
Lower and Upper Bounds

on FIFO Buffer Management in QoS Switches∗

Matthias Englert Matthias Westermann

Department of Computer Science
RWTH Aachen

52056 Aachen, Germany
{englert,marsu}@cs.rwth-aachen.de

Abstract

We consider the management of FIFO buffers for network switches providing differ-
entiated services. In each time step, an arbitrary number of packets arrive and only one
packet can be sent. The buffer can store a limited number of packets and, due to the FIFO
property, the sequence of sent packets has to be a subsequence of the arriving packets. The
differentiated service model is abstracted by attributing each packet with a value according
to its service level. A buffer management strategy can drop packets, and the goal is to
maximize the sum of the values of sent packets.

For only two different packet values, we introduce the account strategy and prove that
this strategy achieves an optimal competitive ratio of

√
2 − (

√
5 + 4

√
2 − 3)/2 ≈ 1.282 if

the buffer size tends to infinity and an optimal competitive ratio of (
√

13 − 1)/2 ≈ 1.303
for arbitrary buffer sizes. For general packet values, the simple preemptive greedy strategy
(PG) is studied. We show that PG achieves a competitive ratio of

√
3 ≈ 1.732 which is the

best known upper bound on the competitive ratio of this problem. In addition, we give
a lower bound of 1 + 1/

√
2 ≈ 1.707 on the competitive ratio of PG which improves the

previously known lower bound. As a consequence, the competitive ratio of PG cannot be
further improved significantly.

∗Supported by the DFG grant WE 2842/1. A preliminary version of this paper appeared in Proceedings of
the 14th Annual European Symposium on Algorithms (ESA), 2006.

1

1 Introduction

Quality of Service (QoS) guarantees for network services allow providers to address the re-
quirements of customers by offering different levels of service. In the network setting, where
traffic volumes may exceed network capacity, effective management of buffers in switches is a
key to achieve QoS guarantees. We consider FIFO buffers, i.e., the buffer can store a limited
number of packets and, due to the FIFO property, the sequence of sent packets has to be
a subsequence of the arriving packets. By differentiating service levels, packets of different
types may be treated according to the level of service they require. This model is abstracted
by attributing each packet with a value according to its service level. A buffer management
strategy can drop packets, and the goal is to maximize the sum of the values of sent packets.

For only two different packet values, we introduce the account strategy and prove that
this strategy achieves an optimal competitive ratio of

√
2 − (

√
5 + 4

√
2 − 3)/2 ≈ 1.282 if

the buffer size tends to infinity and an optimal competitive ratio of (
√

13 − 1)/2 ≈ 1.303 for
arbitrary buffer sizes. For general packet values, the simple preemptive greedy strategy (PG) is
studied. We show that PG achieves a competitive ratio of

√
3 ≈ 1.732 which is the best known

upper bound on the competitive ratio of this problem. In addition, we give a lower bound of
1 + 1/

√
2 ≈ 1.707 on the competitive ratio of PG which improves the previously known lower

bound. As a consequence, the competitive ratio of PG cannot be further improved significantly.

1.1 The Model

Time is slotted in time steps. In each time step, an arbitrary number of packets arrive, and, at
the end of each time step, only one packet can be sent. Packets that are not sent can be stored
in a FIFO buffer with a limited storage capacity for b packets. Initially, the FIFO buffer is
empty. Due to the FIFO property, the sequence of sent packets has to be a subsequence of the
arriving packets, i.e., if a packet p is sent before a packet p′, p has arrived before p′.

The differentiated service model is abstracted by attributing each packet p with a value
v(p) according to its service level. A buffer management strategy can drop arriving packets,
i.e., these packets are never stored in the buffer, or can drop packets stored in the buffer, i.e.,
these packets are deleted from the buffer and not sent. The goal of the buffer management
strategy is to maximize the sum of the values of sent packets.

The notion of an online strategy is intended to formalize the realistic scenario where the
strategy does not have knowledge about the whole input sequence of arriving packets in ad-
vance. The online strategy gets to know this sequence packet by packet and has to react
without knowledge about the future. Online strategies are typically evaluated in a competitive
analysis. In this kind of analysis the total value produced by the online strategy is compared
with the total value produced by an optimal offline strategy.

For a given input sequence σ of arriving packets, let OPT(σ) denote the total value produced
by an optimal offline strategy. An online strategy is denoted as c-competitive if it produces
total value at least OPT(σ)/c, for each input sequence σ of arriving packets. The value c is
also called the competitive ratio of the online strategy.

1.2 Previous Work

Aiello et al. [1] introduce the model of differentiated services for FIFO buffers without preemp-
tion. Mansour, Patt-Shamir, and Lapid [11] add preemption and general packet values to this

2

model. Kesselman and Mansour [8] study the value of the lost packets instead of the value of
the sent packets.

Kesselman et al. [7] show that the greedy strategy achieves a competitive ratio of 2. Kessel-
man, Mansour, and van Stee [9] introduce the preemptive greedy strategy and prove that this
strategy achieves a competitive ratio of ≈ 1.983. In addition, they give the previously best
known lower bound of (1 +

√
5)/2 ≈ 1.618 on the competitive ratio of the preemptive greedy

strategy. Bansal et al. [5] study a modification of the preemptive greedy strategy and show
that this strategy achieves a competitive ratio of 7/4 which is the previously best known upper
bound on the competitive ratio of this problem. Note that their modification does not improve
the overall performance of the strategy [6]. The best known lower bound on the competitive
ratio of this problem is ≈ 1.419 [9].

The following results refer to the case where only two different packet values are considered.
Lotker and Patt-Shamir [10] present a strategy that achieves a competitive ratio of ≈ 1.30448.
Kesselman et al. [7] show a lower bound of ≈ 1.282 on the competitive ratio. Andelman [2]
presents a randomized strategy that achieves a competitive ratio of 5/4. Further, he gives a
lower bound of ≈ 1.197 on the competitive ratio of any randomized strategy.

Azar and Richter [4] extend the buffer management problem to multi-queues, i.e., several
incoming queues have to be served by delivering packets that arrive at these queues through
one output port, one packet per time step. They present a generic technique that transforms
a strategy for a single queue to a strategy for several queues. They show that the competitive
ratio of the constructed strategy is at most twice the competitive ratio of the single queue
strategy.

1.3 Our Contributions

In Section 2, only two packet values are considered. We introduce the account strategy and
prove that this strategy achieves an optimal competitive ratio of

√
2−(

√
5 + 4

√
2−3)/2 ≈ 1.282

if the buffer size tends to infinity and an optimal competitive ratio of (
√

13− 1)/2 ≈ 1.303 for
arbitrary buffer sizes. Note that this is the first non-trivial optimal result in this area.

In Section 3, general packet values are considered. We study the preemptive greedy strategy
(PG) introduced in [9]. This is a simple strategy that can be implemented efficiently. We show
that PG achieves a competitive ratio of

√
3 ≈ 1.732 which is the best known upper bound on

the competitive ratio of this problem. In addition, we give a lower bound of 1+1/
√

2 ≈ 1.707 on
the competitive ratio of PG which improves the previously known lower bound of (1+

√
5)/2 ≈

1.618. Hence, the gap between upper and lower bound for PG narrows to approximately 1/40.
We conjecture that the lower bound is tight. As a consequence, new approaches are needed,
since the competitive ratio of PG cannot be further improved significantly. Based on our lower
bound for PG and our optimal account strategy for two packet values, we propose an approach
to tackle the problems of PG.

3

2 Two Packet Values

In this section, only two packet values 1 and α > 1 are considered. A packet of value 1 is called
1-packet, and a packet of value α is called α-packet. Define

r :=
√

13− 1
2

≈ 1.303 and

r∞ :=
√

2−
√

5 + 4
√

2− 3
2

≈ 1.282 .

The following theorem states two lower bounds on the competitive ratio of any deterministic
strategy. The proof for the first statement of this theorem can be found, e.g., in [3], and the
proof for the second statement of this theorem can be found, e.g., in [7].

Theorem 1. Consider only two packet values 1 and α > 1.

1. The competitive ratio of any deterministic strategy is at least r, if the buffer size is 2.

2. The competitive ratio of any deterministic strategy is at least r∞, if the buffer size tends
to infinity.

The account strategy (ACC) tries to preempt 1-packets from the buffer in order to avoid
losing too many α-packets in case of a buffer overflow. The number of preempted 1-packets
has to be chosen carefully. Obviously, the total number of preempted 1-packets should not
exceed (x−1) times the total value of sent packets if we want to achieve a competitive ratio of
x. Hence, one basic idea of ACC is to preempt at most (x− 1) · α 1-packets for each α-packet
entering the buffer and at most (x−1) 1-packets for each sent 1-packet. ACC tries to preempt
as much 1-packets as possible without violating this constraint.

We define ACC(x) with one parameter x ≥ 1 which is the competitive ratio we aim for and
which is therefore used to determine how aggressive the strategy is with respect to preemption.
ACC(x) uses an account a which is initially set to 0. Basically, each packet sent by ACC(x)
increases the account by (x − 1) times its own value, and each preempted 1-packet decreases
the account by 1. More precisely, for each time step, ACC(x) does the following.

