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Abstract

2-Opt is probably the most basic and widely used local
search heuristic for the TSP. This heuristic achieves
amazingly good results on “real world” Euclidean in-
stances both with respect to running time and approxi-
mation ratio. There are numerous experimental studies
on the performance of 2-Opt. However, the theoretical
knowledge about this heuristic is still very limited. Not
even its worst case running time on Euclidean instances
was known so far. In this paper, we clarify this issue
by presenting a family of Euclidean instances on which
2-Opt can take an exponential number of steps.

Previous probabilistic analyses were restricted to
instances in which n points are placed uniformly at
random in the unit square [0, 1]2, where it was shown
that the expected number of steps is bounded by Õ(n10)
for Euclidean instances. We consider a more advanced
model of probabilistic instances in which the points
can be placed according to general distributions on
[0, 1]2. In particular, we allow different distributions for
different points. We study the expected running time
in terms of the number n of points and the maximal
density φ of the probability distributions. We show
an upper bound on the expected length of any 2-Opt
improvement path of Õ(n4+1/3 · φ8/3). When starting
with an initial tour computed by an insertion heuristic,
the upper bound on the expected number of steps
improves even to Õ(n3+5/6 · φ8/3). If the distances are
measured according to the Manhattan metric, then the
expected number of steps is bounded by Õ(n3+1/2 · φ).
In addition, we prove an upper bound of O(

√
φ) on the

expected approximation factor with respect to both of
these metrics.

Let us remark that our probabilistic analysis covers
as special cases the uniform input model with φ = 1
and a smoothed analysis with Gaussian perturbations
of standard deviation σ with φ ∼ 1/σ2. Besides random

∗Department of Computer Science, RWTH Aachen, Ger-
many. This work was supported by DFG grants VO 889/2 and
WE 2842/1. {englert,roeglin,voecking}@cs.rwth-aachen.de.
A full version appeared as technical report [ERV06].

metric instances, we also consider an alternative random
input model in which an adversary specifies a graph and
distributions for the edge lengths in this graph. In this
model, we achieve even better results on the expected
running time of 2-Opt.

1 Introduction

In the traveling salesperson problem (TSP), we are given
a set {v1, v2, . . . , vn} of vertices and for each pair {vi, vj}
of distinct vertices a distance d(vi, vj). The goal is to
find a tour of minimal length visiting each vertex exactly
once and returning to the initial vertex at the end, that
is, the goal is to compute a permutation π minimizing

n−1
∑

i=1

d(vπ(i), vπ(i+1)) + d(vπ(n), vπ(1)) .

Despite many theoretical analyses and experimen-
tal evaluations of the TSP, there is still a considerable
gap between the theoretical results and the experimen-
tal observations. The Euclidean TSP, for example, is
known to be NP-hard in the strong sense [Pap77]. In
a breakthrough result, Arora has shown that the Eu-
clidean TSP admits a polynomial time approximation
scheme (PTAS) and, hence, can be approximated arbi-
trarily well in polynomial time [Aro98]. Arora’s PTAS
is based on dynamic programming. However, the most
successful algorithms on practical instances rely on the
principle of local search and very little is known about
their complexity.

The 2-Opt algorithm is probably the most basic and
widely used local search heuristic for the TSP. 2-Opt
starts with an arbitrary initial tour and incrementally
improves this tour by exchanging two of the edges in
the tour with two other edges. More precisely, in
each improving step the 2-Opt algorithm selects two
edges {u1, u2} and {v1, v2} from the tour such that
u1, u2, v1, v2 are distinct and appear in this order in
the tour, and the algorithm replaces these edges by
the edges {u1, v1} and {u2, v2}, provided that this
change decreases the length of the tour. The algorithm



terminates in a local optimum in which no further
improving step is possible. We use the term 2-change
to denote a local improvement made by 2-Opt. This
simple heuristic performs amazingly well on “real-life”
Euclidean instances like, e. g., the ones in the well-
known TSPLIB [Rei91]. Usually the 2-Opt heuristic
needs a clearly subquadratic number of improving steps
until it reaches a local optimum and the computed
solution lies within a few percentage points of the global
optimum [JM97].

There are numerous experimental studies on the
performance of 2-Opt. However, the theoretical knowl-
edge about this heuristic is still very limited. Let us first
discuss the number of local improvement steps made by
2-Opt before it finds a locally optimal solution. When
talking about the number of local improvements, it is
convenient to consider the state graph. The vertices in
this graph correspond to the possible tours and an arc
from a vertex u to a vertex v is contained if v is ob-
tained from u by performing one improving 2-Opt step.
On the positive side, van Leeuwen and Schoone con-
sider a 2-Opt variant for the Euclidean plane in which
only steps are allowed that remove a crossing from the
tour. Observe that such steps can introduce new cross-
ings. However, van Leeuwen and Schoone show that
after O(n3) steps, 2-Opt has found a tour without any
crossing [vLS80]. On the negative side, Lueker con-
structs TSP instances whose state graphs contain ex-
ponentially long paths, that is, 2-Opt can take an ex-
ponential number of steps before it finds a locally op-
timal solution [Lue75]. This result is generalized to
k-Opt for arbitrary k ≥ 2 by Chandra, Karloff, and
Tovey [CKT99]. These results, however, use arbitrary
graphs whose edge lengths do not satisfy the triangle
inequality. Hence they leave open the question about
the worst case complexity of 2-Opt on metric TSP in-
stances. In particular, Chandra, Karloff, and Tovey ask
whether it is possible to construct Euclidean TSP in-
stances on which 2-Opt can take an exponential number
of steps. In this paper, we settle this question. We con-
struct Euclidean instances whose state graphs contain
exponentially longs paths, that is, Euclidean instances
on which 2-Opt can take an exponential number of steps
before finding a locally optimal solution. In chip design
applications, often TSP instances arise in which the dis-
tances are measured according to the Manhattan met-
ric. Also for this metric, we construct instances with
exponentially long paths in the 2-Opt state graph.

