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Abstract— Gupta et al. [13] introduced a very general multi-
commodity flow problem in which the cost of a given flow solution
on a graph G = (V, E) is calculated by first computing the link
loads via a load-function `, that describes the load of a link as
a function of the flow traversing the link, and then aggregating
the individual link loads into a single number via an aggregation
function agg : R|E| → R.

In this paper we show the existence of an oblivious routing
scheme with competitive ratio O(log n) and a lower bound of
Ω(log n/ log log n) for this model when the aggregation function
agg is an Lp-norm.

Our results can also be viewed as a generalization of the work on
approximating metrics by a distribution over dominating tree metrics
(see e.g. [4], [5], [8]) and the work on minimum congestion oblivious
routing [20], [14], [21]. We provide a convex combination of trees
such that routing according to the tree distribution approximately
minimizes the Lp-norm of the link loads. The embedding techniques
of Bartal [4], [5] and Fakcharoenphol et al. [8] can be viewed as
solving this problem in the L1-norm while the result of Räcke [21]
solves it for L∞. We give a single proof that shows the existence
of a good tree-based oblivious routing for any Lp-norm.

For the Euclidean norm, we also show that it is possible to
compute a tree-based oblivious routing scheme in polynomial time.
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1. INTRODUCTION

We analyze a general version of a multi-commodity flow
problem as introduced by Gupta et al. [13]. In this problem
we are given a graph G = (V,E) with |V | = n nodes, and a
collection of R routing requests R = 〈Ri = (si, ti, di, ki) :
i ∈ {1, . . . , R}〉, where a request Ri consists of a source-
target pair (si, ti) ∈ V × V in the graph, a demand di
specifying the amount of traffic to be sent, and a type ki ∈
{1, . . . ,K} that specifies some abstract type of the routing
request like e.g. a desired quality of service level. The task is
to satisfy each request Ri by sending a flow of type ki and
value di from source si to target ti in the network, thereby
establishing a multi-commodity flow.

The cost of this multi-commodity flow solution is calcu-
lated as follows. Let for each edge e ∈ E, fk(e) denote the
amount of flow of type k that is sent along e. Then the load
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L(e) of the edge is given via a load function ` : RK → R
by

L(e) = `([f1(e), . . . , fK(e)]) .

The cost of the solution is calculated by aggregating the
individual edge loads into a single number via an aggregation
function agg : R|E| → R, i.e.,

cost = agg([L(e1), . . . , L(e|E|)]) .

This very general framework gives rise to optimization
problems of different flavors depending on the choice of
the load function, the aggregation function, and the set of
different flow types. When choosing K = 1, ` = id, and
agg = max it is a maximum concurrent multicommodity
flow problem. When choosing K = 1, agg =

∑
, and `

as a concave function it becomes a buy-at-bulk or rent-or-
buy network design problem. When choosing K =

(
n
2

)
, ` =

max, agg =
∑

, and when each (s, t)-pair gets a unique
type we obtain a fractional Steiner forest problem where one
needs to buy fractional edge-capacities such that each pair
appearing in a request is connected in the resulting graph.

Gupta et al. [13] developed oblivious algorithms for these
types of problems. An oblivious routing algorithm must
choose its routing paths independent of the traffic in the
network. This means that the routing path (or the flow)
chosen for a request between a source s and a target t may
only depend on the structure of G, on the cost-functions
agg and `, on the pair (s, t), and, in case randomization is
allowed, on some random input. One can view an oblivious
routing algorithm as specifying a unit flow between every
source-target pair before any routing requests are known.
Given a request between a pair s and t, this request is then
routed according to the pre-computed (s, t)-flow, i.e., in order
to determine the flow for the request, the pre-computed flow
is simply scaled to meet the request’s demand. Due to their
simplicity oblivious algorithms can be implemented very
efficiently in a distributed environment as they base routing
decisions only on local knowledge.

The main results of Gupta et al. [13] deal with the design
of oblivious routing algorithms when the load-function ` is
either a monotone sub-additive function or a monotone norm,



and the aggregation function is either the
∑

or the max-
operator. They obtain polylogarithmic competitive ratios for
these scenarios.

In this work we extend these results to the case where the
aggregation function is an Lp-norm and ` is a monotone norm,
by proving the existence of an oblivious routing scheme with
competitive ratio O(log n) for these cost-measures. This also
implies a competitive ratio of O(logp n) for the scenario with
K = 1, `(f(e)) = (f(e))p, and agg =

∑
. The latter result

is of particular interest in the context of modeling the latency
of traffic networks (see e.g. [23], [22], [9]). In this line of
work every edge in the network possesses a latency function
describing the latency incurred by all traffic on the edge as
a function of the edge flow. The goal is to minimize the
average latency of the users which corresponds to minimizing∑
e f(e) · latency(f(e)). If the latency functions are linear

(see [9] for a natural scenario of linear latencies in TCP/IP
communication networks), this corresponds to our cost model
with K = 1, ` = f(e)2, and agg =

∑
. More generally if the

latency function is given by latency(f(e)) = (f(e))p−1 we
obtain an O(logp n)-competitive oblivious routing algorithm
for minimizing average latency.

Note that we assume that the latency function is the same
on every edge. Our results also hold for the slightly more
general model where each edge has a weight we and the load
of an edge is L(e) = we`(~f(e)), but we cannot accommodate
different latency functions in general.