1. For each arriving packet p, do the following.

(a) If there is an unoccupied location in the buffer, store p. Otherwise, if a 1-packet is
stored in the buffer, drop the 1-packet which is closest to the front of the buffer and
store p.

(b) If p is an α-packet that is stored in the buffer (observe that stored α-packets are
never dropped), increase the account a by (x− 1) · α.

(c) If the buffer is completely filled with α-packets, reset the account a to 0.

2. After all packets have arrived, do the following.

(a) As long as the first packet is a 1-packet and a ≥ 1, drop this packet, which is called
preempted, and decrease the account a by 1.

(b) Send the first packet. If this packet is a 1-packet, increase the account by (x− 1).

(c) If no packet is stored in the buffer, reset the account a to 0.

4

The following theorem shows that ACC achieves optimal competitive ratios.

Theorem 2. Consider only two packet values 1 and α > 1.

1. ACC(r) achieves a competitive ratio of r for arbitrary buffer sizes.

2. ACC(r∞) achieves a competitive ratio of r∞ if the buffer size tends to infinity.

Proof. We define a particular optimal offline strategy OPT (compare [10]). For each input
sequence, the set of feasible work conserving schedules, i.e., the feasible schedules in which a
packet is sent in each time step in which the buffer is not empty, is a matroid. Hence, a greedy
strategy can compute an optimal solution. First, OPT considers all α-packets in increasing
order of their arrival, and thereafter, OPT considers all 1-packets in increasing order of their
arrival.

We show that the analysis can be restrict to input sequences that satisfy the following two
properties.

1. In each time step, except for the b − 1 last ones, ACC sends a packet, where b denotes
the buffer size.

2. In each α-overflow time step, i.e., the buffer of ACC is completely filled with α-packets,
exactly b α-packets and no 1-packets arrive.

The following two observations show that we can assume w.l.o.g. that each input sequence
satisfies the two properties.

Observation 3. For each input sequence σ, it exists an input sequence for which ACC has at
least the same competitive ratio and which satisfies the first property.

Proof. After each time step in σ in which the buffer of ACC is empty, insert b− 1 additional
time steps in which no packets arrive. The set of packets sent by ACC does not change and
the value of an optimal solution can only increase. Hence, the competitive ratio of ACC for
the altered input sequence is at least as large as for the original sequence σ.

Now, we partition the input sequence into subsequences. A new subsequence starts after
b − 1 consecutive time steps in which no new packets arrive. Obviously, we can assume that
there are never more than b− 1 consecutive time steps in which no new packets arrive.

Fix a subsequence σ(i). The buffers of ACC and OPT are empty at the beginning of σ(i),
since any packet stored in the buffers of size b is sent during one of the previous b time steps
and no new packets arrive in between. Furthermore, the buffers of ACC and OPT are empty
at the end of σ(i). However, the buffer of ACC is only empty for the last b − 1 time steps of
σ(i), due to the construction of the subsequences. In all other time steps, a packet is sent.

Finally note that the competitive ratio of ACC for one of the subsequences is at least as
large as for the original sequence σ.

Observation 4. For each input sequence σ, it exists an input sequence for which ACC has at
least the same competitive ratio and which satisfies both properties.

Proof. In each α-overflow time step of σ, add b α-packets to the arriving packets. None of
these α-packets can be stored by ACC. The set of packets sent by ACC does not change and
the value of an optimal solution can only increase. Hence, the competitive ratio of ACC for
the altered input sequence is at least as large as for the original sequence σ.

5

For each α-overflow time step, we remove all arriving packets except for b α-packets. The
sets of packets sent by ACC and OPT do not change, since in each time step only the b most
valuable arriving packets are relevant.

Now, fix an input sequence σ that satisfies both properties. We partition σ into time
intervals. A time interval ends with an α-overflow time step, and the next time interval begins
with the time step following this α-overflow. Let Pi denote the set of packets arriving in the
i-th time interval, and let m denote the total number of different time intervals, i.e., each
arriving packet in σ is in

⋃m
i=1 Pi.

Let ACC1(Pi) (ACCα(Pi)) denote the subset of 1-packets (α-packets) in Pi that are sent
by ACC, and let OPT1(Pi) (OPTα(Pi)) denote the subset of 1-packets (α-packets) in Pi that
are sent by OPT. In order to show the theorem, we prove the claimed competitive ratio for
each set of packets Pi, i.e., we prove, for each Pi,

|OPT1(Pi)|+ α · |OPTα(Pi)|
|ACC1(Pi)|+ α · |ACCα(Pi)|

≤ r (or r∞, respectively) . (1)

The following two lemmata give upper bounds on the number of packets sent by OPT.

Lemma 5. ACC sends the same number of packets as OPT from each set Pi with i < m.

Proof. We prove the lemma by induction over i. Fix an i < m and assume that ACC sends
the same number of packets as OPT from each set Pj with j < i. As a consequence, ACC and
OPT start sending packets from Pi in the same time step.

Let t denote the last time step in which a packet from Pi arrives, i.e., the α-overflow time
step. In time step t + b − 1, ACC sends a packet from Pi, since in time step t the buffer of
ACC is completely filled with α-packets and the last α-packet in the buffer is a packet from
Pi.

• OPT does not send more packets from Pi than ACC.

Each packet is stored in the buffer for at most b− 1 time steps. As a consequence, after
time step t+ b− 1, OPT can only send packets that arrive after time step t, and hence,
these packets are not in Pi.

• OPT does not send less packets from Pi than ACC.

Assume for contradiction that OPT sends less packets from Pi than ACC. As a conse-
quence, in time step t+ b− 1 a packet from Pj with j > i is sent by OPT. Hence, OPT
does not send all α-packets from Pi, since b α-packets arrive in time step t. When one of
these α-packets not send by OPT was considered to be included in the schedule of OPT,
it could have been added without making the schedule infeasible. This is a contradiction
to our definition of OPT.

This concludes the proof of the lemma.

Let D ⊆ Pm denote the set of preempted 1-packets from Pm, i.e., D := {p ∈ Pm |
p is preempted by ACC}.

Lemma 6.
∑m

i=1(|OPT1(Pi)|+ |OPTα(Pi)|) ≤
∑m

i=1(|ACC1(Pi)|+ |ACCα(Pi)|) + |D|.

6

Proof. In the following, we add packets from D to the schedule of ACC, such that the resulting
schedule is maximal, i.e., the schedule becomes infeasible if another packet is added. As
a consequence, the schedule of OPT contains the same number of packets as our modified
schedule, since the set of feasible work conserving schedules is a matroid.

Consider the last time step t in which the buffer of ACC is completely filled with packets.
Let D′ denote the set of packets that are either stored in the buffer of ACC at time step t or
arrive after t and that are not contained in the schedule of ACC. Observe that each packet in
D′ is a preempted 1-packet from Pm, since t is the last time step in which the buffer of ACC
is completely filled with packets. Hence, D′ ⊆ D.

Adding as much packets as possible from D′ to the schedule of ACC, such that the resulting
schedule is feasible, produces a maximal schedule. Obviously, adding an additional packet that
is not in D′ to the schedule makes the schedule infeasible.

Now, we are able to show Inequality (1) for Pm. Combining Lemma 5 and Lemma 6 yields
|OPT1(Pm)|+ |OPTα(Pm)| ≤ |ACC1(Pm)|+ |ACCα(Pm)|+ |D|. Since ACC sends all α-packets
from Pm, |OPTα(Pm)| = |ACCα(Pm)|. Hence,

|OPT1(Pm)|+ α · |OPTα(Pm)| ≤ |ACC1(Pm)|+ α · |ACCα(Pm)|+ |D| . (2)

When the last packet of Pm−1 arrives, the buffer of ACC is completely filled with α-packets
and the account a is reset to 0. Hence, the preemption of later arriving packets, i.e., packets
in Pm, is caused by packets from Pm that are sent by ACC. As a consequence,

|D| ≤ (r − 1) · (|ACC1(Pm)|+ α · |ACCα(Pm)|) .

In combination with Inequality (2), this gives

|OPT1(Pm)|+ α · |OPTα(Pm)| ≤ |ACC1(Pm)|+ α · |ACCα(Pm)|
+(r − 1) · (|ACC1(Pm)|+ α · |ACCα(Pm)|)

= r · (|ACC1(Pm)|+ α · |ACCα(Pm)|) .

To show Inequality (1) for each Pi with i < m, we need to know by how much the number
of α-packets sent by OPT exceeds the number of α-packets sent by ACC. For a Pi from which
ACC sends only α-packets, Inequality (1) holds obviously.

Consider a Pi with i < m from which ACC sends at least one 1-packet and b+ y α-packets
(ACC sends at least b α-packets from Pi). The only α-packets that cannot be sent by ACC are
the ones arriving in the α-overflow time step. For each α-packet in the buffer of ACC at this
time step that is already sent by OPT, OPT can store one additional α-packet that cannot be
sent by ACC.

The following lemma gives an upper bound on the number of α-packets sent by OPT but
not by ACC.