Theorem 1.1. a) For every n ∈ N, there is a graph
in the plane with Manhattan metric with 16n ver-
tices whose corresponding state graph contains a
path of length 2n+4 − 22.

b) For every n ∈ N, there is a graph in the Euclidean
plane with 8n vertices whose corresponding state
graph contains a path of length 2n+3 − 14.

For Euclidean instances in which n points are placed
uniformly at random in the unit square, Kern shows
that the length of the longest path in the state graph is
bounded by O(n16) with probability 1 − c/n for some
constant c [Ker89]. Chandra, Karloff, and Tovey im-
prove this result by bounding the expected length of the
longest path in the state graph by O(n10 log n) [CKT99].
That is, independent of the initial tour and the choice
of the local improvements, the expected number of 2-
changes is bounded by O(n10 log n). For instances in
which n points are placed uniformly at random in the
unit square and the distances are measured according
to the Manhattan metric, Chandra, Karloff, and Tovey
show that the expected length of the longest path in the
state graph is bounded by O(n6 log n).

We consider a more general probabilistic input
model and improve the previously known bounds. The
probabilistic model underlying our analysis allows that
different vertices are placed in the plane using different
continuous probability distributions. The distribution
of vertex vi is defined by a density function fi : [0, 1]2 →
[0, φ] for some given φ ≥ 1. Our upper bounds depend
on the number n of vertices and the upper bound φ
on the density. We denote instances created by this
input model as φ-perturbed Euclidean or Manhattan
instances depending on the underlying metric. The
parameter φ can be seen as a parameter specifying
how close the analysis is to a worst case analysis since
the larger φ is, the better worst case instances can be
approximated by the distributions. For φ = 1, every
point has a uniform distribution over the unit square
and hence the input model equals the uniform model
analyzed before. Our results narrow the gap between
the subquadratic number of improving steps observed
in experiments [JM97] and the upper bounds from
the probabilistic analysis. With slight modifications,
this model also covers a smoothed analysis, in which
first an adversary specifies the positions of the points
and after that each position is slightly perturbed by
adding a Gaussian random variable with small standard
deviation σ. In this case, one has to set φ ∼ 1/σ2.

We also consider a model in which an arbitrary
graph G = (V, E) is given and for each edge e ∈ E,
a probability distribution according to which the edge
length d(e) is chosen independently of the other edge
lengths. Again, we restrict the choice of distributions to
distributions which can be specified by density functions
f : [0, 1] → [0, φ] with maximal density at most φ for
a given φ ≥ 1. We denote inputs created by this input
model as φ-perturbed graphs. Observe that in this input



model only the distances are perturbed whereas the
graph structure is not touched by the randomization.
This can be useful if one wants to explicitely prohibit
certain edges. However, if the graph G is not complete,
one has to initialize 2-Opt with a Hamiltonian cycle to
start with.

We prove the following theorem about the expected
length of the longest path in the 2-Opt state graph for
the three probabilistic input models discussed above.

Theorem 1.2. The expected length of the longest path
in the 2-Opt state graph

a) is O(n4 · φ) for φ-perturbed Manhattan instances
with n points.

b) is O(n4+1/3 · log(nφ) · φ8/3) for φ-perturbed Eu-
clidean instances with n points.

c) is O(m · n1+o(1) · φ) for φ-perturbed graphs with n
vertices and m edges.

One way of improving the approximation ratio and
running time of 2-Opt is to use an insertion heuristic
for computing the initial tour. We show that using such
an insertion heuristic yields a significant improvement
since the initial tour 2-Opt starts with is an O(log n)-
approximation of the optimal tour and hence much
shorter than the longest possible tour. In the following
theorem, we summarize our results on the expected
number of local improvements.

Theorem 1.3. The expected number of steps performed
by 2-Opt

a) is O(n3+1/2 · log n · φ) on φ-perturbed Manhattan
instances with n points when one starts with a tour
obtained by an arbitrary insertion heuristic.

b) is O(n3+5/6 ·log(nφ)·log n·φ8/3) on φ-perturbed Eu-
clidean instances with n points when one starts with
a tour obtained by an arbitrary insertion heuristic.

The bounds in the previous theorem can be improved by
one log n-factor if one does not use an arbitrary insertion
heuristic but nearest insertion or cheapest insertion
since these heuristics yield a 2-approximation of the
optimal tour.

In fact, our analysis shows not only that the ex-
pected running time is polynomially bounded but it also
shows that the second moment and hence the variance is
bounded polynomially for φ-perturbed Manhattan and
graph instances. For the Euclidean metric, we cannot
bound the variance but the 3/2-th moment polynomi-
ally.

Similar to the running time, the good approxima-
tion ratios obtained by 2-Opt on practical instances can-
not be explained by a worst-case analysis. In fact, there

are quite negative results on the worst-case behavior of
2-Opt. For example, Chandra, Karloff, and Tovey show
that there are Euclidean instances for which 2-Opt has

local optima whose costs are Ω
(

log n
log log n

)

times larger

than the optimal costs [CKT99]. However, the same au-
thors also show that the expected approximation ratio
for instances with n points drawn uniformly at random
from the unit square is bounded from above by a con-
stant. We generalize their result to our input model in
which different points can have different distributions
with bounded density φ. For both Euclidean and Man-
hattan instances, we obtain the following theorem.

