theorem 3.

Lemma 1. The probability that a random walk starting at a price of β will not
see a price of α for at least (t− 1)2 steps is at least (1/64)16

Proof. The proof is analogous to the above arguments if we consider only 16
instead of d16 · b/(t− 1)2e phases of length at most (t− 1)2/16. ut

4 Expected savings of Cautious

Theorem 3. E [φn(Cautious)] = Θ(n ·min{ bt , t}).

Proof. Fix an arbitrary time step i. In Theorem 1 it was already shown that
E [∆φi(Cautious)] = (b−E [si|ci = β])/(2t).

The number of units si in the storage only depend on the number of steps
` := i− i′ that passed since the last previous step i′ that had a price of α. More
precisely, the storage is empty if ` ≥ b and otherwise the storage contains b− `
units, where we define ` := b if there was no previous step i′ with a price of α.
Hence, si = b−min{b, `} and thus,

E [∆φi(Cautious)] =
E [min{b, `} | ci = β]

2t
.

Clearly E [min{b, `} | ci = β] /(2t) ≤ b
2t = O(b/t). Since the total saving over

all steps is obviously bounded by n · t,

E [φn(Cautious)] ≤ min
{ n∑
i=1

E [∆φi(Cautious)] , n · t
}

= O
(
n ·min

{b
t
, t
})

.

It remains to show that E [min{b, `} | ci = β] /(2t) = Ω(min{ bt , t}). The prob-
ability that a random walk starting at a price of β does not reach a price of α
for at least (t − 1)2 steps is equal to Pr

[
` > (t− 1)2 | ci = β

]
. Hence, due to

Lemma 1 Pr
[
` > (t− 1)2 | ci = β

]
≥ (1/64)16. It follows

E [min{b, `} | ci = β]
2t

≥ min{b, (t− 1)2}
6416 · 2t

= Ω
(

min
{b
t
, t
})

.

Taking the sum over all steps gives E [φn(Cautious)] =
∑n
i=1 E [∆φi(Cautious)] =

Ω
(
n ·min

{
b
t , t
})

. ut

5 Expected savings of the optimal offline algorithm

The cost of an optimal offline algorithm is
∑n
i=1 min{cj | j ≥ 0, i − b ≤ j ≤

i}+
∑n
i=n−b+1(min{ci, . . . , cn, cn+1}−cn+1) (which can be formally proven with

arguments analogous to [2, Lemma 2.1]). To get a measurement of the quality of
this savings of our optimal online algorithm Cautious, we calculate E[φn(Off)]
for the optimal offline algorithm.

Theorem 4. E [φn(Off)] = Θ(n ·min{
√
b, t}).

Proof. We will show that E [ci −min{ci−b, . . . , ci}] = Θ(min{
√
b, t}), for every

step i > b. The theorem follows because
∑b
i=1(ci − min{cj | j ≥ 1, j ∈ [i −

b, i]}) ≤ b(β − α) and
∑n
i=n−b+1(min{ci, . . . , cn, cn+1} − cn+1) ∈ [b(α − β), 0]

and therefore

E [φn(Off)] = E

[
n∑
i=1

ci

]
−E

[
n∑
i=1

min{cj | j ≥ 1, j ∈ [i− b, i]}

]

−E

[
n∑

i=n−b+1

(min{ci, . . . , cn, cn+1} − cn+1)

]

=
n∑

i=b+1

E [ci −min{ci−b, . . . , ci}]

+ E

[
b∑
i=1

(ci −min{cj | j ≥ 1, j ∈ [i− b, i]})

]

+ E

[
n∑

i=n−b+1

(min{ci, . . . , cn, cn+1} − cn+1)

]
= Θ(n ·min{

√
b, t}) .

In this proof we will make use of the well-known fact that it is possible to
map a symmetric unrestricted random walk c′1, . . . , c

′
n+1 to the random walk

c1, . . . , cn+1 with reflecting boundaries at α and β. More precisely, let c′1 be
chosen uniformly at random from {0, . . . , t − 1} and set Pr

[
c′i+1 = c′i + 1

]
=

Pr
[
c′i+1 = c′i − 1

]
= 1

2 , for any c′i. Setting ci := α+min{(c′i mod 2t), 2t−1−(c′i
mod 2t)} for each i, maps this unrestricted random walk to the reflected random
walk.