Lemma 7. Consider a set Pi with i < m from which ACC(x) sends at least one 1-packet and
b+ y α-packets. At most ⌊

b− 1 + x+ y · (x− 1)
(x− 1) · α+ x

⌋
α-packets in the buffer of ACC(x) are already sent by OPT right before the α-overflow time
step of Pi.

7

Proof. Consider the latest time step t before the α-overflow time step in which the number of
α-packets in the buffer of ACC that are already sent by OPT is increased from n − 1 to n.
Hence, ACC sends a 1-packet p and OPT sends an α-packet that arrived after p and is stored
in the buffer of ACC. Each α-packet in the buffer of ACC that is already sent by OPT arrived
later than p. Let q denote the first α-packet in the buffer of ACC that is already sent by OPT,
and let t′ denote the time step in which q arrives.

Each α-packet in the buffer of ACC has increased the account a by (x− 1) ·α. In addition,
the account a is increased by z · (x − 1), where z denotes the number of 1-packets sent by
ACC from t′ to t1. Observe that the account a is not reset to 0 from t′ to t, since the 1-
packet p is stored in the buffer from t′ to t. However, the value of the account a is less than 1
right before p is sent by ACC, since otherwise p would have been preempted. Hence, at least
n · (x− 1) ·α+ z · (x− 1)− 1 1-packets are preempted from t′ to t. All the preempted 1-packets
arrive before p.

Since only one α-packet can be sent by OPT in each time step, at least n− 1 packets are
sent from t′ to t. In fact, z + y′ ≥ n − 1 packets are sent from t′ to t, where y′ denotes the
number of α-packets sent by ACC from t′ to t. Note that y ≥ y′.

After the arrival of q in the time step t′, there are less or equal than b − 1 other packets
in the buffer of ACC and all of them arrived earlier than q. Until time step t, at least
n · (x− 1) · α+ z · (x− 1)− 1 of them are preempted, z + y′ ≥ n− 1 of them are sent, and p is
still in the buffer. Hence, n · (x− 1) · α+ z · (x− 1)− 1 + z + y′ + 1 ≤ b− 1.

Altogether,

b− 1 + x+ y · (x− 1) ≥ b− 1 + x+ y′ · (x− 1)
≥ b− 1 + x+ (n− 1− z) · (x− 1)
≥ n · (x− 1) · α+ z · (x− 1)− 1 + z + y′ + 1

+x+ (n− 1− z) · (x− 1)
= n · (x− 1) · α+ n · (x− 1) + z + y′ + 1
≥ n · (x− 1) · α+ n · (x− 1) + n

= n · ((x− 1) · α+ x) ,

which concludes the proof of the lemma.

Due to Lemma 5,

|OPT1(Pi)|+ α · |OPTα(Pi)|
|ACC1(Pi)|+ α · |ACCα(Pi)|

≤ α · |OPTα(Pi)|
|ACC1(Pi)|+ α · |ACCα(Pi)| − |OPT1(Pi)|

=
α · |OPTα(Pi)|

(α− 1) · |ACCα(Pi)|+ |OPTα(Pi)|
.

Hence, it remains to show that

(α− x) · |OPTα(Pi)| ≤ x · (α− 1) · |ACCα(Pi)| ,

for x := r and x := r∞ with b→∞. Due to Lemma 7, this inequality is equivalent to

(α− x) ·
(
b+ y +

⌊
b− 1 + x+ (x− 1) · y

(x− 1) · α+ x

⌋)
≤ x · (α− 1) · (b+ y) ,

1From t′ to t denotes the time interval from t′ to t excluding time step t.

8

which is equivalent to

(α− x) ·
⌊
b− 1 + x+ (x− 1) · y

(x− 1) · α+ x

⌋
≤ (x− 1) · α · (b+ y) . (3)

• Suppose that x := r∞ and b→∞.

Observe that

lim
b→∞

(α− r∞) ·
(

1− 1/b+ r∞/b

(r∞ − 1) · α+ r∞

)
− (r∞ − 1) · α

= (α− r∞) ·
(

1
(r∞ − 1) · α+ r∞

)
− (r∞ − 1) · α ≤ 0 .

Then, it follows that

lim
b→∞

(α− r∞) ·
(

b− 1 + r∞
(r∞ − 1) · α+ r∞

)
− (r∞ − 1) · α · b ≤ 0 .

Finally, Inequality (3) can be shown as follows

lim
b→∞

(α− r∞) ·
⌊
b− 1 + r∞ + (r∞ − 1) · y

(r∞ − 1) · α+ r∞

⌋
− (r∞ − 1) · α · (b+ y)

≤ lim
b→∞

(α− r∞) ·
(
b− 1 + r∞ + (r∞ − 1) · y

(r∞ − 1) · α+ r∞

)
− (r∞ − 1) · α · (b+ y)

≤ lim
b→∞

(α− r∞) ·
(

b− 1 + r∞
(r∞ − 1) · α+ r∞

)
− (r∞ − 1) · α · b ≤ 0 .

• Suppose that x := r.

Defining k := b+ (r − 1) · y, we get

(α− r) ·
⌊
b− 1 + r + (r − 1) · y

(r − 1) · α+ r

⌋
− (r − 1) · α · (b+ y)

= (α− r) ·
⌊

k − 1 + r

(r − 1) · α+ r

⌋
− (r − 1) · α · (k + (2− r) · y)

≤ (α− r) ·
⌊

k − 1 + r

(r − 1) · α+ r

⌋
− (r − 1) · α · k .

We distinguish two cases.

– Suppose that k ≥ 5/2.
Observe that

(α− r) ·
⌊

k − 1 + r

(r − 1) · α+ r

⌋
− (r − 1) · α · k

≤ (α− r) ·
(

k − 1 + r

(r − 1) · α+ r

)
− (r − 1) · α · k

= (α− r) ·
(

−1 + r

(r − 1) · α+ r

)
+
−(r − 1)2 · α2 + (1 + r − r2) · α− r

(r − 1) · α+ r
· k .

9

The last term decreases with increasing k. Hence, Inequality (3) can be shown as
follows

(α− r) ·
(

k − 1 + r

(r − 1) · α+ r

)
− (r − 1) · α · k

≤ (α− r) ·
(

3/2 + r

(r − 1) · α+ r

)
− 5(r − 1) · α

2
≤ 0 .

– Suppose that 2 ≤ k < 5/2.
Observe that

0 ≤ k − 1 + r

(r − 1) · α+ r
<

3/2 + r

(r − 1) · α+ r
≤ 3/2 + r

2r − 1
< 2 .

As a consequence, b(k − 1 + r)/((r − 1) · α+ r)c equals either 0 or 1. If it equals 0,
Inequality (3) follows obviously. Otherwise, k ≥ (r − 1) · α+ 1.
If k = 2, this gives α ≤ 1/(r − 1). Hence, Inequality (3) can be shown as follows

(α−r)·
⌊

k − 1 + r

(r − 1) · α+ r

⌋
−(r−1)·α·k = (α−r)−2(r−1)·α ≤

(
1

r − 1
− r
)
−2 = 0 .

If k > 2, y ≥ 1, since otherwise k would be integral. Hence, Inequality (3) can be
shown as follows

(α− r) ·
⌊

k − 1 + r

(r − 1) · α+ r

⌋
− (r − 1) · α · (k + (2− r) · y)

≤ (α− r)− (r − 1) · α · (k + (2− r))
≤ (α− r)− (r − 1) · α · ((r − 1) · α+ 1 + (2− r)) ≤ 0 .

This concludes the proof of the theorem.

3 The Preemptive Greedy Strategy

Kesselman, Mansour, and van Stee [9] introduce the preemptive greedy strategy (PG) with
the parameter β > 1. When a packet p arrives, PG does the following.

1. Find the first packet, i.e., the packet closest to the front of the buffer, p′, with v(p′) ≤
v(p)/β. If such a packet p′ exists, drop it (p′ is called preempted by p).

2. If there is an unoccupied location in the buffer, store p in the buffer.

3. Otherwise, find a packet p′ with the smallest value among the packets in the buffer. If
v(p′) < v(p), drop p′ (p′ is called ejected by p) and store p in the buffer. Otherwise, drop
p (p is called rejected).

Bansal et al. [5] study a modified version of PG. The only difference is that step 1 of PG
is substituted by the following.

1. Find the first packet p′, with v(p′) ≤ v(p)/β and v(p′) is not larger than the value of the
packet stored after p′ in the buffer. If such a packet exists, drop it.

10

Note that this modification does not improve the overall performance of the strategy [6].
New approaches are needed, since, due to the following lower and upper bound, the com-

petitive ratio of PG cannot be further improved significantly. A basic concept of PG is that,
for each arriving packet p, the first packet whose value is at most v(p)/β is preempted. At first
sight, it seems more reasonable that, instead, the packet with the smallest value is preempted.
But in fact, the preemption of the first packet whose value is suitable small enough is a crucial
property to achieve a competitive ratio smaller than 2. However, this can turn out to be a great
disadvantage as the first input sequence in the following lower bound shows. This disadvantage
diminishes with increasing β. On the other hand, too few packets are preempted for larger β
as the second input sequence in the following lower bound shows. An approach to tackle this
problem might be the following: If, for large β, the value of a single packet does not suffice
to preempt another packet, the values of more than one packet are combined for preemption.
Note that, in the case of only two packet values, we achieve with this idea an optimal strategy.