Theorem 1.4. For φ-perturbed Manhattan and Eu-
clidean instances, the expected approximation ratio of
the worst tour that is locally optimal for 2-Opt is
bounded by O(

√
φ).

Let us remark that this result is merely of theoretical
interest since a 2-approximation of the optimal tour
is already achieved by computing the initial tour 2-
Opt starts with by an appropriate insertion heuristic.
However, this result shows that the approximation ratio
is bounded by O(

√
φ) no matter how the initial tour is

chosen.
In this extended abstract, we focus on the results

about the number of 2-changes for the Euclidean TSP,
that is, we outline the proofs of Theorem 1.1 b),
Theorem 1.2 b), and Theorem 1.3 b). The complete
proofs of these and the other results can be found in
the full version of this paper [ERV06].

2 Preliminaries

We begin by stating some basic definitions and nota-
tions. First of all, an instance of the TSP consists of a
set V = {v1, . . . , vn} of vertices (depending on the con-
text, synonymously referred to as points) and a sym-
metric distance function d : V × V → R≥0 which asso-
ciates with each pair {vi, vj} of distinct vertices a dis-
tance d(vi, vj) = d(vj , vi). The goal is to find a tour
of minimal length visiting each vertex exactly once and
returning to the initial vertex at the end. Since we fo-
cus on Euclidean instances, we assume in the following
that V ⊆ R

2 and that the distance between two points
P1 = (x1, y1) ∈ R

2 and P2 = (x2, y2) ∈ R
2 is given by

√

(x1 − x2)2 + (y1 − y2)2.
A tour construction heuristic for the TSP incremen-

tally constructs a tour and stops as soon as a valid
tour is created. Usually, a tour constructed by such
a heuristic is used as the initial solution 2-Opt starts
with. A well known class of tour construction heuristics
for metric TSP instances are so-called insertion heuris-
tics. These heuristics insert the vertices into the tour
one after another, and every vertex is inserted between



two consecutive vertices in the current tour where it fits
best. To make this more precise, let Ti denote a subtour
on a subset Si of i vertices, and suppose v /∈ Si is the
next vertex to be inserted. If (x, y) denotes an edge in
Ti that minimizes d(x, v) + d(v, y) − d(x, y), then the
new tour Ti+1 is obtained from Ti by deleting the edge
(x, y) and adding the edges (x, v) and (v, y). Depending
on the order in which the vertices are inserted into the
tour, one distinguishes between several different inser-
tion heuristics. Rosenkrantz et al. show an upper bound
of ⌈log n⌉+ 1 on the approximation factor of any inser-
tion heuristic on metric TSP instances [RSI77]. Fur-
thermore, they show that two variants which they call
nearest insertion and cheapest insertion achieve an ap-
proximation ratio of 2 for metric TSP instances. The
nearest insertion heuristic always inserts the vertex with
the smallest distance to the current tour, and the cheap-
est insertion heuristic always inserts the vertex whose
insertion leads to the cheapest tour Ti+1.

3 Euclidean Instances with Exponentially Long

Sequences of Improving 2-Changes

In this section, we present a family of Euclidean in-
stances with exponentially long sequences of improving
2-changes. In Lueker’s construction for the general TSP
many of the 2-changes remove two edges which are far
apart in the current tour in the sense that many ver-
tices are visited between them, no matter of how the
direction of the tour is chosen. This is crucial to the
construction and also to its generalization to k-changes.
Our construction differs significantly from the previous
ones as the 2-changes affect the tour only locally. The
instances we construct are composed of gadgets of con-
stant size. Each of these gadgets has a zero state and a
one state, and there exists a sequence of improving 2-
changes starting in the zero state and eventually leading
to the one state. Let G0, . . . , Gn−1 denote these gad-
gets. If gadget Gi with i > 0 has reached state one,
then it can be reset to its zero state by gadget Gi−1.
The crucial property of our construction is that when-
ever a gadget Gi−1 changes its state from zero to one,
it resets gadget Gi twice. Hence, if in the initial tour,
gadget G0 is in its zero state and every other gadget is
in state one, then for every i with 0 ≤ i ≤ n− 1, gadget
Gi performs 2i state changes from zero to one as for
i > 0, gadget Gi is reset 2i times.

Every gadget is composed of 2 subgadgets which
we refer to as blocks. Each of these blocks consists of 4
vertices that are consecutively visited in the tour. Let
Bi

1 and Bi
2 denote the blocks of gadget Gi and let Ai

j ,

Bi
j , Ci

j , and Di
j denote the four points the j-th block

of the i-th gadget consist of. If one ignores certain in-
termediate configurations that arise when one gadgets

Ai
2

Bi
2 Ci

2

Di
2Ai

1

Bi
1 Ci

1

Di
1

B0
1 B0

2

G0 Gn−1

. . .

Figure 1: Every tour that occurs in the sequence of 2-
changes contains the thick edges. For each block either
both solid or both dashed edges are contained. In the
former case the block is in its short state; in the latter
case the block is in its long state.

resets another one, our construction ensures the follow-
ing properties: The points are always consecutive in
the tour, the edge between Bi

j and Ci
j is contained in

every tour, and Bi
j and Ci

j are always the inner points
of the block. That is, if one excludes the intermedi-
ate configurations, only the configurations Ai

jB
i
jC

i
jD

i
j

and Ai
jC

i
jB

i
jD

i
j occur during the sequence of 2-changes.