Our results can also be viewed as a generalization of
the work on approximating metrics by a distribution over
dominating tree metrics (see e.g. [4], [5], [8]) and the work
on minimum congestion oblivious routing [20], [14], [21].
We provide a convex combination of trees such that routing
according to the tree distribution approximately minimizes
the Lp-norm of the link loads. The embedding techniques of
Bartal [4], [5] and Fakcharoenphol et al. [8] can be viewed
as solving this problem in the L1-norm while the result of
Räcke [21] solves it for L∞. We give a single proof that
shows the existence of a good tree-based oblivious routing
for any Lp-norm.

1.1. Previous Work

As mentioned in the previous section the model that
we analyze in this paper has been introduced in a slightly
different form by Gupta et al. [13]. The main result of their
paper is an O(log2 n)-competitive oblivious integral routing
algorithm for the case that agg =

∑
and ` is a monotone

sub-additive function. Integral means that routing requests
are not allowed to use a fractional flow but have to be
served by sending the traffic along a single path between
the corresponding end-points. As a second result they give
a competitive ratio of O(log2 n log log n) for the case that
agg = max and ` is a monotone norm. They also show
that the additional requirement that ` is a norm is necessary
as there exist sub-additive functions for which no oblivious

routing algorithm is o(n1/4)-competitive if the aggregation
function is the max-operator.

One specific feature of their algorithms is that they are not
only traffic-oblivious but also (partially) function-oblivious,
i.e., they do not depend on the actual load function but the
same algorithm works for any load function, provided that
it is a monotone sub-additive function or a monotone norm,
respectively. The routing schemes we develop have the same
property.

The concept of function-oblivious routing was introduced
in a paper by Goel and Estrin [11] who give an O(log n)-
approximation to the single-target case for arbitrary concave
load functions. This has recently been improved to an O(1)-
approximation by Goel and Post [12].

For the case K = 1, ` = id, agg =
∑

our problem
reduces to minimizing the total traffic in the network which
can trivially be obtained by shortest path routing (which is
oblivious). However, when the solution has to be tree-based
(i.e., the routing is done according to a convex combination
of trees) then it essentially boils down to the problem of
embedding metrics into a distribution over dominating tree
metrics. This concept has been introduced by Bartal [4], [5]
and has later been improved by Fakcharoenphol, Rao, and
Talwar [8] who give a competitive ratio of O(log n), which
is optimal. This means there is a lower bound of Ω(log n)
for our problem with K = 1, ` = id, agg =

∑
, if we are

aiming for a tree-based solution.
If we do not require a tree-based solution, then the

fractional Steiner tree variant (K =
(
n
2

)
, ` = max, agg =

∑
)

of our problem gives a lower bound of Ω(log n) due to Imase
and Waxman [16],1 which holds even if we do not require
the algorithm to be oblivious but merely require that it be
an online algorithm. Similarly, the min-congestion routing
version (K = 1, ` = id, agg = max) also gives a lower
bound of Ω(log n) already in the online scenario, which has
been independently proven by Bartal and Leonardi [6] and
Maggs et al. [18].

Another lower bound is due to Chen, Roughgarden, and
Valiant [7]. They show that when K = 1 and agg =

∑
, then

already the offline problem (all demands known in advance)
is difficult if function-obliviousness w.r.t. an arbitrary sub-
additive load function ` is required. They show that there
exists a graph, a set of demands, and two sub-additive
cost-functions such that it is not possible to route close
to optimal w.r.t to both cost-functions simultaneously as
required for function-obliviousness. They obtain a lower
bound of Ω(

√
log n). However, this lower bound does not

extend to the case where the load function ` is a norm.
The problem of designing algorithms with the goal of

minimizing the Lp-norm of the link loads has been mostly
studied in the context of scheduling or load balancing on

1Their lower bound is phrased in an integral model but it is straightforward
to verify that it holds for the fractional model, as well.



parallel machines, which in our scenario corresponds to a
network consisting of parallel links.

Awerbuch et al. [2] design an online algorithm for the
unrelated machine model in which the size of a job depends
on the machine it is placed on. They obtain a competitive ratio
of O(p) and their algorithm can also be extended to work in
a routing scenario. In [1] Avidor et al. give a constant factor
approximation for the load balancing problem on identical
machines in the Lp-norm. Finally, Azar et al. [3] present
an approximation algorithm that obtains a ratio of 2 for all
norms simultaneously in the restricted assignment model (in
which jobs are of equal size but may have different subsets
of machines they can be assigned to).

Harsha et al. [15] consider the problem of designing oblivi-
ous routing algorithms for the L2-norm or equivalently for the
sum-of-squares cost-measure. They obtain a competitive ratio
of O(log n) and O(log2 n), respectively, for the restricted
case that all routing requests are directed to a single target.
However, their approach is very much restricted to the L2-
norm and the single-target case and cannot be generalized
to either the multicommodity case or an arbitrary Lp-norm.

In [17] Lawler and Narayanan consider the problem of
minimizing all Lp-norms simultaneously with an oblivious
routing algorithm. They present an algorithm that obtains a
competitive ratio of O(

√
n) and they show that this is best

possible. This negative result shows that it is not possible to
design oblivious routing algorithms with a good competitive
ratio that are function-oblivious w.r.t. the aggregation function
agg. Therefore, in all our results we will assume that we
know the aggregation function, and our algorithms will only
be function oblivious w.r.t. the load function `.