3.1 Lower Bound

The following theorem gives an lower bound on the competitive ratio of PG.

Theorem 8. The competitive ratio of PG is at least 1 + 1/
√

2 ≈ 1.707.

Proof. Fix an even buffer size b. Depending on β, we distinguish the following two cases.

• Suppose that β ≤ 2 +
√

2.

The input sequence consists of n consecutive phases defined as follows.

– Phase 1 ≤ i < n consists of b/2 time steps. In time step 1 of the i-th phase, at
first b packets of value ε and finally b/2 packet of value βi arrive. In the remaining
b/2− 1 time steps, new packets do not arrive.

– Phase n consists of one time step. In this time step, b packets of value βn−1 arrive.

For this input sequence, PG produces value

lim
ε→0

n−1∑
i=1

(
b

2
· ε
)

+ b · βn−1 = b · βn−1 ,

and the optimal value is

n−1∑
i=1

(
b

2
· βi
)

+ b · βn−1 = b · 3βn − 2βn−1 − β
2(β − 1)

.

Hence, the competitive ratio is

lim
n→∞

3βn − 2βn−1 − β
2(βn − βn−1)

= 1 +
β

2(β − 1)
≥ 1 +

1√
2
.

• Suppose that β > 2 +
√

2.

The input sequence consists of n consecutive phases defined as follows.

11

– Phase 1 consists of b − 1 time steps. In time step 1, at first b − 1 packets of value
1 and finally one packet of value α < β arrive. In each of the remaining b− 2 time
steps, one packet of value α arrives.

– Phase 1 < i < n consists of b− 1 time steps. In each of these time steps, one packet
of value αi arrives.

– Phase n consists of one time step. In this time step, b packets of value αn−1 arrive.

For this input sequence, PG produces value

n−2∑
i=0

((b− 1) · αi) + b · αn−1 = b ·
αn − 1

b · α
n−1 − b−1

b

α− 1
,

and the optimal value is

n−1∑
i=1

((b− 1) · αi) + b · αn−1 = b ·
(
2− 1

b

)
· αn − αn−1 − b−1

b · α
α− 1

.

Hence, the competitive ratio is

lim
α→β

lim
n→∞

lim
b→∞

(
2− 1

b

)
· αn − αn−1 − b−1

b · α
αn − 1

b · αn−1 − b−1
b

= lim
α→β

lim
n→∞

2αn − αn−1 − α
αn − 1

= lim
α→β

2α− 1
α

= 1 +
β − 1
β
≥ 1 +

1√
2
.

This concludes the proof of the theorem.

3.2 Upper Bound

The following theorem gives an upper bound on the competitive ratio of PG.

Theorem 9. PG achieves a competitive ratio of
√

3 ≈ 1.732 for β = 2 +
√

3.

Proof. Let OPT denote an optimal offline strategy. We assume that OPT only stores packets
in its buffer that are sent by OPT. Further, we assume that, at the arrival of each packet, the
buffer of PG is completely filled with packets. If there are unoccupied locations in the buffer
of PG, it is assumed that dummy packets of value 0 are stored at these locations which are
always at the end of the buffer. Hence, each arriving packet either preempts another packet,
ejects another packet, or is rejected.

Fix an input sequence of arriving packets. This input sequence can also be regarded
as a sequence σ = σ1σ2 · · · of arrival and send events, where each arrival of a new packet
corresponds to an arrival event and each sending of a packet corresponds to a send event. The
event sequence σ is partitioned into time steps, where the first time step starts with the first
event and a new time step starts right after each send event.

Let Spg
t (Sopt

t) denote the set of packets sent by PG (OPT) by the end of event σt, i.e., all
packets sent in the events σ1, . . . , σt (including σt). Let Bpg

t (Bopt
t) denote the set of packets

stored in the buffer of PG (OPT) at the end of σt. For a packet p ∈ Bpg
t , we call ct(p) the

charge of p at the end of σt. Further, we call Dt the set of packets with a deposit at the end

12

of σt. Note that charges and deposits are two independent concepts we use. Initially, D0 := ∅.
The goal is to choose ct(p) and Dt in such a way that, for each event σt, the main inequality∑

p∈Spg
t

r · v(p) +
∑
p∈Bpg

t

ct(p) ≥
∑

p∈Sopt
t ∪Dt

v(p)

is true, with r :=
√

3. As a consequence, this yields the theorem.
Let ∆pg

t (∆opt
t) denote the alterations of the left (right) side of the main inequality at the

event σt, i.e.,

∆pg
t :=

∑
p∈Spg

t \S
pg
t−1

r · v(p) +
∑
p∈Bpg

t

ct(p)−
∑

p∈Bpg
t−1

ct−1(p) and

∆opt
t :=

∑
p∈(Sopt

t ∪Dt)\(Sopt
t−1∪Dt−1)

v(p) .

Obviously, the main inequality is true before the first event, since packets have not been sent
so far and the buffers and the set of packets with a deposit are empty. Hence, it is sufficient
to show, for each event σt, ∆pg

t ≥ ∆opt
t , since this yields the main inequality.

First, we give an intuition for the basic ideas of the proof. Then, we present the formal
proof. The basic idea for the set Dt is simple. Packets stored exclusively in the buffer of
OPT at the end of event σt, especially packets already sent by PG, could be a problem, if PG
cannot send a packet, i.e., the buffer of PG is empty, when those packets are sent by OPT.
The left side of the main inequality is not increased at these events, and it is crucial for the
proof that the same is true for the right side of the main inequality. Hence, these packets have
to be contained in Dt. Intuitively, PG has already gained enough value to pay these packets
in advance, i.e., before they are sent by OPT.

The basic idea for ct(p) is the following. In case of a send event σt in which OPT sends a
much more valuable packet than PG that is not in Dt−1, the right side of the main inequality
is increased by a large amount and we have to compensate this by increasing the charge of
packets stored in the buffer of PG. It is fairly unproblematic to charge a packet up to (r − 1)
times its own value because if such a packet is sent by PG and OPT in the same send event,
the left side of the main inequality is still increased by the same amount as the right side of the
main inequality. In any case, larger charges are only allowed for packets that are exclusively
in the buffer of PG.

In case of a buffer overflow in the buffer of PG in which a charged packet is ejected, this
charge has to be transferred to another packet in the buffer of PG. This is problematic for
an ejected packet that is charged by more than (r − 1) times its own value, since, after this
charge is transferred to another packet in the buffer of PG, there might be a packet charged
by more than (r− 1) times its own value that is not exclusively in the buffer of PG. Therefore
we introduce the concept of buddies. A packet stored exclusively in the buffer of PG might be
charged by 2(r− 1) times its own value only if there is another packet in the buffer of PG that
is not charged at all. We call the packet with no charge buddy for the packet with the high
charge.

Unfortunately, the precise definition of charges is slightly more complicated. Before we
define the charges in detail, we need some preliminaries. For each two packets p and p′, we
write p ≺ p′ if p arrives before p′ in the input sequence. Further, for each packet p and the
undefined symbol ⊥, p ≺ ⊥, ⊥ ≺ p, and ⊥ ≺ ⊥. Each p ∈ Bpg

t can have assigned another

13

st(p) ct(p) comment

BC (r − 2) · v(p) buddy with credit

B 0 buddy

U (r/β) · v(p) + (2− r) · vmin
t (p) unproblematic

E (r − 1) · v(p) exclusively in Bpg
t , i.e., not in Bopt

t

EB 2(r − 1) · v(p) exclusively in Bpg
t with buddy

Figure 1: Definition of the charge ct(p) of a packet p ∈ Bpg
t at the end of event σt. The charges

are listed in increasing order, e.g., a packet in state E is at least as much charged as a packet
of same value in state U. Note that the charge in case of state BC is negative. Further, note
that vmin

t (p) ≤ v(p). If vmin
t (p) = v(p), the charges in state U and E are the same for packet p.

p′ ∈ Bpg
t as buddy if p ≺ p′. However, each p′ ∈ Bpg

t is assigned as buddy for at most one
other packet. If p ∈ Bpg

t has assigned another p′ ∈ Bpg
t as buddy at the end of event σt, define

bt(p) := p′, otherwise, define bt(p) := ⊥. Further, for each p 6∈ Bpg
t , bt(p) :=⊥. Finally, for

each p ∈ Bpg
t , define vmin

t (p) := min{v(p′)|Bpg
t 3 p′ � p}.

Each p ∈ Bpg
t is in one of the five states BC, B, U, E, and EB. Let st(p) denote the state

of p at the end of event σt, and define st(⊥) := ⊥. Let BCt, Bt, Ut, Et, and EBt denote the
set of packets that are in state BC, B, U, E, and EB, respectively, at the end of event σt. The
initial state of each packet is B, and dummy packets of value 0 are always in state B. The
charge ct(p) of a packet p at the end of event σt is defined in Figure 1. Note that the charge
of a packet, except for packets in state U, does not change as long as this packet stays in the
same state. The charge of a packet in state U can only increase, since vmin

t (p) ≤ vmin
t+1(p).

