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Abstract

2-Opt is probably the most basic local search heuristic for the TSP. This heuristic
achieves amazingly good results on “real world” Euclidean instances both with
respect to running time and approximation ratio. There are numerous experimental
studies on the performance of 2-Opt. However, the theoretical knowledge about this
heuristic is still very limited. Not even its worst case running time on Euclidean
instances was known so far. We clarify this issue by presenting, for every p ∈ N, a
family of Lp instances on which 2-Opt can take an exponential number of steps.

Previous probabilistic analyses were restricted to instances in which n points
are placed uniformly at random in the unit square [0, 1]2, where it was shown that
the expected number of steps is bounded by Õ(n10) for Euclidean instances. We
consider a more advanced model of probabilistic instances in which the points can
be placed according to general distributions on [0, 1]d, for an arbitrary d ≥ 2.
In particular, we allow different distributions for different points. We study the
expected number of local improvements in terms of the number n of points and the
maximal density φ of the probability distributions. We show an upper bound on the
expected length of any 2-Opt improvement path of Õ(n4+1/3 ·φ8/3). When starting
with an initial tour computed by an insertion heuristic, the upper bound on the
expected number of steps improves even to Õ(n4+1/3−1/d ·φ8/3). If the distances are
measured according to the Manhattan metric, then the expected number of steps
is bounded by Õ(n4−1/d · φ). In addition, we prove an upper bound of O( d

√
φ) on

the expected approximation factor w. r. t. all Lp metrics.
Let us remark that our probabilistic analysis covers as special cases the uniform

input model with φ = 1 and a smoothed analysis with Gaussian perturbations
of standard deviation σ with φ ∼ 1/σd. Besides random metric instances, we also
consider an alternative random input model in which an adversary specifies a graph
and distributions for the edge lengths in this graph. In this model, we achieve even
better results on the expected number of local improvements of 2-Opt.

∗This work was supported in part by the EU within the 6th Framework Programme under contract
001907 (DELIS) and by DFG grants VO 889/2 and WE 2842/1. An extended abstract appeared in
Proc. of the 18th ACM-SIAM Symposium on Discrete Algorithms (SODA).
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1 Introduction

In the traveling salesperson problem (TSP), we are given a set of vertices and for each
pair of distinct vertices a distance. The goal is to find a tour of minimum length that
visits every vertex exactly once and returns to the initial vertex at the end. Despite many
theoretical analyses and experimental evaluations of the TSP, there is still a considerable
gap between the theoretical results and the experimental observations. One important
special case is the Euclidean TSP in which the vertices are points in Rd, for some d ∈ N,
and the distances are measured according to the Euclidean metric. This special case
is known to be NP-hard in the strong sense [Pap77], but it admits a polynomial time
approximation scheme (PTAS), shown independently in 1996 by Arora [Aro98] and
Mitchell [Mit99]. These approximation schemes are based on dynamic programming.
However, the most successful algorithms on practical instances rely on the principle of
local search and very little is known about their complexity.

The 2-Opt algorithm is probably the most basic local search heuristic for the TSP.
2-Opt starts with an arbitrary initial tour and incrementally improves this tour by
making successive improvements that exchange two of the edges in the tour with two
other edges. More precisely, in each improving step the 2-Opt algorithm selects two
edges {u1, u2} and {v1, v2} from the tour such that u1, u2, v1, v2 are distinct and appear
in this order in the tour, and it replaces these edges by the edges {u1, v1} and {u2, v2},
provided that this change decreases the length of the tour. The algorithm terminates
in a local optimum in which no further improving step is possible. We use the term
2-change to denote a local improvement made by 2-Opt. This simple heuristic performs
amazingly well on “real-life” Euclidean instances like, e. g., the ones in the well-known
TSPLIB [Rei91]. Usually the 2-Opt heuristic needs a clearly subquadratic number of
improving steps until it reaches a local optimum and the computed solution is within a
few percentage points of the global optimum [JM97].