Observe that the change from one of these configura-
tions to the other corresponds to a single 2-change in
which the edges Ai

jB
i
j and Ci

jD
i
j are replaced by the

edges Ai
jC

i
j and Bi

jD
i
j , or vice versa. In the following,

we assume that the sum d(Ai
j , B

i
j) + d(Ci

j , D
i
j) of the

distances between Ai
j and Bi

j and between Ci
j and Di

j

is strictly smaller than the sum d(Ai
j , C

i
j) + d(Bi

j , D
i
j),

and we refer to the configuration Ai
jB

i
jC

i
jD

i
j as the short

state of the block and to the configuration Ai
jC

i
jB

i
jD

i
j as

the long state. Another property of our construction is
that neither the order in which the blocks are visited nor
the order of the gadgets is changed during the sequence
of 2-changes. Again with the exception of the interme-
diate configurations, the order in which the blocks are
visited is B0

1B0
2B1

1B1
2 . . .Bn−1

1 Bn−1
2 . See Figure 1 for an

illustration.
Due to the aforementioned properties, we can de-

scribe every non-intermediate tour that occurs during
the sequence of 2-changes completely by specifying for
every block if it is in its short state or in its long state.
In the following, we denote the state of a gadget Gi by
a vector (x1, x2) with xj ∈ {S, L}, meaning that block
Bi

j is in its short state if and only if xj = S. Since ev-
ery gadget consists of two blocks, there are four possible
states for each gadget. However, only three of them ap-
pear in the sequence of 2-changes, namely (L, L), (S, L),
and (S, S). We call state (L, L) the zero state and state
(S, S) the one state. In order to guarantee the existence
of an exponentially long sequence of 2-changes, the gad-
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Figure 2: A sequence of seven 2-changes in which the first block changes from its long state to its short state
while resetting the two other blocks from their short to their long states. Brackets indicate the edges that are
removed from the tour.

gets we construct possess the following properties:

1. If gadget Gi with 0 ≤ i ≤ n−2 is in state (L, L) and
gadget Gi+1 is in state (S, S), then there exists a
sequence of 7 consecutive 2-changes involving only
edges of and between the gadgets Gi and Gi+1

terminating with gadget Gi being in state (S, L)
and gadget Gi+1 in state (L, L).

2. If gadget Gi with 0 ≤ i ≤ n−2 is in state (S, L) and
gadget Gi+1 is in state (S, S), then there exists a
sequence of 7 consecutive 2-changes involving only
edges of and between the gadgets Gi and Gi+1

terminating with gadget Gi being in state (S, S)
and gadget Gi+1 in state (L, L).

If these properties are satisfied and if in the initial
tour gadget G0 is in its zero state (L, L) and every
other gadget is in its one state (S, S), then there exists
an exponentially long sequence of 2-changes in which
gadget Gi changes 2i times from state zero to state one.
In order to see this, we prove the following lemma.

Lemma 3.1. If gadget Gi with 0 ≤ i ≤ n − 1 is in
the zero state (L, L) and all gadgets Gj with j > i
are in the one state (S, S), then there exists a sequence
of 2n+3−i − 14 2-changes in which only edges of and
between the gadgets Gj with j ≥ i are involved and that
terminates in a state in which all gadgets Gj with j ≥ i
are in the one state.

Proof. We prove the lemma by induction on i. If gadget
Gn−1 is in state (L, L), then it can change its state
with two 2-changes to (S, S) without affecting the other
gadgets. Hence, the lemma is true for i = n − 1. Now
assume that the lemma is true for i + 1 and consider
a state in which gadget Gi is in state (L, L) and all
gadgets Gj with j > i are in state (S, S). Due to the
first property, there exists a sequence of 7 consecutive

2-changes in which only edges of and between Gi and
Gi+1 are involved terminating with Gi being in state
(S, L) and Gi+1 being in state (L, L). By the induction
hypothesis there exists a sequence of 2n+2−i − 14 2-
changes after which all gadgets Gj with j > i are in state
(S, S). Then, due to the second property, there exists
a sequence of 7 consecutive 2-changes in which only Gi

changes its state from (S, L) to (S, S) while resetting
gadget Gi+1 again from (S, S) to (L, L). Hence, we
can apply the induction hypothesis again, yielding that
after another 2n+2−i −14 2-changes all gadgets Gj with
j ≥ i are in state (S, S). This concludes the proof as the
number of 2-changes performed is 14+2(2n+2−i−14) =
2n+3−i − 14. �

We still need to show how the aforementioned
properties are achieved, that is, how the sequence of 2-
changes exactly looks like. We first present a sequence
of 2-changes that satisfies the second property. Observe
that the initial situation in the second property is as
follows: There are three consecutive blocks, namely Bi

2,
Bi+1

1 , and Bi+1
2 , the leftmost one is in its long state, and

the other blocks are in their short states. We need to
present a sequence of 2-changes in which only edges of
and between these three blocks are involved and after
which the first block is in its short state and the other
blocks are in their long states. Remember that when
the edges {u1, u2} and {v1, v2} are removed from the
tour and the vertices appear in the order u1, u2, v1, v2

in the current tour, then the edges {u1, v1} and {u2, v2}
are added to the tour and the subtour between u1 and
v2 is visited in reverse order. If, e. g., the current
tour corresponds to the permutation (1, 2, 3, 4, 5, 6, 7)
and the edges {1, 2} and {5, 6} are removed, then the
new tour is (1, 5, 4, 3, 2, 6, 7). The sequence of seven 2-
changes shown in Figure 2 satisfies the second property.