Let Pt denote the set of packets that are preempted by PG by the end of event σt. For
each packet p, if p preempts another packet p′, define d(p) := p′, otherwise, define d(p) := ⊥.
A packet p transitively preempts another packet p′, if either d(p) = p′, p preempts a packet
that transitively preempts p′, or p ejects a packet that transitively preempts p′. For each
p′ ∈ Pt, if p′ is transitively preempted by a packet p ∈ Bpg

t , define d̂t(p′) := p, otherwise, define
d̂t(p′) := ⊥. For each p′ 6∈ Pt, define d̂t(p′) := ⊥. Figure 2 gives an overview of our notation.

In order to prove the theorem, we show the following five invariants by induction over the
event sequence σ. To shorten notation, we define Xt := (Pt ∪ Spg

t) ∩ (Bopt
t \Dt).

I1: ∆pg
t ≥ ∆opt

t .

I2: If p ∈ Et ∪ EBt, then p 6∈ Bopt
t .

I3: If p ∈ EBt, then bt(p) ∈ BCt ∪ Bt.

I4: If p ∈ Xt, then d̂t(p) ∈ BCt ∪ Bt.

I5: If p ∈ Bpg
t \ BCt, then b−1

t (p) ≺ d(p).

Observe that the invariants have only to be verified in the following cases.

I1: Always.

I2: For each packet p ∈ (Et ∪ EBt) \ (Et−1 ∪ EBt−1).

14

notation comment

Spg
t , Sopt

t The set of packets sent by PG and OPT by the end of σt.

Bpg
t , Bopt

t The set of packets stored in the buffer of PG and OPT at the end of σt.

Pt The set of packets preempted by PG by the end of σt.

Dt The set of packets with a deposit at the end of σt.

Xt Short notation for (Pt ∪ Spg
t) ∩ (Bopt

t \Dt).

ct(p) The charge of the packet p ∈ Bpg
t at the end of σt,

which is determined by its state.

st(p) The state of the packet p ∈ Bpg
t .

Each packet p ∈ Bpg
t is in one of the five states BC, B, U, E, or EB.

vmin
t (p) The value of the least valuable packet

stored in the buffer of PG in front of p ∈ Bpg
t .

bt(p) The buddy packet of the packet p.
Equals ⊥ if p has no buddy or p 6∈ Bpg

t .

b−1
t (p) The packet for which p is a buddy.

Equals ⊥ if p is not a buddy for another packet.

d(p) The packet that is preempted by p.
Equals ⊥ if p does not preempt another packet.

d̂t(p) The packet p′ ∈ Bpg
t that transitively preempted p.

Equals ⊥ if p was not preempted, i.e., p 6∈ Pt,
or there is no packet in the buffer of PG which transitively preempted p.

p ≺ p′ The packet p arrives before the packet p′.

Figure 2: Informal overview of our notation.

I3: For each packet p with (p ∈ EBt \ EBt−1)
∨

(bt−1(p) ∈ (BCt−1 ∪ Bt−1) \ (BCt ∪ Bt))
∨

(bt−1(p) 6= bt(p)).

I4: For each packet p with (p ∈ Xt \ Xt−1)
∨

(d̂t−1(p) ∈ (BCt−1 ∪ Bt−1) \ (BCt ∪ Bt))
∨

(d̂t−1(p) 6= d̂t(p)).

I5: For each packet p with (p ∈ (Bpg
t \ BCt) \ (Bpg

t−1 \ BCt−1))
∨

(b−1
t−1(p) 6= b−1

t (p)).

The following lemma is used to dramatically reduce the number of cases we have to consider.
Whenever we encounter a situation during the induction where Bopt

t 6⊆ Pt ∪ Spg
t ∪ B

pg
t , we

manipulate the buffer contents of OPT in such a way that Bopt
t ⊆ Pt ∪ Spg

t ∪ B
pg
t . The five

invariants continue to hold after this manipulation. Thereafter, we can continue the induction.

Lemma 10. Assume that σt is the first event with Bopt
t 6⊆ Pt ∪ Spg

t ∪ B
pg
t . Then, the buffer

contents of OPT can be manipulated in such a way that Bopt
t ⊆ Pt ∪ Spg

t ∪ B
pg
t and the five

invariants continue to hold.

Proof. Assume that σt is the first event with Bopt
t 6⊆ Pt ∪ Spg

t ∪ B
pg
t , i.e., the buffer of OPT

contains a packet that was ejected or rejected by PG. Since σt is the first event with Bopt
t 6⊆

15

Pt ∪ Spg
t ∪ B

pg
t , a packet p must have been ejected or rejected by PG in σt. This also implies

that σt is an arrival event. In the following, we assume that p is rejected by PG but stored in
the buffer of OPT. The arguments for the case that p is ejected are analogous.

Since OPT stores p in its buffer and the buffer of PG is completely filled with packets,
there exists a packet q ∈ Bpg

t \ B
opt
t . The value v(q) of q has to be at least as large as v(p).

Otherwise, q would have been ejected by PG and p would have been stored in the buffer of
PG. Define v := v(p).

After p arrived, we manipulate the buffer contents of OPT in the following way: The
arrival time of p is set to the arrival time of q, i.e., the packets stored in the buffer of OPT
are reordered such that p is placed at the position of q if q would be contained in the buffer
of OPT. This reordering does not change the set of packets sent by OPT and hence, does not
change the total value gained by OPT.

In addition, we manipulate the value of p. We increase the value of p to the value of q.
After both manipulations, the attributes of the packet p ∈ Bopt

t \ Bpg
t are identical to the

packet q ∈ Bpg
t \ B

opt
t . As a consequence, p can be identified with q, i.e., we can assume that

p is actually the packet q and therefore stored in the buffer of PG.
The Invariants I3, I4, and I5 are not effected by our manipulation, since changes are not

made in the buffer of PG and q 6∈ Pt ∪ Spg
t . If st(q) 6∈ {E,EB}, Invariant I2 is not effected

either. Otherwise, set st(q) := U and, if q was in state EB, set st(bt−1(q)) := U (due to I3
bt−1(q) exists and is in state BC or B in this case). Thus, Invariants I2–I5 continue to hold.

It remains to study the effect of our manipulation on the main inequality.

• If st(q) 6∈ {E,EB} the main inequality does not change.

• If q was in state E and its state changed to U, the left side of the main inequality is
decreased by at most (r−1)·v(q)−((r/β)·v(q)+(2−r)·vmin

t (q)) = (2−r)·(v(q)−vmin
t (q)) ≤

v(q)− v, since r/β = 2r − 3 and p is rejected at σt.

• If q was in state EB and its state changed to U, the left side of the main inequality is
decreased by at most 2(r−1)·v(q)−((r/β)·v(q)+(2−r)·vmin

t (q)) = v(q)+(r−2)·vmin
t (q) ≤

v(q)+(r−2)·v. In this case, the state of bt−1(q) changed from BC or B to U. This increases
the left side of the main inequality by at least (r/β) ·v(bt−1(q)) + (2− r) ·vmin

t (bt−1(q)) ≥
(r/β) · v + (2− r) · v ≥ (r − 1) · v. Hence, in total the left side of the main inequality is
decreased by at most v(q) + (r − 2) · v − (r − 1) · v = v(q)− v.

Hence, the left side of the main inequality is decreased by at most v(q)−v. As a consequence,
we can only guarantee that

v(q)− v +
∑
p′∈Spg

`

r · v(p′) ≥
∑

p′∈Sopt
`

v(p′)

after the last event σ` in the sequence of events σ. This is not sufficient to show the theorem.
Fortunately, by virtually increasing the value of p we have also increased

∑
p′∈Sopt

`
v(p′) by

v(q)− v, i.e., the real total value of OPT is smaller by v(q)− v. Finally,

v(q)− v + r · PG(σ) = v(q)− v +
∑
p′∈Spg

`

r · v(p′) ≥
∑

p′∈Sopt
`

v(p′) = OPT(σ) + v(q)− v .

which concludes the proof of the lemma.