1.2. Our Results

We extend the results of Gupta et al. [13] to the case
where the aggregation function is an Lp-norm by showing
the following theorem.

Theorem 1. For p ≥ 1 there exists an oblivious routing
scheme that is O(log n)-competitive when the aggregation
function agg is an Lp-norm and the load function ` is a
monotone norm.

Our routing schemes are tree-based, i.e., they are induced by
a convex combination of trees like the results of Bartal [4],
[5], Fakcharoenphol et al. [8] and Räcke [21]. This means
that they can be used for much more than just routing. Any
communication problem with the goal of minimizing the
Lp-norm of the link-loads can be solved approximately in
G by first solving it on trees and then mapping the solution
into G. Compare [4], [5], [8], [20], [21] for a description of
this technique in the L1-norm and L∞-norm, respectively.

To obtain our result, we first show that our problem can be
reduced to the problem of finding a good tree-based routing
matrix that has a small operator norm (see Section 3). Then
we define a two player zero-sum game with the property that

the payoff in a pure Nash equilibrium essentially corresponds
to the competitive ratio of the best tree-based oblivious
routing scheme (see Section 4). A result by Räcke [21]
can be used to show that the payoff in a pure equilibrium is
bounded by O(log n) (see Lemma 4). Finally, we show that,
for any Lp-norm, the game has a pure Nash equilibrium (see
Lemma 5).

As mentioned in the introduction, Theorem 1 also gives
results for minimizing average latency when the latency
function on an edge e has the form latency(e) = (f(e))p−1,
where f(e) describes the total flow along the edge (K =
1, ` = id, agg = ‖ · ‖pp which is equivalent to K =
1, ` = (f(e))p, agg =

∑
). The resulting competitive ratio is

O(logp n). In Section 7 we show that this cannot be improved
significantly by proving the following theorem.

Theorem 2. Let p > 1, K = 1, `(f(e)) = (f(e))p, and
agg =

∑
. There is no oblivious algorithm that obtains a

competitive ratio of o(logp n/(log log n)p) for this scenario.

By showing that, for p = 2, Theorem 1 can be made
constructive, we demonstrate that our approach can also
lead to polynomial time algorithms computing good routing
schemes. In particular, in Section 6, we present an algorithm
that computes an oblivious routing scheme with a logarithmic
competitive ratio for the Euclidean norm in polynomial time.

2. FORMAL DEFINITION OF THE MODEL

We are given an undirected unweighted network G =
(V,E), for which we consider the following multi-commodity
flow problem. Let [K] := {1, . . . ,K} denote a set that
describes the possible types that a flow between two nodes
of G may have (we assume that K is polynomial in n := |V |).
For every k ∈ [K] and (s, t) ∈ V × V a demand-value dks,t
describes the amount of traffic of type k ∈ [K] that has to
be sent from source node s ∈ V to target node t ∈ V . A
solution of this multi-commodity flow problem consists of a
collection of

(
n
2

)
K flows in the network.

The cost of a given solution f to the flow problem is
calculated as follows. Let for an edge e ∈ E, fk(e) denote
the total traffic of type k ∈ [K] sent along e. We call the
vector ~f(e) := [f1(e), . . . , fK(e)] the flow vector along e
for solution f . The load Lf [e] induced on edge e is given by
Lf [e] := `(~f(e)), where the load function ` is a monotone
norm. Let ~Lf := [Lf [e1], . . . , Lf [e|E|]] denote the load
vector induced by solution f . The total cost of the solution
is given by an aggregation function agg : R|E| → R which
takes the load of the various edges as input and outputs the
cost of the entire flow, i.e., cost(f) = agg(~Lf ). In this paper
we assume that the aggregation function is an Lp-norm.

An oblivious routing algorithm has to make its routing de-
cisions à priori without knowing the demands in the network.
It specifies for every source target pair (s, t) ∈ V ×V a unit
flow from s to t in the network. Suppose that for an edge
e, gs,t(e) denotes the fraction of the unit flow, that is sent



between s and t, on e. For all k ∈ [K] the demand dks,t will
be routed by simply scaling the unit flow 〈gs,t(e) : e ∈ E〉
by dks,t.

We introduce the following notation: For a type k ∈ K we
introduce an

(
n
2

)
-dimensional demand vector ~dk that contains

one entry for every node pair describing the amount of type k
demand between this pair. The total demand is then specified
by an

(
n
2

)
×K dimensional demand-matrix D whose k-th

column vector is ~dk.
The unit flow between pair (s, t) of an oblivious algorithm

OBL is denoted with OBLs,t and encoded as an |E|-
dimensional column vector. We combine the flows into an
|E| ×

(
n
2

)
dimensional routing matrix OBL whose columns

correspond to the vectors OBLs,t (we will usually identify
an oblivious algorithm with its routing matrix, i.e., we call
both the algorithm and its routing matrix OBL).

Routing a given demand matrix D with an oblivi-
ous algorithm OBL results in the matrix OBL · D. The
row ~fobl(e) := (OBL · D)e corresponding to edge e
contains the K-dimensional flow vector along e that is
induced by routing the demands in D with the oblivi-
ous algorithm. The cost of this solution is cost(~fobl) =
agg([`(~fobl(e1)), . . . , `(~fobl(e|E|))]).