A sequence of steps that satisfies the first property
can be constructed analogously. Additionally, one has



to take into account that the three involved blocks Bi
1,

Bi+1
1 , and Bi+1

2 are not consecutive in the tour but that
block Bi

2 lies between them. However, one can easily
verify that this block is not affected by the sequence of
2-changes, that is, after the seven 2-changes have been
performed, the block is in the same state and at the
same position as before.

It remains to find a set of points in the plane
such that all 2-changes in the construed sequence of 2-
changes decrease the length of the tour. The remaining
details about how such points in the Euclidean plane
can be chosen can be found in the full version of this
paper [ERV06].

4 The Expected Number of 2-Changes

In this section, we analyze the expected length of the
longest path in the state graph of φ-perturbed Euclidean
instances. In order to prove an upper bound on this
length, one could analyze the smallest improvement
∆min made by any of the 2-changes. If ∆min is bounded
from below by some term δ, then there cannot be a
sequence of more than

√
2n/δ consecutive improving 2-

changes since the initial tour has length at most
√

2n.
We like to mention that already the analysis of ∆min

that we present in the following yields a bound of
O(n7 · log2 n · φ3) on the expected number of 2-changes
which improves the previously known bound.

Intuitively, this approach is too pessimistic since
most of the steps performed by 2-Opt yield a larger
improvement than ∆min. In particular, two consecutive
steps yield an improvement of at least ∆min plus the
improvement ∆′

min of the second smallest step. This
observation alone, however, does not suffice to improve
the bound substantially. Instead, we regroup the 2-
changes to pairs such that each pair of 2-changes is
linked by an edge, i. e., one edge added to the tour in the
first 2-change is removed from the tour in the second
2-change, and we analyze the smallest improvement
made by any pair of linked 2-Opt steps. Obviously, this
improvement is at least ∆min + ∆′

min but one can hope
that it is in fact much larger since it is unlikely that the
2-change that yields the smallest improvement and the
2-change that yields the second smallest improvement
form a pair of linked steps. We show that this is indeed
the case and use this result to prove the bound on the
expected length of the longest path in the state graph
of 2-Opt on φ-perturbed Euclidean instances claimed in
Theorem 1.2.

4.1 Construction of Pairs of Linked 2-Changes

Consider an arbitrary sequence of consecutive 2-changes
of length t. The following lemma guarantees that the
number of disjoint, linked pairs of 2-changes in every

such sequence increases linearly with the length t.

Lemma 4.1. In every sequence of t consecutive 2-
changes the number of disjoint pairs of 2-changes that
are linked by an edge, i. e., pairs such that there exists
an edge added to the tour in the first 2-change of the
pair and removed from the tour in the second 2-change
of the pair, is at least t/3 − n(n − 1)/12.

Proof. Let S1, . . . , St denote an arbitrary sequence of
consecutive 2-changes. The sequence is processed step
by step and a list L of linked pairs of 2-changes
is created. However, these pairs are not necessarily
disjoint. Hence, after the list has been created, pairs
have to be removed from the list until there are no
non-disjoint pairs left. Assume that the 2-changes
S1, . . . , Si−1 have already been processed and that now
2-change Si has to be processed. Assume further that
in step Si the edges e1 and e2 are exchanged with the
edges e3 and e4. Let j denote the smallest index with
j > i such that edge e3 is removed from the tour in step
Sj if such a step exists. In this case, the pair (Si, Sj)
is added to the constructed list L. Analogously, let j′

denote the smallest index with j′ > i such that edge e4

is removed from the tour in step Sj′ if such a step exists.
In this case, the pair (Si, Sj′) is added to the list L.

After the sequence has been processed completely,
each pair in L is linked by an edge but we still have
to identify a subset L′ of L consisting only of pairwise
disjoint pairs. This subset is constructed in a greedy
fashion. We process the list L step by step, starting with
an empty list L′. For each pair in L, we check whether
it is disjoint from all pairs which have already been
inserted into L′ or not. In the former case, the current
pair is inserted into L′. This way, we obtain a list L′ of
disjoint pairs such that each pair is linked by an edge.
The number of pairs in L is at least 2t−n(n−1)/2 since
each of the t steps gives rise to 2 different pairs, unless
an edge is added to the tour which is never removed
again. Each 2-change occurs in at most 4 different pairs
in L, hence, each pair in L is non-disjoint from at most
6 other pairs in L. This implies that L contains at most
6 times as many pairs as L′. �

Consider a fixed pair of 2-changes linked by an
edge. Without loss of generality assume that in the
first step the edges {v1, v2} and {v3, v4} are exchanged
with the edges {v1, v3} and {v2, v4}, for distinct vertices
v1, . . . , v4. Also without loss of generality assume
that in the second step the edges {v1, v3} and {v5, v6}
are exchanged with the edges {v1, v5} and {v3, v6}.
However, note that the vertices v5 and v6 are not
necessarily distinct from the vertices v2 and v4. We
distinguish between three different types of pairs.
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Figure 3: A pair of type 1: First the edges {v1, v2}
and {v3, v4} are exchanged with the edges {v1, v3} and
{v2, v4}, then {v1, v3} and {v5, v6} are exchanged with
{v1, v5} and {v3, v6}.
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Figure 4: A pair of type 2: First the edges {v1, v2}
and {v3, v4} are exchanged with the edges {v1, v3} and
{v2, v4}, then {v1, v3} and {v2, v5} are exchanged with
either {v1, v5} and {v2, v3} or {v1, v2} and {v3, v5}.