16

case packets concerned verification

a1 I2 –
I3 q, b−1

t−1(q) st(q) = ⊥, bt(b−1
t−1(q)) = p ∈ Bt

I4 q, {p′|d̂t−1(p′) = q} d̂t(q) = p ∈ Bt, d̂t−1(p′) = q ⇒ d̂t(p′) = p ∈ Bt

I5 p, q b−1
t (p) = b−1

t−1(q) ≺ q = d(p), q 6∈ Bpg
t

a2 I2 –

I3 q, b−1
t−1(q) st(q) = ⊥, st(b−1

t−1(q)) = st−1(b−1
t−1(q))

I3
6= EB

I4 q q
I2
6∈ Bopt

t−1 ⇒ q 6∈ Bopt
t ⊇ Xt

{p′|d̂t−1(p′) = q} d̂t−1(p′) = q
I4⇒ p′ 6∈ Xt−1 ∪ {q} ⊇ Xt

I5 p, q b−1
t (p) = ⊥ ≺ d(p), q 6∈ Bpg

t

a3 I2 –

I3 q, b−1
t−1(q) st(q) = ⊥, st(b−1

t−1(q)) = st−1(b−1
t−1(q))

I3
6= EB

I4 q, {p′|d̂t−1(p′) = q} q ∈ Dt ⇒ q 6∈ Xt, d̂t−1(p′) = q
I4⇒ p′ 6∈ Xt−1 ∪ {q} ⊇ Xt

I5 p, q b−1
t (p) = ⊥ ≺ d(p), q 6∈ Bpg

t

a4 I2 –
I3 q, b−1

t−1(q) st(q) = ⊥, bt(b−1
t−1(q)) = p ∈ Bt

I4 q, {p′|d̂t−1(p′) = q} q 6∈ Pt ∪ Spg
t ⊇ Xt, d̂t−1(p′) = q ⇒ d̂t(p′) = p ∈ Bt

I5 p, q b−1
t (p) = b−1

t−1(q) ≺ ⊥ = d(p), q 6∈ Bpg
t

a5 I2 –

I3 q, b−1
t−1(q) st(q) = ⊥, st(b−1

t−1(q)) = st−1(b−1
t−1(q))

I3
6= EB

I4 q, {p′|d̂t−1(p′) = q} q 6∈ Pt ∪ Spg
t ⊇ Xt, d̂t−1(p′) = q

I4⇒ p′ 6∈ Xt−1 ⊇ Xt

I5 p, q b−1
t (p) = ⊥ ≺ ⊥ = d(p), q 6∈ Bpg

t

a6 I2 –

I3 q, b−1
t−1(q), bt−1(q) st(q) = ⊥, st(b−1

t−1(q)) = st−1(b−1
t−1(q))

I3
6= EB, bt−1(q) ∈ Ut

I4 q, {p′|d̂t−1(p′) = q} q 6∈ Pt ∪ Spg
t ⊇ Xt, d̂t−1(p′) = q

I4⇒ p′ 6∈ Xt−1 ⊇ Xt

bt−1(q) bt−1(q) 6∈ Pt ∪ Spg
t ⊇ Xt

I5 p, q b−1
t (p) = ⊥ ≺ ⊥ = d(p), q 6∈ Bpg

t

bt−1(q) b−1
t (bt−1(q)) = ⊥ ≺ d(bt−1(q))

Figure 3: Verification of the Invariants I2–I5 for the Cases a1–a6.

Fix an arrival event σt in which a packet p arrives. We distinguish the following cases. If
not mentioned otherwise, everything remains unchanged at event σt. We only consider the
Invariant I1. For the verification of the Invariants I2–I5, see Figure 3.

• p preempts another packet q

a1: q ∈ Bt−1 ∪ BCt−1

17

Changes: bt(b−1
t−1(q)) := p and st(p) := B

I1: ∆pg
t ≥ 0 = ∆opt

t

a2: q ∈ Et−1 ∪ EBt−1

Changes: st(p) := U

I1: ∆pg
t ≥ (r/β) · v(p)− 2(r − 1) · v(q)
≥ (r/β) · v(p)− 2(r − 1) · v(p)/β
= ((2− r)/β) · v(p) > 0 = ∆opt

t

a3: q ∈ Ut−1

Changes: st(p) := U and Dt := Dt−1 ∪ {q}

I1: ∆pg
t ≥ (r/β) · v(p)− ((r/β) · v(q) + (2− r) · v(q))
≥ (r/β) · (β · v(q))− (r − 1) · v(q) = v(q) = ∆opt

t

• p ejects another packet q

a4: q ∈ Bt−1 ∪ BCt−1

Changes: st(p) := B and bt(b−1
t−1(q)) := p

I1: ∆pg
t ≥ 0 = ∆opt

t

a5: q ∈ Et−1 ∪Ut−1

Changes: st(p) := U

I1: ∆pg
t ≥ (r/β) · v(p) + (2− r) · vmin

t−1(p)− (r − 1) · v(q)
≥ (r/β) · v(q) + (2− r) · v(q)− (r − 1) · v(q)
= ((2r − 3) + (2− r)− (r − 1)) · v(q) = 0 = ∆opt

t

a6: q ∈ EBt−1

Changes: st(p) := U and st(bt−1(q)) := U
(Due to I3, bt−1(q) ∈ Bt−1 ∪ BCt−1.)

I1: ∆pg
t ≥ (r/β) · v(p) + (2− r) · vmin

t−1(p)
+(r/β) · v(bt−1(q)) + (2− r) · vmin

t−1(bt−1(q))− 2(r − 1) · v(q)
≥ (r/β) · v(q) + (2− r) · v(q)

+(r/β) · v(q) + (2− r) · v(q)− 2(r − 1) · v(q)
= (2((2r − 3) + (2− r))− 2(r − 1)) · v(q) = 0 = ∆opt

t

• p is rejected

Changes: –
(Due to Lemma 10, p is also not stored in the buffer of OPT.)

18

BC

B

E

EB

U

b9, b13

b11, b13, b14

b10, b12, b15

b15

b4–b6, b14 b8

6

-

-��
��

��
��

��
��
�1

-

6

Figure 4: Possible state transitions at a send event. The labels at the edges specify the cases
in which the respective state transition could occur.

Fix a send event σt in which PG sends packet p and OPT sends packet q. Note that due to
Lemma 10, q ∈ Pt−1∪Spg

t−1∪B
pg
t−1. Since a new dummy packet of value 0 is stored in the buffer

of PG after a packet is sent, a packet uB ∈ Bpg
t \B

pg
t−1 exists with st(uB) = B. We can assign uB

as buddy to another packet at this event, since uB 6∈ Bpg
t−1. We distinguish the following cases.

If not mentioned otherwise, everything remains unchanged at event σt. We only consider the
Invariant I1. For the verification of the Invariants I2–I5, see Figure 5, Figure 6, and Figure 7.
In Figure 4, we depict the possible state transitions at σt.

• q ∈ Pt−1 ∪ Spg
t−1

b1: q ∈ Dt−1 and p ∈ Bt−1 ∪ BCt−1

Changes: Dt := Dt−1 ∪ {p} ∪ {p′|d̂t−1(p′) = p}

I1: ∆pg
t ≥ r · v(p) ≥ v(p) +

∞∑
i=1

v(p)/βi ≥ ∆opt
t

b2: q ∈ Dt−1 and p ∈ Bopt
t \ (Bt−1 ∪ BCt−1)

Changes: Dt := Dt−1 ∪ {p}
(Due to I2, p ∈ Ut−1.)

I1: ∆pg
t ≥ r · v(p)− ((r/β) · v(p) + (2− r) · vmin

t−1(p)) ≥ v(p) = ∆opt
t

b3: q ∈ Dt−1 and p 6∈ Bopt
t ∪ (Bt−1 ∪ BCt−1)

Changes: –
I1: ∆pg

t ≥ r · v(p)− 2(r − 1) · v(p) ≥ 0 = ∆opt
t

b4: q 6∈ Dt−1 and p ∈ Bt−1 ∪ BCt−1

Changes: st(d̂t−1(q)) := U, Dt := Dt−1∪{p}∪{p′|d̂t−1(p′) = p}∪{q′ 6= q|d̂t−1(q′) =
d̂t−1(q)}, bt(b−1

t−1(d̂t−1(q))) := uB

(Due to I4, d̂t−1(q) ∈ BCt−1 ∪ Bt−1.)

I1: ∆pg
t ≥ r · v(p) + (r/β) · v(d̂t−1(q))

≥ v(p) +
∞∑
i=1

v(p)/βi +
∞∑
i=1

v(d̂t−1(q))/βi

≥ v(p) +
∞∑
i=1

v(p)/βi +
∑

q′,d̂t−1(q′)=d̂t−1(q)