There are numerous experimental studies on the performance of 2-Opt. However,
the theoretical knowledge about this heuristic is still very limited. Let us first discuss
the number of local improvement steps made by 2-Opt before it finds a locally optimal
solution. When talking about the number of local improvements, it is convenient to
consider the state graph. The vertices in this graph correspond to the possible tours
and an arc from a vertex v to a vertex u is contained if u is obtained from v by performing
an improving 2-Opt step. On the positive side, van Leeuwen and Schoone consider a
2-Opt variant for the Euclidean plane in which only steps are allowed that remove a
crossing from the tour. Such steps can introduce new crossings, but van Leeuwen and
Schoone [vLS81] show that after O(n3) steps, 2-Opt has found a tour without any
crossing. On the negative side, Lueker [Lue75] constructs TSP instances whose state
graphs contain exponentially long paths. Hence, 2-Opt can take an exponential number
of steps before it finds a locally optimal solution. This result is generalized to k-Opt,
for arbitrary k ≥ 2, by Chandra, Karloff, and Tovey [CKT99]. These negative results,
however, use arbitrary graphs whose edge lengths do not satisfy the triangle inequality.
Hence, they leave open the question about the worst case complexity of 2-Opt on metric
TSP instances. In particular, Chandra, Karloff, and Tovey ask whether it is possible to
construct Euclidean TSP instances on which 2-Opt can take an exponential number of
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steps. We resolve this question by constructing such instances in the Euclidean plane. In
chip design applications, often TSP instances arise in which the distances are measured
according to the Manhattan metric. Also for this metric and for every other Lp metric,
we construct instances with exponentially long paths in the 2-Opt state graph.

Theorem 1.1. For every p ∈ N ∪ {∞} and n ∈ N, there is a two-dimensional TSP
instance with 16n vertices in which the distances are measured according to the Lp metric
and whose state graph contains a path of length 2n+4 − 22.

For Euclidean instances in which n points are placed uniformly at random in the
unit square, Kern [Ker89] shows that the length of the longest path in the state graph
is bounded by O(n16) with probability 1− c/n for some constant c. Chandra, Karloff,
and Tovey [CKT99] improve this result by bounding the expected length of the longest
path in the state graph by O(n10 log n). That is, independent of the initial tour and
the choice of the local improvements, the expected number of 2-changes is bounded by
O(n10 log n). For instances in which n points are placed uniformly at random in the unit
square and the distances are measured according to the Manhattan metric, Chandra,
Karloff, and Tovey show that the expected length of the longest path in the state graph
is bounded by O(n6 log n).

We consider a more general probabilistic input model and improve the previously
known bounds. The probabilistic model underlying our analysis allows that different
vertices are placed according to different continuous probability distributions in the unit
hypercube [0, 1]d, for some constant dimension d ≥ 2. The distribution of a vertex vi is
defined by a density function fi : [0, 1]d → [0, φ] for some given φ ≥ 1. Our upper bounds
depend on the number n of vertices and the upper bound φ on the density. We denote
instances created by this input model as φ-perturbed Euclidean or Manhattan instances,
depending on the underlying metric. The parameter φ can be seen as a parameter
specifying how close the analysis is to a worst case analysis since the larger φ is, the
better can worst case instances be approximated by the distributions. For φ = 1 and
d = 2, every point has a uniform distribution over the unit square, and hence the input
model equals the uniform model analyzed before. Our results narrow the gap between
the subquadratic number of improving steps observed in experiments [JM97] and the
upper bounds from the probabilistic analysis. With slight modifications, this model also
covers a smoothed analysis, in which first an adversary specifies the positions of the
points and after that each position is slightly perturbed by adding a Gaussian random
variable with small standard deviation σ. In this case, one has to set φ = 1/(

√
2πσ)d.

We also consider a model in which an arbitrary graph G = (V,E) is given and for
each edge e ∈ E, a probability distribution according to which the edge length d(e)
is chosen independently of the other edge lengths. Again, we restrict the choice of
distributions to distributions that can be represented by density functions fe : [0, 1] →
[0, φ] with maximal density at most φ for a given φ ≥ 1. We denote inputs created by this
input model as φ-perturbed graphs. Observe that in this input model only the distances
are perturbed whereas the graph structure is not changed by the randomization. This
can be useful if one wants to explicitely prohibit certain edges. However, if the graph
G is not complete, one has to initialize 2-Opt with a Hamiltonian cycle to start with.

We prove the following theorem about the expected length of the longest path in
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the 2-Opt state graph for the three probabilistic input models discussed above. It is
assumed that the dimension d ≥ 2 is an arbitrary constant.