1. |{v2, v4} ∩ {v5, v6}| = 0. We can assume w. l. o. g.
that in the second step the edges {v1, v5} and
{v3, v6} are added to the tour. See Figure 3.

2. |{v2, v4} ∩ {v5, v6}| = 1. We can assume w. l. o. g.
that v2 ∈ {v5, v6}. We have to distinguish between
two subcases: a) The edges {v1, v5} and {v2, v3}
are added to the tour in the second step. b) The
edges {v1, v2} and {v3, v5} are added to the tour
in the second step. These cases are illustrated in
Figure 4.

3. |{v2, v4} ∩ {v5, v6}| = 2. The case v2 = v5 and
v4 = v6 cannot appear, as it would imply that the
tour is not changed by performing the considered
pair of steps. Hence, for pairs of this type, we must
have v2 = v6 and v4 = v5.

Pairs of type 3 result in vast dependencies and hence
the probability that there exists a pair of this type in
which both steps are improvements by at most ε cannot
be bounded appropriately. Hence we exclude pairs of
type 3 from our probabilistic analysis by leaving out all
pairs of type 3 when constructing the list L in the proof

of Lemma 4.1. The following lemma, whose proof can
be found in the full version of this paper [ERV06], shows
that there are always enough pairs of type 1 or 2.

Lemma 4.2. In every sequence of t consecutive 2-
changes the number of disjoint pairs of 2-changes of type
1 or 2 is at least t/6 − 5n(n − 1)/48.

4.2 Analysis of Pairs of Linked 2-Changes

We prove the following lemmas about pairs of type 1
and 2 for φ-perturbed Euclidean instances.

Lemma 4.3. The probability that there exists a pair of
type 1 in which both 2-changes are improvements by at
most ε is bounded by O(n6 · ε2 · (log2(1/ε) + 1) · φ5).

Lemma 4.4. The probability that there exists a pair of
type 2 in which both 2-changes are improvements by at
most ε is bounded by O(n5 · ε3/2 · (log(1/ε) + 1) · φ4).

Before we can prove Lemmas 4.3 and 4.4, we have
to understand the random variable that describes the
improvement of a single 2-change. In this section, we
analyze this variable under certain conditions. If, e. g.,
we would like to analyze a pair of linked 2-changes that
share an edge e, it is helpful to know the densities of the
random variables that describe the improvements of the
first and the second 2-change under the condition that
the length of e is given.

We analyze a 2-change in which the edges {O, Q1}
and {P, Q2} are exchanged with the edges {O, Q2} and
{P, Q1} for some vertices O, P , Q1, and Q2. In the
considered input model, each of these points has a
probability distribution over the unit square according
to which it is chosen. We consider a simplified random
experiment in which O is chosen to be the origin
and P , Q1, and Q2 are chosen independently and
uniformly from the interior of a circle with radius

√
2

around the origin. Due to the rotational symmetry
of this model, we assume further that that P lies at
position (0, T ), where T denotes the distance between
O and P . In the next section, we explain how the
analysis of this simple random experiment helps us to
analyze the actual random experiment that occurs in the
probabilistic input model. Let Z1 denote the difference
d(O, Q1) − d(P, Q1) and let Z2 denote the difference
d(O, Q2)−d(P, Q2). Then the improvement ∆ of the 2-
Opt step can be expressed as Z1−Z2. In the full version
of this paper [ERV06], we prove the following lemmas
on the conditional densities of the random variables
∆ and Zi. In the following, let R1 := d(O, Q1) and
R2 := d(O, Q2).

Lemma 4.5. Let τ be an arbitrary distance with 0 ≤
τ ≤

√
2. For a sufficiently large constant κ and for



i ∈ {1, 2}, the conditional density fZi|T=τ of Zi under
the condition T = τ can be bounded by

fZi|T=τ (z) ≤ κ√
τ2 − z2

if |z| ≤ τ . Since Zi takes only values in the interval
[−τ, τ ], the conditional density fZi|T=τ (z) is 0 for z /∈
[−τ, τ ].

Lemma 4.6. Let r be an arbitrary distance with 0 ≤
r ≤

√
2. For a sufficiently large constant κ and for

i ∈ {1, 2}, the conditional density f∆|Ri=r(δ) of ∆ for
δ ≥ 0 under the condition d(O, Qi) = r can be bounded
by

f∆|Ri=r(δ) ≤
κ√
r
·
(

ln

(

1

δ

)

+ 1

)

.

Lemma 4.7. Let τ be an arbitrary distance with 0 ≤
τ ≤

√
2. For a sufficiently large constant κ, the

conditional density f∆|T=τ (δ) of ∆ for δ ≥ 0 under the
condition T = τ can be bounded by

f∆|T=τ (δ) ≤ κ

τ
·
(

ln

(

1

δ

)

+ 1

)

.

4.3 Simplified Random Experiments

In the previous section we did not analyze the random
experiment that really takes place. Instead of choosing
the points according to the given density functions, we
simplified their distributions by placing point O in the
origin and by giving the other points P , Q1, and Q2

uniform distributions centered around the origin. In our
input model, however, each of these points is described
by a density function over the unit square. We consider
the probability of the event ∆ ∈ [0, ε] in both the
original input model as well as in the simplified random
experiment. In the following, we denote this event by E .
We claim that the simplified random experiment that
we analyze is only slightly dominated by the original
random experiment, in the sense that the probability
of the event E in the simplified random experiment is
smaller by at most some factor depending on φ.