v(q′) ≥ ∆opt
t

19

case packets concerned verification

b1 I2 –
I3 p, b−1

t−1(p) st(p) = ⊥, b−1
t−1(p) = ⊥

I4 p, {p′|d̂t−1(p′) = p} p ∈ Dt ⇒ p 6∈ Xt, d̂t−1(p′) = p⇒ p′ ∈ Dt ⇒ p′ 6∈ Xt

I5 p, bt−1(p), uB p 6∈ Bpg
t , b−1

t (bt−1(p)) = ⊥ ≺ d(bt−1(p)), d(uB) = ⊥
b2 I2 –

and I3 p, b−1
t−1(p) st(p) = ⊥, b−1

t−1(p) = ⊥
b3 I4 p, {p′|d̂t−1(p′) = p} p 6∈ Bopt

t \Dt ⊇ Xt, d̂t−1(p′) = p
I4⇒ p′ 6∈ Xt−1 ⊇ Xt

I5 p, bt−1(p), uB p 6∈ Bpg
t , b−1

t (bt−1(p)) = ⊥ ≺ d(bt−1(p)), d(uB) = ⊥
b4 I2 –

I3 p, b−1
t−1(p), b−1

t−1(d̂t−1(q)) st(p) = ⊥, b−1
t−1(p) = ⊥, bt(b−1

t−1(d̂t−1(q))) = uB ∈ Bt

I4 p, {p′|d̂t−1(p′) = p} p ∈ Dt ⇒ p 6∈ Xt, d̂t−1(p′) = p⇒ p′ ∈ Dt ⇒ p′ 6∈ Xt

q q 6∈ Bopt
t ⇒ q 6∈ Xt

{p′|d̂t−1(p′) = d̂t−1(q)} d̂t−1(p′) = d̂t−1(q)⇒ p′ ∈ Dt ∪ {q} ⇒ p′ 6∈ Xt

I5 p, bt−1(p) p 6∈ Bpg
t , b−1

t (bt−1(p)) = ⊥ ≺ d(bt−1(p))
d̂t−1(q), uB b−1

t (d̂t−1(q)) = ⊥ ≺ d(d̂t−1(q)), d(uB) = ⊥
b5 I2 –

and I3 p, b−1
t−1(p), b−1

t−1(d̂t−1(q)) st(p) = ⊥, b−1
t−1(p) = ⊥, bt(b−1

t−1(d̂t−1(q))) = uB ∈ Bt

b6 I4 p, {p′|d̂t−1(p′) = p} p 6∈ Bopt
t \Dt ⊇ Xt, d̂t−1(p′) = p⇒ p′ 6∈ Xt−1 ⊇ Xt

q q 6∈ Bopt
t ⇒ q 6∈ Xt

{p′|d̂t−1(p′) = d̂t−1(q)} d̂t−1(p′) = d̂t−1(q)⇒ p′ ∈ Dt ∪ {q} ⇒ p′ 6∈ Xt

I5 p, bt−1(p) p 6∈ Bpg
t , b−1

t (bt−1(p)) = ⊥ ≺ d(bt−1(p))
d̂t−1(q), uB b−1

t (d̂t−1(q)) = ⊥ ≺ d(d̂t−1(q)), d(uB) = ⊥

Figure 5: Verification of the Invariants I2–I5 for the Cases b1–b6.

b5: q 6∈ Dt−1 and p ∈ Bopt
t \ (Bt−1 ∪ BCt−1)

Changes: st(d̂t−1(q)) := U, Dt := Dt−1 ∪ {p} ∪ {q′ 6= q|d̂t−1(q′) = d̂t−1(q)},
bt(b−1

t−1(d̂t−1(q))) := uB

(Due to I2, p ∈ Ut−1. Due to I4, d̂t−1(q) ∈ BCt−1 ∪ Bt−1.)

I1: ∆pg
t ≥ r · v(p)− ((r/β) · v(p) + (2− r) · vmin

t−1(p)) + (r/β) · v(d̂t−1(q))

≥ v(p) + (r/β) · v(d̂t−1(q))

≥ v(p) +
∞∑
i=1

v(d̂t−1(q))/βi ≥ ∆opt
t

b6: q 6∈ Dt−1 and p 6∈ Bopt
t ∪ (Bt−1 ∪ BCt−1)

Changes: st(d̂t−1(q)) := U, Dt := Dt−1 ∪ {q′ 6= q|d̂t−1(q′) = d̂t−1(q)},
bt(b−1

t−1(d̂t−1(q))) := uB

20

(Due to I4, d̂t−1(q) ∈ BCt−1 ∪ Bt−1.)

I1: ∆pg
t ≥ r · v(p)− 2(r − 1) · v(p) + (r/β) · v(d̂t−1(q))
≥ (r/β) · v(d̂t−1(q))

≥
∞∑
i=1

v(d̂t−1(q))/βi ≥ ∆opt
t

• b7: q = p

Changes: –
(Due to I2, p ∈ Ut−1 ∪ BCt−1 ∪ Bt−1.)

I1: ∆pg
t ≥ r · v(p)− ((r/β) · v(p) + (2− r) · vmin

t−1(p)) ≥ v(p) = ∆opt
t

• q ∈ Bpg
t−1 \ {p}

b8: q ∈ Ut−1

Changes: bt(q) := uB, st(q) := EB

I1: ∆pg
t ≥ r · v(p)− ct−1(p)

+2(r − 1) · v(q)− ((r/β) · v(q) + (2− r) · vmin
t−1(q))

≥ r · v(p)− 2(r − 1) · v(p)
+2(r − 1) · v(q)− ((r/β) · v(q) + (2− r) · v(p))

= v(q) = ∆opt
t

b9: q ∈ BCt−1

Changes: bt(b−1
t−1(q)) := uB, st(q) := E

I1: ∆pg
t ≥ r · v(p)− ct−1(p) + (r − 1) · v(q)− (r − 2) · v(q) ≥ v(q) = ∆opt

t

b10: q ∈ Bt−1 and v(p) < v(q)/β
Changes: bt(q) := uB, st(q) := EB
(Due to I5, b−1

t−1(q) ≺ d(q), i.e., b−1
t−1(q) 6∈ Bpg

t−1, since v(p) < v(q)/β.)

I1: ∆pg
t ≥ r · v(p)− ct−1(p) + 2(r − 1) · v(q) > v(q) = ∆opt

t

b11: q ∈ Bt−1 and v(p) ≥ v(q)/β and p 6∈ EBt−1

Changes: bt(b−1
t−1(q)) := uB, st(q) := E

I1: ∆pg
t = r · v(p)− ct−1(p) + (r − 1) · v(q)
≥ v(p) + (r − 1) · v(q)
≥ (1/β + (r − 1)) · v(q) = v(q) = ∆opt

t

b12: q ∈ Bt−1 and v(p) ≥ v(q)/β and p ∈ EBt−1 and b−1
t−1(q) = ⊥

Changes: bt(q) := uB, st(q) := EB

I1: ∆pg
t ≥ r · v(p)− ct−1(p) + 2(r − 1) · v(q) ≥ v(q) = ∆opt

t

21

case packets concerned verification

b7 I2 –
I3 p, b−1

t−1(p) st(p) = ⊥, b−1
t−1(p) = ⊥

I4 p p 6∈ Bopt
t ⇒ p 6∈ Xt,

{p′|d̂t−1(p′) = p} d̂t−1(p′) = p⇒ p′ ≺ p⇒ p′ 6∈ Bopt
t ⊇ Xt

I5 p, bt−1(p), uB p 6∈ Bpg
t , b−1

t (bt−1(p)) = ⊥ ≺ d(bt−1(p)), d(uB) = ⊥
b8 I2 q q 6∈ Bopt

t

I3 p, b−1
t−1(p), q st(p) = ⊥, b−1

t−1(p) = ⊥, bt(q) = uB ∈ Bt

I4 p p 6∈ Bopt
t ⇒ p 6∈ Xt,

{p′|d̂t−1(p′) = p} d̂t−1(p′) = p⇒ p′ ≺ p ≺ q ⇒ p′ 6∈ Bopt
t ⊇ Xt

I5 p, bt−1(p), uB p 6∈ Bpg
t , b−1

t (bt−1(p)) = ⊥ ≺ d(bt−1(p)), d(uB) = ⊥
b9 I2 q q 6∈ Bopt

t

I3 p, b−1
t−1(p), b−1

t−1(q) st(p) = ⊥, b−1
t−1(p) = ⊥, bt(b−1

t−1(q)) = uB ∈ Bt

I4 p p 6∈ Bopt
t ⇒ p 6∈ Xt,

{p′|d̂t−1(p′) = p} d̂t−1(p′) = p⇒ p′ ≺ p ≺ q ⇒ p′ 6∈ Bopt
t ⊇ Xt

{p′|d̂t−1(p′) = q} d̂t−1(p′) = q ⇒ p′ ≺ q ⇒ p′ 6∈ Bopt
t ⊇ Xt

I5 p, bt−1(p) p 6∈ Bpg
t , b−1

t (bt−1(p)) = ⊥ ≺ d(bt−1(p))
q, uB b−1

t (q) = ⊥, d(uB) = ⊥
b10 I2 q q 6∈ Bopt

t

I3 p, b−1
t−1(p), q, b−1

t−1(q) st(p) = ⊥, b−1
t−1(p) = ⊥, bt(q) = uB ∈ Bt, b−1

t−1(q) I5= ⊥
I4 p p ≺ q ⇒ p 6∈ Bopt

t ⊇ Xt

{p′|d̂t−1(p′) = p} d̂t−1(p′) = p⇒ p′ ≺ p ≺ q ⇒ p′ 6∈ Bopt
t ⊇ Xt

{p′|d̂t−1(p′) = q} d̂t−1(p′) = q ⇒ p′ ≺ q ⇒ p′ 6∈ Bopt
t ⊇ Xt

I5 p, bt−1(p), uB p 6∈ Bpg
t , b−1

t (bt−1(p)) = ⊥ ≺ d(bt−1(p)), d(uB) = ⊥
b11 I2 q q 6∈ Bopt

t

I3 p, b−1
t−1(p), b−1

t−1(q) st(p) = ⊥, b−1
t−1(p) = ⊥, bt(b−1

t−1(q)) = uB ∈ Bt

I4 p p ≺ q ⇒ p 6∈ Bopt
t ⊇ Xt

{p′|d̂t−1(p′) = p} d̂t−1(p′) = p⇒ p′ ≺ p ≺ q ⇒ p′ 6∈ Bopt
t ⊇ Xt

{p′|d̂t−1(p′) = q} d̂t−1(p′) = q ⇒ p′ ≺ q ⇒ p′ 6∈ Bopt
t ⊇ Xt

I5 p, bt−1(p), uB p 6∈ Bpg
t , b−1

t (bt−1(p)) = ⊥ ≺ d(bt−1(p)), d(uB) = ⊥

Figure 6: Verification of the Invariants I2–I5 for the Cases b7–b11.