An oblivious algorithm OBL is tree-based if its routing
matrix is induced by a convex combination of trees. This
means the following. Define a decomposition tree TG for G
as a rooted tree whose leaf nodes correspond to the nodes in
the graph G (i.e., there is a bijection between leaf nodes in
TG and nodes in V ). An embedding (mV ,mE) of TG into
G consists of two functions: the function mV for mapping
nodes of TG to nodes of G and the function mE for mapping
edges of TG to paths in G. mV maps each leaf node of TG
to its corresponding graph node (as defined by the bijection),
and mE maps an edge (u, v) of TG to a path between mV (u)
and mV (v).

Routing according to TG means that a routing path between
(x, y) ∈ V ×V is sent between the corresponding leaf nodes
in TG and then a path in G is constructed by mapping the
x−y path in TG to a path in G via the embedding functions.
A tree-based routing matrix is a matrix whose flows can be
interpreted as being sent according to a convex combination
of decomposition trees.

Let for a demand matrix D, fDopt denote a solution to the
corresponding flow problem that minimizes the cost, and
let fDobl denote the solution obtained by a given oblivious
algorithm OBL. The goal is to find an oblivious routing
algorithm with as low a competitive ratio as possible, where
the competitive ratio is defined as

max
D

{
cost(fDobl)
cost(fDopt)

}
= max

D

{
‖~LfD

obl
‖p

‖~LfD
opt
‖p

}
.

3. REDUCTION TO MATRIX NORMS

The competitive ratio of an oblivious algorithm is given by
the formula maxD{‖~LD

obl‖p/‖~LD
opt‖p}, where ~LDobl and ~LDopt

denote the load vector of the oblivious and the optimal
solution, respectively. The following theorem allows to
considerably simplify this expression for tree based oblivious
algorithms. Let for an oblivious routing matrix OBL, OBL
denote the |E| × |E| matrix obtained from OBL after
deleting all columns corresponding to node pairs that are not
connected by an edge.

Lemma 3. Assume that the optimum load vector for a given
demand matrix D is ~Lopt. Then the load vector ~Lobl induced
by a tree-based oblivious algorithm OBL fulfills ~Lobl �
OBL · ~Lopt. This in particular means that the cost of the
oblivious algorithm is at most ‖OBL · ~Lopt‖p.

Proof: Suppose that the optimum flow solution for a
given demand matrix D uses the flow vector ~fopt(e) along
edge e. We first show how to change the demand matrix in
such a way that a) the optimum load vector does not change,
and b) the load of a tree-based oblivious algorithm does not
decrease on any edge.

For an edge e = (u, v) ∈ E we set D′(u,v) := ~fopt(e),
this means the demand along e is equal to the flow vector
along e in the optimum solution (pairs of nodes that are not
connected by an edge don’t get any demand). The optimum
solution for demand D′ will be the same as for the original
demand D. This holds because fopt is clearly feasible for the
new demand (One can obtain fopt by simply sending each
demand along the corresponding edge at which it appears),
and because any “improved” solution f ′opt for D′ would give
rise to a better solution for demand D.

For a tree-based oblivious algorithm OBL the flow-vector
~f D

′

obl (e) = (OBL·D′)e on an edge e that results from routing
demand D′, dominates the vector ~f Dobl(e) = (OBL · D)e
that results from routing demand D. To see this consider a
flow path p = (s, v1, v2, . . . , vs, t) that carries flow of some
type k between nodes s and t in the original flow solution,
and assume for the time being that the oblivious routing
matrix OBL consists of a single tree (instead of a convex
combination of trees). When given D as input the flow that
the optimum solution routes along path p will be routed by
the oblivious algorithm on a shortest tree path between the
leaf nodes corresponding to s and t, respectively. However, if
one is given D′ then the demand that originally was between
s and t and of which OPT routed some fraction along path
p, will be split into several “demand-pieces” one for every
edge of p. Consequently, the oblivious algorithm has to route
in its tree, first from the leaf node of the source s to the
leaf node of v1, then to the leaf node of v2, and so on, until
finally routing to the leaf node corresponding to the target
t. In particular, this path will contain every edge on the
shortest path between s and t in the tree. This means that the



traffic corresponding to flow path p does not decrease on any
tree-edge. Since, this holds for any tree it holds for a convex
combination of trees. This shows that ~f Dobl(e) � ~f D

′

obl (e) for
every edge e.

The above discussion shows that we can assume without
loss of generality that we have a demand matrix D such that
the demand De along edge e is equal to ~fopt(e) and that
pairs that are not connected do not have demand. Hence,

~Lobl(e) = `(OBLe ·D) = `(
∑
e′OBLe,e′ ·De′)

≤
∑
e′

OBLe,e′ · `(De′) =
∑
e′

OBLe,e′ · ~Lopt(e′)

= OBLe · ~Lopt

as desired, where the second to last equality uses the fact
that the load function ` is the same for every edge. Also note
that the inequality in the above expression uses the fact that
` is a norm, i.e., `(~a+~b) ≤ `(~a)+`(~b) and `(λ ·~a) = λ ·`(~a)
(actually we only need `(λ · ~a) ≤ λ · `(~a) but this already
implies equality).

In order to design a tree-based oblivious algorithm with a
good competitive ratio (say O(log n)) Lemma 3 tells us that
one needs to find a tree-based routing matrix OBL such that

max
load-vector ~L

{
‖OBL · ~L‖p
‖~L‖p

}
≤ O(log n) .