Fix a time step i > b. We have to show that E [ci −min{ci−b, . . . , ci}] =
Θ(min{

√
b, t}) and we start with the upper bound. It is easy to see that ci−cj ≤

|c′i − c′j | for every j and it is known [3, Theorem III. 7.1] that

Pr
[
|c′i −min{c′i−b, . . . , c′i}| = `

]
=

1
2b−1

·

((
b

1
2 (b+ `)

)
+
(

b
1
2 (b+ `+ 1)

))
.

Thus,

E [ci −min{ci−b, . . . , ci}] ≤ E
[
|c′i −min{c′i−b, . . . , c′i}|

]
=

b∑
`=1

`

2b−1
·

((
b

1
2 (b+ `)

)
+
(

b
1
2 (b+ `+ 1)

))

≤ 2 ·
b∑
`=1

`

2b−1
·
(

b
1
2 (b+ `)

)
= O

(√
b
)
.

Since obviously ci−min{ci−b, . . . , ci} ≤ t, we obtain E [ci −min{ci−b, . . . , ci}] =
O(min{

√
b, t}).

To show the lower bound we, once again, start by considering the symmetric
unrestricted random walk and obtain

Pr

[
c′i − c′i−b >

√
b

4

]
=

1
2
·Pr

[
|c′i − c′i−b| >

√
b

4

]

=
1
2
·

(
1−Pr

[
|c′i − c′i−b| ≤

√
b

4

])

=
1
2
·

(
1− 2−b ·

√
b/4∑

`=−
√
b/4

(
b

1
2 (b+ `)

))

≥ 1
2
·

(
1− 2−b ·

√
b/4∑

`=−
√
b/4

(
b
b
2

))
≥ 1

4
.

Since the step size of the random walk is one, c′0−c′i−b >
√
b/4 implies that there

exists a 0 ≤ k ≤ b such that c′i − c′i−k = d
√
b/4e. Therefore we can conclude for

our reflecting random walk that

Pr

[
ci −min{ci−b, . . . , ci} ≥

⌈√
b

4

⌉
| ci = j

]
≥ 1

4

for any j ≥ α+ d
√
b/4e.

By exploiting this lower bound on the probability that there is a large differ-
ence between the current price ci and the minimum price over the last b steps
min{ci−b, . . . , ci} we get

E [ci −min{ci−b, . . . , ci}]

=
β∑
j=α

Pr [ci−b = j] ·E [ci −min{ci−b, . . . , ci} | ci = j]

≥ 1
t

β∑
j=α+d

√
b/4e

E [ci −min{ci−b, . . . , ci} | ci = j]

≥ d
√
b/4e
t

β∑
j=α+d

√
b/4e

Pr

[
ci −min{ci−b, . . . , ci} ≥

⌈√
b

4

⌉
| ci = j

]

≥ 1
t

β∑
j=α+d

√
b/4e

√
b

16

=

√
b

16t
·

(
t−

⌈√
b

4

⌉)
.

Hence, for b ≤ t2, E [ci −min{ci−b, . . . , ci}] = Ω(
√
b). Since the amount ci −

min{ci−b, . . . , ci} is monotonic in b, we also have E [ci −min{ci−b, . . . , ci}] =
Ω(t) for b > t2, which concludes the proof of the lower bound. ut

6 Conclusions

We considered the Economical Caching problem with stochastic prices generated
by a random walk with reflecting boundaries at α and β. We identified an opti-
mal online algorithm for this setting and gave bounds on its expected cost and
savings. However, modeling the price development as a random walk might be a
serious simplification of many real world scenarios. Therefore this work should
be seen as a first step towards an analysis of more realistic input models.

In reality, prices may increase or decrease by more than one unit in each time
step and the probabilities for an increase and a decrease might differ and depend
on the current price. Furthermore, the assumption that the upper and lower
bound α and β is known to the algorithm, is unrealistic in most applications. In
fact, in general, these strict bounds do not even exist.

References

1. A. Borodin and R. El-Yaniv. Online computation and competitive analysis. Cam-
bridge University Press, New York, NY, USA, 1998.

2. M. Englert, H. Röglin, J. Spönemann, and B. Vöcking. Economical caching. In
Proceedings of the 26th Symposium on Theoretical Aspects of Computer Science
(STACS), pages 385–396, 2009.

3. W. Feller. An Introduction to Probability Theory and Its Applications. Wiley, 3rd
edition, 1971.

4. D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging rules.
Commun. ACM, 28(2):202–208, 1985.