b13: q ∈ Bt−1 and v(p) ≥ v(q)/β and p ∈ EBt−1 and bt−1(p) � b−1
t−1(q)

Changes: st(bt−1(p)) := E, bt(b−1
t−1(q)) := uB, st(q) := E

(Due to I5, b−1
t−1(q) ≺ d(q), i.e., v(bt−1(p)) ≥ v(q)/β. Due to I3, bt−1(p) ∈ Bt−1 ∪

22

case packets concerned verification

b12 I2 q q 6∈ Bopt
t

I3 p, b−1
t−1(p), q, b−1

t−1(q) st(p) = ⊥, b−1
t−1(p) = ⊥, bt(q) = uB ∈ Bt, b−1

t−1(q) = ⊥
I4 p p ≺ q ⇒ p 6∈ Bopt

t ⊇ Xt

{p′|d̂t−1(p′) = p} d̂t−1(p′) = p⇒ p′ ≺ p ≺ q ⇒ p′ 6∈ Bopt
t ⊇ Xt

{p′|d̂t−1(p′) = q} d̂t−1(p′) = q ⇒ p′ ≺ q ⇒ p′ 6∈ Bopt
t ⊇ Xt

I5 p, bt−1(p), uB p 6∈ Bpg
t , b−1

t (bt−1(p)) = ⊥ ≺ d(bt−1(p)), d(uB) = ⊥
b13 I2 q, bt−1(p) q 6∈ Bopt

t , bt−1(p) � b−1
t−1(q) ≺ q ⇒ bt−1(p) 6∈ Bopt

t

I3 p, b−1
t−1(p), b−1

t−1(q) st(p) = ⊥, b−1
t−1(p) = ⊥, bt(b−1

t−1(q)) = uB ∈ Bt

I4 p p ≺ q ⇒ p 6∈ Bopt
t ⊇ Xt

{p′|d̂t−1(p′) = p} d̂t−1(p′) = p⇒ p′ ≺ p ≺ q ⇒ p′ 6∈ Bopt
t ⊇ Xt

{p′|d̂t−1(p′) = q} d̂t−1(p′) = q ⇒ p′ ≺ q ⇒ p′ 6∈ Bopt
t ⊇ Xt

I5 p, bt−1(p), uB p 6∈ Bpg
t , b−1

t (bt−1(p)) = ⊥ ≺ d(bt−1(p)), d(uB) = ⊥
b14 I2 q q 6∈ Bopt

t

I3 p, b−1
t−1(p), b−1

t−1(q) st(p) = ⊥, b−1
t−1(p) = ⊥, bt(b−1

t−1(q)) = uB ∈ Bt

I4 p p ≺ q ⇒ p 6∈ Bopt
t ⊇ Xt

{p′|d̂t−1(p′) = p} d̂t−1(p′) = p⇒ p′ ≺ p ≺ q ⇒ p′ 6∈ Bopt
t ⊇ Xt

{p′|d̂t−1(p′) = q} d̂t−1(p′) = q ⇒ p′ ≺ q ⇒ p′ 6∈ Bopt
t ⊇ Xt

{p′|d̂t−1(p′) = bt−1(p)} d̂t−1(p′) = bt−1(p)⇒ p′ ∈ Dt ⇒ p′ 6∈ Xt

I5 p, bt−1(p), uB p 6∈ Bpg
t , b−1

t (bt−1(p)) = ⊥ ≺ d(bt−1(p)), d(uB) = ⊥
b15 I2 q q 6∈ Bopt

t

I3 p, b−1
t−1(p) st(p) = ⊥, b−1

t−1(p) = ⊥
q, b−1

t−1(q) bt(q) = uB ∈ Bt, bt(b−1
t−1(q)) = bt−1(p) ∈ BCt

I4 p p ≺ q ⇒ p 6∈ Bopt
t ⊇ Xt

{p′|d̂t−1(p′) = p} d̂t−1(p′) = p⇒ p′ ≺ p ≺ q ⇒ p′ 6∈ Bopt
t ⊇ Xt

{p′|d̂t−1(p′) = q} d̂t−1(p′) = q ⇒ p′ ≺ q ⇒ p′ 6∈ Bopt
t ⊇ Xt

I5 p, bt−1(p), uB p 6∈ Bpg
t , bt−1(p) ∈ BCt, d(uB) = ⊥

Figure 7: Verification of the Invariants I2–I5 for the Cases b12–b15.

BCt−1.)

I1: ∆pg
t ≥ r · v(p)− 2(r − 1) · v(p) + (r − 1) · v(q) + (r − 1) · v(bt−1(p))
≥ (2− r) · v(q)/β + (r − 1) · v(q) + (r − 1) · v(q)/β
= (1/β + (r − 1)) · v(q) = v(q) = ∆opt

t

b14: q ∈ Bt−1 and v(p) ≥ v(q)/β and p ∈ EBt−1 and b−1
t−1(q) ≺ bt−1(p) and v(bt−1(p)) >

2v(q)
Changes: st(bt−1(p)) := U, Dt := Dt−1 ∪ {p′|d̂t−1(p′) = bt−1(p)},
bt(b−1

t−1(q)) := uB, st(q) = E

23

(Due to I3, bt−1(p) ∈ Bt−1 ∪ BCt−1.)

I1: ∆pg
t ≥ r · v(p)− ct−1(p) + (r/β) · v(bt−1(p))− ct−1(bt−1(p)) + (r − 1) · v(q)
≥ (2− r) · v(p) + (r/β) · v(bt−1(p)) + (r − 1) · v(q)
= (2− r) · v(p) + (3r − 5)/2 · v(bt−1(p))

+(r − 1) · v(q) + v(bt−1(p))/(β − 1)
≥ (2− r) · v(q)/β + (3r − 5) · v(q) + (r − 1) · v(q)

+v(bt−1(p))/(β − 1)

= v(q) +
∞∑
i=1

v(bt−1(p))/βi ≥ ∆opt
t

b15: q ∈ Bt−1 and v(p) ≥ v(q)/β and p ∈ EBt−1 and b−1
t−1(q) ≺ bt−1(p) and v(bt−1(p)) ≤

2v(q)
Changes: st(bt−1(p)) := BC, bt(b−1

t−1(q)) := bt−1(p), bt(q) := uB, st(q) := EB
(Due to I3, bt−1(p) ∈ Bt−1 ∪ BCt−1.)

I1: ∆pg
t = r · v(p)− ct−1(p)

+(r − 2) · v(bt−1(p))− ct−1(bt−1(p)) + 2(r − 1) · v(q)
≥ (2− r) · v(p) + (r − 2) · v(bt−1(p)) + 2(r − 1) · v(q)
≥ (2− r) · v(q)/β + (r − 2) · 2v(q) + 2(r − 1) · v(q) = v(q) = ∆opt

t

This concludes the proof of the theorem.

References

[1] W. Aiello, Y. Mansour, S. Rajagopolan, and A. Rosen. Competitive queue policies for
differentiated services. Journal of Algorithms, 55(2):113–141, 2005.

[2] N. Andelman. Randomized queue management for DiffServ. In Proceedings of the 17th
ACM Symposium on Parallel Algorithms and Architectures (SPAA), pages 1–10, 2005.

[3] N. Andelman, Y. Mansour, and A. Zhu. Competitive queueing policies for QoS switches.
In Proceedings of the 14th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
761–770, 2003.

[4] Y. Azar and Y. Richter. Management of multi-queue switches in QoS networks. Algorith-
mica, 43(1–2):81–96, 2005.

[5] N. Bansal, L. Fleischer, T. Kimbrel, M. Mahdian, B. Schieber, and M. Sviridenko. Further
improvements in competitive guarantees for QoS buffering. In Proceedings of the 31st
International Colloquium on Automata, Languages and Programming (ICALP), pages
196–207, 2004.

[6] W. Jawor. Three dozen papers on online algorithms. SIGACT News, 36(1):71–85, 2005.

[7] A. Kesselman, Z. Lotker, Y. Mansour, B. Patt-Shamir, B. Schieber, and M. Sviridenko.
Buffer overflow management in QoS switches. SIAM Journal on Computing, 33(3):563–
583, 2004.

24

[8] A. Kesselman and Y. Mansour. Loss-bounded analysis for differentiated services. Journal
of Algorithms, 46(1):79–95, 2003.

[9] A. Kesselman, Y. Mansour, and R. van Stee. Improved competitive guarantees for QoS
buffering. Algorithmica, 43(1–2):63–80, 2005.

[10] Z. Lotker and B. Patt-Shamir. Nearly optimal FIFO buffer management for two packet
classes. Computer Networks, 42(4):481–492, 2003.

[11] Y. Mansour, B. Patt-Shamir, and O. Lapid. Optimal smoothing schedules for real-time
streams. Distributed Computing, 17(1):77–89, 2004.

25