This basically asks whether there is a tree-based matrix
OBL with a small induced matrix p-norm ‖OBL‖p =
max~L{‖OBL·~L‖p/‖~L‖p} ≤ O(log n). The following lemma
shows a necessary condition for this to be possible, namely
it shows that for any load-vector there exists an oblivious
routing matrix that performs well w.r.t. this load-vector.

Lemma 4. For any given load vector ~L there exists a tree-
based routing matrix OBL such that ‖OBL·~L‖p ≤ O(log n)·
‖~L‖p.

Proof: Räcke [21] gives for any undirected graph G
a tree-based oblivious routing scheme that is O(log n)-
competitive with respect to congestion. Translating his
scenario into our model means that the aggregation function
is agg = max the load function is ` = id and K = 1.

Let OBL be this algorithm designed for a graph G′ that is
isomorphic to G but in which an edge e is equipped with a
capacity cap(e) = L[e]. Now, suppose that a demand vector
is given that specifies a demand of L[e] along every edge e in
G′. Routing this demand directly along the edge gives a load
of cap(e)−1

L[e] = 1 on every edge and, hence, a congestion
of 1. Routing the demand with the oblivious algorithm gives
a load-vector of OBL ·~L, and since the oblivious algorithm is
O(log n)-competitive we have (OBL · ~L)e ≤ O(log n) ·L[e]
for every edge e.

4. THE GAME

In the following we define a continuous two player zero-
sum game G‖·‖p

that is closely related to the oblivious routing
problem. Let the strategy set SM of the first player (called
the matrix player) be the set of tree-based oblivious routing
matrices. The strategy set SL := {~L ∈ R|E|≥0 | ‖~L‖p ≤ 1}
of the second player (called the vector player) is the set
of positive |E|-dimensional vectors of length at most one
(measured in the Lp-norm).

The payoff function f : SM × SL → R is given by
f(M, ~L) 7→ ‖(M +Mε)~L‖p and has to be minimized by the
matrix player and maximized by the vector player, where Mε

denotes an |E| × |E| matrix in which every entry is ε > 0.
Note that both strategy sets are compact and that the payoff
function is continuous. Therefore, this defines a continuous
game which, due to Glicksberg’s [10] generalization of the
Kakutani fixed point theorem, has a Nash equilibrium in
mixed strategies. The following lemma shows that the game
also possesses a pure Nash equilibrium.

Lemma 5. For p ≥ 1 the game G‖·‖p
possesses a pure Nash

equilibrium.

Proof: Let ρ and σ be mixed strategies played by the
matrix and the vector player, respectively, where both ρ and
σ are regular probability measures. The expected value of
the payoff function is

∫∫
f(M, ~L) dρ(M) dσ(~L). Due to the

triangle inequality, we have, for every vector ~L and regular
probability measure ρ,∫

f(M, ~L) dρ(M) =
∫ ∥∥∥(M +Mε)~L

∥∥∥
p
dρ(M)

≥
∥∥∥(∫ Mdρ(M) +Mε

)
~L
∥∥∥
p

= f
(∫

Mdρ(M) , ~L
)
.

This means playing the pure strategy
∫
M dρ(M) does not

worsen the payoff for the matrix player regardless of the
strategy of the vector player. Hence, the game also possesses
an equilibrium in which the matrix player plays a pure
strategy.

In the following we assume that the matrix player plays
the pure strategy M ′ in a Nash equilibrium. Theorem 6 in
Section 5 shows that there is a unique vector ~L? maximizing
the payoff function f(M, ~L) = ‖(M +Mε)~L‖p for a fixed
matrix M . Let ~L′ denote the unique vector that maximizes
f(M ′, ~L), Clearly, σ({~L′}) = 1, as otherwise the vector
player could increase the expected payoff by switching her
strategy to ~L′, which contradicts the notion of an equilibrium.
We conclude that the game is in equilibrium if the two players
play M ′ and ~L′, respectively, as their pure strategies.

The above argument only works for p > 1 as Theorem 6
does not hold for p = 1. Nevertheless it is easy to see that
the game G‖·‖1 still possesses a pure Nash equilibrium.



Theorem 1. For p ≥ 1, there exists an oblivious routing
scheme that is O(log n)-competitive when the aggregation
function is the Lp-norm, and the load function ` is a
monotone norm.

Proof: From Lemma 5 we know that the game G‖·‖p

has a pure Nash equilibrium. Let M and ~L denote the pure
strategy played in this equilibrium by the matrix player and
the vector player, respectively. The fact that ~L is a best
response implies f(M, ~L) ≥ f(M, ~L′) for all ~L′. From
Lemma 4 we know that there exists a routing matrix M̂
with ‖M̂ · ~L‖p ≤ O(log n). Since M is a best response
we have that f(M, ~L) ≤ f(M̂, ~L) = ‖(M̂ + Mε)~L‖p ≤
‖M̂ ~L‖p + ‖Mε

~L‖p ≤ O(log n), where the last inequality
follows by setting ε := 1/|E| and observing that ‖Mε

~L‖p ≤
ε · |E| · ‖~L‖p ≤ 1. Hence, we obtain that for all L′

‖M~L′‖p ≤ f(M, ~L′) ≤ f(M, ~L) ≤ O(log n) .

This shows that ‖M‖p ≤ O(log n) and gives rise to an
oblivious routing scheme with competitive ratio O(log n).