In order to compare the probabilities in the original
and in the simplified random experiment, consider the
original experiment and assume that the point O has
position (x, y) ∈ [0, 1]2. Then one can identify a region
R(x,y) ⊆ R

6 with the property that the event E occurs if
and only if the random vector (P, Q1, Q2) lies in R(x,y).
No matter of how the position (x, y) of O is chosen, this
region always has the same shape, only its position is
shifted. Let V = sup(x,y)∈[0,1]2 vol(R(x,y)∩[0, 1]6). Then

the probability of E can be bounded from above by φ3 ·V
in the original random experiment. One can easily see
that

|R(x,y) ∩ [0, 1]6| ≤ |R(0,0) ∩ [−1, 1]6| .

Hence for V ′ = vol(R(0,0) ∩ [−1, 1]6) we have V ≤ V ′.
Observe that the probability of E in the simplified
random experiment can be bounded from below by
(1/(2π))3 · V ′ since the circle centered around the origin
with radius

√
2 contains the square [−1, 1]2 completely.

Hence, the probability of E in the simplified random
experiment is smaller by at most a factor of (2πφ)3

compared to the original random experiment.
Pairs of Type 1. Since our analysis of pairs of

linked 2-changes is based on the analysis of a single 2-
change that we presented in the previous section, we also
have to consider simplified random experiments when
analyzing pairs of 2-changes. For a fixed pair of type
1, we assume that point v3 is chosen to be the origin
and the other points v1, v2, v4, v5, and v6 are chosen
uniformly from a circle with radius

√
2 centered at v3.

Let E denote the event that both the improvement ∆1

of the first step and the improvement ∆2 of the second
step lie in the interval [0, ε], for some given ε. With
the same arguments as above, one can see that the
probability of E in the simplified random experiment
is smaller compared to the original experiment by at
most a factor of (2πφ)5.

Pairs of Type 2. For a fixed pair of type 2, we
consider the simplified random experiment in which v2

is placed in the origin and the other points v1, v3, v4,
and v5 are chosen uniformly from a circle with radius√

2 centered at v2. In this case the probability in the
simplified random experiment is smaller by at most a
factor of (2πφ)4.

4.4 Analysis of Pairs of Linked 2-Changes

Finally, we can prove Lemmas 4.3 and 4.4.

Proof of Lemma 4.3. We consider the simplified ran-
dom experiment in which v3 is chosen to be the origin
and the other points are drawn uniformly at random
from a circle with radius

√
2 centered at v3. If the posi-

tion of the point v1 is fixed, then the events ∆1 ∈ [0, ε]
and ∆2 ∈ [0, ε] are independent as only the vertices v1

and v3 appear in both the first and the second step. In
fact, because the densities of the points v2, v4, v5, and
v6 are rotationally symmetric, the concrete position of
v1 is not important in our simplified random experiment
anymore, but only the distance R between v1 and v3 is
of interest.

For i ∈ {1, 2}, we determine the conditional proba-
bility of the event ∆i ∈ [0, ε] under the condition that
the distance d(v1, v3) is fixed with the help of Lemma 4.6
and obtain, for a sufficiently large constant κ,

Pr [∆i ∈ [0, ε] | d(v1, v3) = r]

=

∫ ε

0

f∆i|d(v1,v3)=r(δ) dδ ≤ κ · ε√
r

·
(

ln

(

1

ε

)

+ 1

)

.



Since for fixed distance d(v1, v3) the random variables
∆1 and ∆2 are independent, we obtain

Pr [∆1, ∆2 ∈ [0, ε] | d(v1, v3) = r]

≤ κ2

r
· ε2 ·

(

ln

(

1

ε

)

+ 1

)2

≤ κ′

r
· ε2 ·

(

ln2

(

1

ε

)

+ 1

)

(4.1)

for a sufficiently large constant κ′. For r ∈ [0,
√

2],
the density fd(v1,v3) of the random variable d(v1, v3)
in the simplified random experiment is fd(v1,v3)(r) =
r. Combining this observation with the bound given
in (4.1) yields

Pr [∆1, ∆2 ∈ [0, ε]]

=

∫

√
2

0

r ·Pr [∆1, ∆2 ∈ [0, ε] | d(v1, v3) = r] dr

≤
√

2κ′ · ε2 ·
(

ln2

(

1

ε

)

+ 1

)

.

There are O(n6) different pairs of type 1, hence a union
bound over all of them concludes the proof of the lemma
when taking into account the factor (2πφ)5 that results
from considering the simplified random experiment. �

The proof of Lemma 4.4 uses similar arguments.

4.5 The Expected Number of 2-Changes

Based on Lemmas 4.2, 4.3, and 4.4, we are now able to
prove part b) of Theorem 1.2.