Theorem 1.2. The expected length of the longest path in the 2-Opt state graph

a) is O(n4 · φ) for φ-perturbed Manhattan instances with n points.

b) is O(n4+1/3 · log(nφ) · φ8/3) for φ-perturbed Euclidean instances with n points.

c) is O(m · n1+o(1) · φ) for φ-perturbed graphs with n vertices and m edges.

Usually, 2-Opt is initialized with a tour computed by some tour construction heuris-
tic. One particular class are insertion heuristics, which insert the vertices one after
another into the tour. We show that also from a theoretical point of view, using such
an insertion heuristic yields a significant improvement for metric TSP instances be-
cause the initial tour 2-Opt starts with is much shorter than the longest possible tour.
In the following theorem, we summarize our results on the expected number of local
improvements.

Theorem 1.3. The expected number of steps performed by 2-Opt

a) is O(n4−1/d · log n · φ) on φ-perturbed Manhattan instances with n points when
2-Opt is initialized with a tour obtained by an arbitrary insertion heuristic.

b) is O(n4+1/3−1/d · log2(nφ) ·φ8/3) on φ-perturbed Euclidean instances with n points
when 2-Opt is initialized with a tour obtained by an arbitrary insertion heuristic.

In fact, our analysis shows not only that the expected number of local improvements
is polynomially bounded but it also shows that the second moment and hence the vari-
ance is bounded polynomially for φ-perturbed Manhattan and graph instances. For the
Euclidean metric, we cannot bound the variance but the 3/2-th moment polynomially.

Similar to the running time, the good approximation ratios obtained by 2-Opt on
practical instances cannot be explained by a worst-case analysis. In fact, there are quite
negative results on the worst-case behavior of 2-Opt. For example, Chandra, Karloff,
and Tovey [CKT99] show that there are Euclidean instances in the plane for which
2-Opt has local optima whose costs are Ω

(
log n

log log n

)
times larger than the optimal costs.

However, the same authors also show that the expected approximation ratio of the worst
local optimum for instances with n points drawn uniformly at random from the unit
square is bounded from above by a constant. We generalize their result to our input
model in which different points can have different distributions with bounded density φ
and to all Lp metrics.

Theorem 1.4. Let p ∈ N ∪ {∞}. For φ-perturbed Lp instances, the expected approxi-
mation ratio of the worst tour that is locally optimal for 2-Opt is bounded by O( d

√
φ).

The remainder of the paper is organized as follows. We start by stating some ba-
sic definitions and notations in Section 2. In Section 3, we present the lower bounds.
In Section 4, we analyze the expected number of local improvements and prove Theo-
rems 1.2 and 1.3. Finally, in Sections 5 and 6, we prove Theorem 1.4 about the expected
approximation factor and we discuss the relation between our analysis and a smoothed
analysis.
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2 Preliminaries

An instance of the TSP consists of a set V = {v1, . . . , vn} of vertices (depending on
the context, synonymously referred to as points) and a symmetric distance function
d : V × V → R≥0 that associates with each pair {vi, vj} of distinct vertices a distance
d(vi, vj) = d(vj , vi). The goal is to find a Hamiltonian cycle of minimum length. We
also use the term tour to denote a Hamiltonian cycle. For a natural number n ∈ N, we
denote the set {1, . . . , n} by [n].

A pair (V, d) of a nonempty set V and a function d : V ×V → R≥0 is called a metric
space if for all x, y, z ∈ V the following properties are satisfied:

(a) d(x, y) = 0 if and only if x = y (reflexivity),

(b) d(x, y) = d(y, x) (symmetry),

(c) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

If (V, d) is a metric space, then d is called a metric on V . A TSP instance with vertices
V and distance function d is called metric TSP instance if (V, d) is a metric space.

A well-known class of metrics on Rd is the class of Lp metrics. For p ∈ N, the
distance dp(x, y) of two points x ∈ Rd and y ∈ Rd with respect to the Lp metric
is given by dp(x, y) = p

√
|x1 − y1|p + · · ·+ |xd − yd|p. The L1 metric is often called

Manhattan metric, and the L2 metric is well-known as Euclidean metric. For p → ∞,
the Lp metric converges to the L∞ metric defined by the distance function d∞(x, y) =
max{|x1 − y1|, . . . , |xd − yd|}. A TSP instance (V, d) with V ⊆ Rd in which d equals
dp restricted to V is called an Lp instance. We also use the terms Manhattan instance
and Euclidean instance to denote L1 and L2 instances, respectively. Furthermore, if p
is clear from context, we write d instead of dp.