5. UNIQUENESS

In this section we show that for a given |E| × |E|
matrix M = (mij)i,j∈{1,...,n} with strictly positive entries,
and any p > 1, the vector ~x ∗ maximizing the function
f : R|E|≥0 \ {~0} → R, f(~x) = ‖M~x‖p

p/‖~x‖p
p is unique up to

scalar multiplication. This fact is used in Lemma 5. We first
show that every critical point of the function (a point with
gradient ~0) is a local maximum.

Assume that ~x is a critical point. Define the func-
tions g(~x) = ‖M~x‖pp and h(~x) = ‖~x‖pp. Then ∂

∂xi
g =

M t
i
~∇h(M~x), and ∂

∂xi
h(~x) = pxi

p−1. The partial derivative
∂
∂xi

f is then given by

∂

∂xi
f(~x) = p

∑
smsi(Ms~x)p−1 · ‖~x‖pp − x

p−1
i · ‖M~x‖pp

‖~x‖2pp
.

(1)
Since ~x is a critical point we know that the gradient ~∇f(~x) =
~0. We can calculate the second partial derivatives ∂2

∂xi∂xj
f

under the condition that all the first partial derivatives are 0.
The second partial derivatives are given by

∂2

∂2xi
f(~x) = p(p− 1)

(∑
sm

2
si(Ms~x)p−2 · ‖~x‖pp
‖~x‖2pp

−
xp−2
i · ‖M~x‖pp
‖~x‖2pp

)
and for i 6= j by

∂2

∂xi∂xj
f(~x) = p(p− 1)

∑
smsimsj(Ms~x)p−2

‖~x‖pp
.

Without loss of generality we may assume that ‖~x‖ = 1
and ‖M~x‖ = 1 (by scaling ~x and M , respectively) which

simplifies the second partial derivatives to

∂2

∂2xi
f(~x) = p(p− 1)

∑
s

m2
si(Ms~x)p−2 − xp−2

i and

∂2

∂xi∂xj
f(~x) = p(p− 1)

∑
s

msimsj(Ms~x)p−2 .

Let Hf =
(

∂2

∂xi∂xj

)
i,j∈{1,...,n}

denote the Hessian matrix

of f . Then for a direction ~ε, ~ε tHf (~x)~ε is the second order
term in the approximation of f(~x+ ~ε ) via the Taylor series
expansion of f . We show that this term is strictly negative
unless ~ε = λ~x. This means, that in the neighborhood of ~x,
f(~x) is decreasing, and hence ~x is a local maximum. We get

~ε tHf (~x)~ε
p(p− 1)

=
∑
(i,j)

∑
s

msimsj(Ms~x)p−2εiεj−
∑
i

xp−2
i ε2i .

(2)
The fact that the gradient at ~x is ~0 combined with Equation 1
provides the following equation for xp−2

i :

xp−2
i =

1
xi

∑
s

msi(Ms~x)p−1

=
1
xi

∑
s

msi(
∑
jmsjxj)(Ms~x)p−2 .

Note that since the gradient at ~x is ~0 and all entries of M
are strictly positive, Equation 1 gives that xi 6= 0 for every
i. Plugging the above into Equation 2 gives

~ε tHf (~x)~ε
p(p− 1)

=
∑
(i,j)

∑
s

msimsj(Ms~x)p−2εiεj

−
∑
(i,j)

∑
s

msimsj
xj
xi

(Ms~x)p−2ε2i

=
∑
s

(Ms~x)p−2
( ∑
{i,j}:i 6=j

2msimsjεiεj

−
∑

{i,j}:i 6=j

msimsj(
xj
xi
ε2i +

xi
xj
ε2j )
)
,

where the equality follows since the contribution of an
ordered pair (i, i) to the left sum and the right sum are
the same. The contribution for an unordered pair {i, j} to
the bracketed sum in the last expression is

msimsj · (2εiεj −
xj
xi
ε2i −

xi
xj
ε2j )

= −msimsjxixj · (
εi
xi
− εj
xj

)2 ≤ 0 .

Note that this expression is less or equal to zero and that it
becomes zero if and only if εi

xi
= εj

xj
. Since, this holds for

all pairs we get that the total sum is less or equal to zero
and becomes zero if and only if ~ε = λ~x for some λ.

Theorem 6. Let p > 1 and let M denote a matrix with
strictly positive entries. Then the function f : Sn−1 → R,
f(~x) 7→ ‖M~x‖p/‖~x‖p has a unique maximum.



Proof: We restricted the function f to the positive orthant
of the unit sphere (which is equivalent to normalizing our
positive vectors ~x to ‖~x‖2 = 1). Then the above result
shows that any critical value of this function is a strict
local maximum, i.e., for a critical value ~x, ~x is the unique
maximum in an ε-neighborhood around ~x. This implies the
theorem since if there exist two maxima, there also exists
another critical point (usually a saddle point) which will have
a partial second derivative that is non-negative and this gives
a contradiction.

In fact, we can conclude the following slightly more
general statement which will be useful in Section 6:

Lemma 7. There is no upper level set Lα := {~x | f(~x) ≥ α}
with more than one component.