Proof of Theorem 1.2 b). Let T denote the random
variable that describes the length of the longest path
in the state graph. If T ≥ t, then there must exist a se-
quence S1, . . . , St of t consecutive 2-changes in the state
graph. We start by identifying a set of linked pairs of
type 1 and 2 in this sequence. Due to Lemma 4.2, we
know that we can find at least t/6− 5n(n− 1)/48 such

pairs. For i ∈ {1, 2}, let ∆
(i)
min denote the smallest im-

provement made by any pair of improving 2-Opt steps
of type i. For t > n2, we have t/6−5n(n−1)/48 > t/16
and hence due to Lemmas 4.3 and 4.4,

Pr [T ≥ t]

≤ Pr

[

∆
(1)
min ≤ 16

√
2n

t

]

+ Pr

[

∆
(2)
min ≤ 16

√
2n

t

]

= O

(

min

{

n8(log2(t/n) + 1)

t2
φ5, 1

})

+O

(

min

{

n13/2(log(t/n) + 1)

t3/2
φ4, 1

})

.

This implies the following bound on the expected length
of the longest path in the state graph

E [T ] = n2 +
n!

∑

t=1

O

(

min

{

n8 log2 t

t2
φ5, 1

})

+O

(

min

{

n13/2 log t

t3/2
φ4, 1

})

.

Splitting the sums at t = n4 · log(nφ) · φ5/2 and t =

n13/3 · log2/3(nφ) · φ8/3, respectively, yields

E [T ] = O
(

n4 · log(nφ) · φ5/2
)

+ O
(

n13/3 · log2/3(nφ) · φ8/3
)

.

This concludes the proof of part b) of the theorem. �

It is well-known that for an arbitrary set of n points
in the unit square and for an arbitrary metric on R

2 the
optimal tour visiting all n points has length O(

√
n) (see,

e. g., [CKT99]). Furthermore, every insertion heuristic
finds an O(log n)-approximation [RSI77]. Hence, if
one starts with a solution calculated by an insertion
heuristic, the initial tour has length O(

√
n·log n). Using

this observation yields part b) of Theorem 1.3.

5 Smoothed Analysis

Smoothed Analysis was introduced by Spielman and
Teng as a hybrid of worst case and average case analy-
sis [ST04]. The semi-random input model in a smoothed
analysis is designed to capture the behavior of algo-
rithms on typical inputs better than a worst case or
an average case analysis alone as it allows an adver-
sary to specify a worst case input which is randomly
perturbed afterwards. In Spielman and Teng’s analy-
sis of the Simplex algorithm the adversary specifies an
arbitrary linear program which is perturbed by adding
independent Gaussian random variables to each number
in the linear program.

We suggest the following perturbation model for
Euclidean instances of the TSP. First an adversary
chooses a set of n points in the unit square. Then the
coordinates of these points are perturbed by adding in-
dependent random variables to them. The random vari-
ables we add are basically Gaussian random variables
with standard deviation σ ≤ 1. If, however, one of the
added random variables has an absolute value larger
than some given α ≥ 1, then we draw another Gaussian
random variable with standard deviation σ until the ab-
solute value is bounded by α. Let X denote one such
random variable and let Y denote a Gaussian random
variable with standard deviation σ and density function



fY . Then the density fX of X can be bounded by

fX(x) ≤
supy∈R

fY (y)

Pr [|Y | ≤ α]

≤ 1/(σ
√

2π)

1 − σ/
√

2π · exp(−α2/(2σ2))
.

Observe that after the perturbation all points lie
in the square [−α, 1 + α]2. Hence, in order to apply
Theorems 1.2, 1.3, and 1.4, we first have to scale and
shift the instance such that every point lies in the unit
square. This can increase the density fX of X by at
most a factor of (2α + 1)2. Thus with

φ =
(2α + 1)2

(σ
√

2π − σ2 exp(−α2/(2σ2)))2
(5.2)

= O

(

α2

σ2

)

.

we can apply the aforementioned theorems.
Finally, let us remark that if the standard deviation

is small enough, then it is not necessary to redraw the
Gaussian random variables until they lie in the interval
[−α, α]. For σ ≤ min{α/

√
4n lnn, 1}, the probability

that one of the Gaussian random variables has an
absolute value larger than α ≥ 1 can be bounded by

2n

σ
√

2π
·
∫ ∞

x=α

exp
(

−x2/(2σ2)
)

dx

≤ 2nσ√
2π

· exp
(

−α2/(2σ2)
)

≤ n−2n .

In this case, even if one does not redraw the random
variables outside [−α, α], the Theorems 1.2, 1.3, and 1.4
can be applied with the corresponding φ given in (5.2).
To see this, one must only observe that the worst case
bound for the number of 2-changes is (n!) and the
worst case approximation ratio is O(log n) [CKT99].
Multiplying these values with the failure probability of
n−2n constitutes less than 1 to the expected values.
In particular, this implies that the expected length
of the longest path in the state graph is bounded by
O(poly(n, 1/σ)).

6 Open Questions

We constructed Euclidean and Manhattan instances
which possess exponentially long sequences of improv-
ing 2-changes. We leave open the question whether in-
stances exist whose state graphs contain nodes from
which every path leading to a sink has exponential
length, that is, instances on which every 2-Opt variant
has to make an exponential number of steps. Another
open problem is to further narrow the gap between the

upper bound on the expected number of 2-changes on
uniform and φ-perturbed instances and the experimen-
tally observed number of steps.

As we have already mentioned, one easily obtains a
2-approximation for metric TSP instances by using an
appropriate insertion heuristic and, hence, our results
about the expected approximation factor and the results
in [CKT99] are merely of theoretical interest. In
experimental studies it has been observed that 2-Opt
usually yields an approximation which lies within a few
percentage points of the global optimum on Euclidean
instances [JM97]. Hence, an interesting open question
is to show that the expected approximation factor of 2-
Opt on uniform Euclidean instances is a small constant.
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