6. COMPUTING TREE BASED ROUTING MATRICES FOR
THE EUCLIDEAN NORM

In this section we show how to make our main theorem
constructive for the case p = 2, that is, we give an algorithm
that computes a tree-based oblivious routing scheme that
is O(log n) competitive if the aggregation function is the
Euclidean norm. The algorithm runs in polynomial time,
however, we did not attempt to optimize the degree of the
polynomial.

Theorem 8. There exists a polynomial time algorithm that
computes an oblivious routing scheme with competitive ratio
O(log n) when the aggregation function is the L2-norm and
the load function ` is a monotone norm.

In order to prove the theorem we need to show how to
compute a tree-based routing matrix OBL with ‖OBL‖2 ≤
O(log n). We will exploit the fact that due to Lemma 4 we
can, for any given vector ~x, efficiently compute a tree-based
matrix M with ‖M~x‖ ≤ O(log n).

Furthermore, for any given matrix M we can efficiently
approximate a unit vector ~x that maximizes ‖M~x‖2 (an
approximation with an additive error of at most 1/(2|E|2)
in every component is sufficient for our purpose). This
follows since the vector maximizing ‖M~x‖2 is an eigenvector
of M tM and efficient algorithms are known to compute
eigenvectors of symmetric matrices (see e.g. [19]).

All entries of a routing matrix lie between 0 and 1. In
the following we assume for simplicity that the entries of a
routing matrix lie in the interval [1/|E|, 1 + 1/|E|] instead.
Analogously to Section 4, this can be achieved by performing
all operations on the matrix M+M1/|E| instead of M , where
M1/|E| denotes an |E| × |E| matrix who’s entries are equal
to 1/|E|. Note that this change worsens the operator norm
of the matrix, and therefore the competitive ratio, only by
an additive constant of 1.

Define f(M,~x) := ‖M~x‖2/‖~x‖2. Our goal is to find
a routing matrix M such that, for every load vector ~x,
f(M,~x) = O(log n). For this, we start with an arbitrary tree-
based routing matrix M(0). In an iteration i, we first compute

the unique unit vector ~x ∗(i−1) maximizing f(M(i−1), ~x ),
where the uniqueness follows from Theorem 6. If the value
f(M(i−1), ~x

∗
(i−1)) is less than c · log n, for some suitable con-

stant c, we have found the desired matrix and the algorithm
terminates. Otherwise we apply Lemma 4 and compute a
routing matrix M̂(i−1) with f(M̂(i−1), ~x

∗
(i−1)) ≤

c
2 ·log n−2

and choose M(i) := λ · M̂(i−1) + (1−λ) ·M(i−1), where the
right choice of λ will be addressed in the proof of Lemma 9.

The following lemma shows that the function value
f(M(i), ~x(i)) decreases substantially in each iteration.

Lemma 9. For each iteration i of the above algorithm we
have

f(M(i), ~x
∗
(i)) ≤ f(M(i−1), ~x

∗
(i−1))−

1
poly(|E|)

.

Proof: Let Nα(~x) := {~x ′ | ‖~x−~x ′‖∞ ≤ α} denote the
α-neighborhood around ~x measured in the L∞-norm. Note
that, if for a routing matrix M and a vector ~x, f(M,~x) ≤
c
2 · log n−2, then we have, for every vector ~x ′ ∈ N1/|E|2(~x),
f(M,~x ′) ≤ c

2 · log n.
We choose

α :=
( 1

2 · (|E|+ 1)

)12

and λ :=
1
8

( 1
2 · (|E|+ 1)

)31

.

If the algorithm does not terminate after iteration i− 1 we
have f(M(i−1), ~x

∗
(i−1)) ≥ c · log n and therefore we can

conclude, for every unit vector ~x ∈ Nα(~x ∗(i−1)),

f(M(i), ~x) ≤ λf(M̂(i−1), ~x) + (1− λ)f(M(i−1), ~x)

≤ λ · c
2

log n+ (1− λ)f(M(i−1), ~x
∗
(i−1))

≤ f(M(i−1), ~x
∗
(i−1)) + λ

( c
2

log n− c · log n
)

≤ f(M(i−1), ~x
∗
(i−1))−

1
poly(|E|)

,

where the second step follows because M̂(i−1) was computed
such that f(M̂, ~x) ≤ c

2 log n for every ~x ∈ N1/|E|2(~x ∗(i−1)).
To derive a similar inequality for vectors outside of the

α-neighborhood of ~x ∗(i−1) we make use of the following
claim:

Claim 10. Let M be a routing matrix and ~x ∗ be the unit
vector maximizing f(M,~x), then, for every unit positive
vector ~x ′ /∈ Nα(~x ∗),

f(M,~x ′) ≤ f(M,~x ∗)− 1
8

( 1
2 · (|E|+ 1)

)30

.

Proof: Let M be a routing matrix and ~x∗ be the
normalized vector maximizing f(M,~x) := ‖M~x‖2/‖~x‖2.
In the following we prove that for every normalized vector
~x′ on the border of the α-neighborhood of ~x∗, that is,
‖~x′ − ~x∗‖∞ = α,

f(M,~x′)2 ≤ f(M,~x∗)2 − 1
8

( 1
2 · (|E|+ 1)

)28

.



Due to Lemma 7, this implies for every normalized positive
vector ~x′ 6∈ Nα(~x∗)

f(M,~x′)2 ≤ f(M,~x∗)2 − 1
8

( 1
2 · (|E|+ 1)

)28

.

Since a2 ≤ b2− c implies a ≤ b− c/b2 for c > 0 and b > 2,
we can then conclude

f(M,~x′) ≤ f(M,~x∗)− 1
8

( 1
2 · (|E|+ 1)

)28 1
f(M,~x∗)2

≤ f(M,~x∗)− 1
8

( 1
2 · (|E|+ 1)

)30

,

which completes the proof of the claim.
We start by stating the following claim about the value

of the Hessian Hf2 of f2 in the neighborhood of ~x∗ (who’s
almost straightforward proof is omitted).

Claim 11. For every positive vector ~y ∈ Nα(~x∗) and every
vector ~ε with the property that ~ε contains at least one positive
and one strictly negative entry,

~εtHf2(M,~y)~ε ≤ −

(
‖~ε‖∞

2

)2(
1

2 · (|E|+ 1)

)4

.

Now let ~x′ ∈ Nα(~x∗) be a normalized vector on the
border of the α-neighborhood of ~x∗. From the Taylor
expansion of f2 at ~x∗ it follows that if, for every vector ~y ∈
Nα(~x∗), (~x∗−~x′)tHf2(M,~y)(~x∗−~x′) ≤ −γ, f(M,~x′)2 ≤
f(M,~x∗)2 + ~∇f(M,~x∗)2 − γ/2 = f(M,~x∗)2 − γ/2. This
implies Claim 10 since, due to Claim 11,

(~x∗ − ~x′)tHf2(M,~y)(~x∗ − ~x′)

≤ −
(α

2

)2
(

1
2 · (|E|+ 1)

)4

= −1
4

(
1

2 · (|E|+ 1)

)28

.

For any unit vector ~x /∈ Nα(~x ∗(i−1)), Claim 11 gives

f(M(i), ~x) ≤ λf(M̂(i−1), ~x) + (1− λ)f(M(i−1), ~x)
≤ λ(|E|+ 1) + f(M(i−1), ~x

∗)

− 1
8

( 1
2 · (|E|+ 1)

)30

≤ f(M(i−1), ~x
∗
i−1)− 1

poly(|E|)
,

due to our choice of λ.
Note that the above proof of Lemma 9 still goes through

if we compute M̂(i−1) only with respect to a vector approxi-
mating ~x ∗(i−1) within an additive error of 1/(2|E|2) in each
component.

Lemma 12. The algorithm above terminates after poly(|E|)
steps.

Proof: The lemma follows directly from Lemma 9
and the fact that f(M,~x) ≤ (|E| + 1) for any routing
matrix M and vector ~x, width ‖~x‖p ≤ 1, and in particular,
f(M(0), ~x

∗
(0)) ≤ |E|+ 1.

7. LOWER BOUND

In this section we give a lower bound on the competitive
ratio of any oblivious routing algorithm.

Theorem 2. Let p > 1, K = 1, ` = id, and agg = ‖ · ‖pp.
There is no oblivious algorithm that obtains a competitive
ratio of o(logp n/(log log n)p).

Proof-sketch: We construct a random graph G = (V,E)
on n vertices by choosing edges independently with proba-
bility q = Θ(logc n/n), for a parameter c to be chosen later.
For such a graph it is straightforward to show via Chernoff
bounds that any cut (S, V \ S) will have a number of edges
crossing it that is close to the expected value q · |S| · |V \ S|
with high probability.

In the following assume that the constant in the definition
of q is chosen appropriately such that any cut (S, V \ S) in
G has at least logc /n · |S| · |V \ S| crossing edges and that
any single vertex has at most O(logc n) adjacent edges.

Now any two vertices have at least logc(n) edge-disjoint
path of length at most O(log n) between them. Further-
more, most node-pairs (at least 50%) are at distance at
least Ω(log n/(2c log log n)) as a node can have at most
(O(logc n))d nodes within distance at most d. From this it
also follows that in expectation for at least 50% of the edges
it holds that after removing the edge the distance between
the two endpoints is at least Ω(log n/(2c log log n)). Let
E′ ⊂ E denote the subset of edges of G that have this
property and assume that |E′| ≥ 1

4 |E| (which will hold with
high probability).

Assume you are given an oblivious routing algorithm OPT
that for an edge e = (s, t) in E′ routes at least half of the
demand between s and t along this edge. Then the cost of
the oblivious algorithm when this is the only demand in the
network is at least 1/2. However, an optimal algorithm could
distribute this demand evenly among the logc(n) edge disjoint
path that exist between s and t. This would result in a cost of
O(log n) · logc n · (1/ logc n)p = O(log n) · (1/ logc n)p−1,
which is smaller than 1/ logp n for c ≥ (p+1)/(p−1). This
means in this case the oblivious algorithm does not obtain a
good competitive ratio.

Now assume that the oblivious algorithm schedules for
every edge in E′ at most half of the demand of the edge
along the edge. Then this oblivious algorithm induces a
poor routing if all edges in E′ have a demand of 1. This
holds because the described traffic pattern can be routed
optimally by simply routing each demand directly along
the corresponding edge, resulting in a cost of at most E′.
The oblivious algorithm creates a total traffic of at least
1
2 · |E

′| · Ω(log n/(2c log log n)). Even if this traffic were



divided evenly among all edges, the average edge load would
be Ω(log n/(2c log log n)) resulting in a cost of Ω(|E′| ·
logp n/(log log n)p), which shows that also in this case the
oblivious algorithm has a bad competitive ratio.
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