A tour construction heuristic for the TSP incrementally constructs a tour and stops
as soon as a valid tour is created. Usually, a tour constructed by such a heuristic is
used as the initial solution 2-Opt starts with. A well-known class of tour construction
heuristics for metric TSP instances are so-called insertion heuristics. These heuristics
insert the vertices into the tour one after another, and every vertex is inserted between
two consecutive vertices in the current tour where it fits best. To make this more precise,
let Ti denote a subtour on a subset Si of i vertices, and suppose v /∈ Si is the next vertex
to be inserted. If (x, y) denotes an edge in Ti that minimizes d(x, v) + d(v, y)− d(x, y),
then the new tour Ti+1 is obtained from Ti by deleting the edge (x, y) and adding the
edges (x, v) and (v, y). Depending on the order in which the vertices are inserted into
the tour, one distinguishes between several different insertion heuristics. Rosenkrantz
et al. [RSI77] show an upper bound of dlog ne + 1 on the approximation factor of any
insertion heuristic on metric TSP instances. Furthermore, they show that two variants
which they call nearest insertion and cheapest insertion achieve an approximation ratio
of 2 for metric TSP instances. The nearest insertion heuristic always inserts the vertex
with the smallest distance to the current tour, and the cheapest insertion heuristic
always inserts the vertex whose insertion leads to the cheapest tour Ti+1.
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3 Exponential Lower Bounds

In this section, we answer Chandra, Karloff, and Tovey’s question [CKT99] whether it
is possible to construct TSP instances in the Euclidean plane on which 2-Opt can take
an exponential number of steps. We present, for every p ∈ N ∪ {∞}, a family of two-
dimensional Lp instances with exponentially long sequences of improving 2-changes. In
Section 3.1, we present our construction for the Euclidean plane, and in Section 3.2 we
extend this construction to general Lp metrics.

3.1 Exponential Lower Bound for the Euclidean Plane

In Lueker’s construction [Lue75] many of the 2-changes remove two edges that are far
apart in the current tour in the sense that many vertices are visited between them, no
matter of how the direction of the tour is chosen. Our construction differs significantly
from the previous one as the 2-changes in our construction affect the tour only locally.
The instances we construct are composed of gadgets of constant size. Each of these gad-
gets has a zero state and a one state, and there exists a sequence of improving 2-changes
starting in the zero state and eventually leading to the one state. Let G0, . . . , Gn−1 de-
note these gadgets. If gadget Gi with i > 0 has reached state one, then it can be reset to
its zero state by gadget Gi−1. The crucial property of our construction is that whenever
a gadget Gi−1 changes its state from zero to one, it resets gadget Gi twice. Hence, if
in the initial tour, gadget G0 is in its zero state and every other gadget is in state one,
then for every i with 0 ≤ i ≤ n − 1, gadget Gi performs 2i state changes from zero to
one as, for i > 0, gadget Gi is reset 2i times.

Every gadget is composed of 2 subgadgets, which we refer to as blocks. Each of these
blocks consists of 4 vertices that are consecutively visited in the tour. For i ∈ {0, . . . , n−
1} and j ∈ [2], let Bi

1 and Bi
2 denote the blocks of gadget Gi and let Ai

j , Bi
j , Ci

j , and Di
j

denote the four points Bi
j consist of. If one ignores certain intermediate configurations

that arise when one gadget resets another one, our construction ensures the following
properties: The points Ai

j , Bi
j , Ci

j , and Di
j are always consecutive in the tour, the

edge between Bi
j and Ci

j is contained in every tour, and Bi
j and Ci

j are always the
inner points of the block. That is, if one excludes the intermediate configurations, only
the configurations Ai

jB
i
jC

i
jD

i
j and Ai

jC
i
jB

i
jD

i
j occur during the sequence of 2-changes.

Observe that the change from one of these configurations to the other corresponds to a
single 2-change in which the edges Ai

jB
i
j and Ci

jD
i
j are replaced by the edges Ai

jC
i
j and

Bi
jD

i
j , or vice versa. In the following, we assume that the sum d(Ai

j , B
i
j) + d(Ci

j , D
i
j) is

strictly smaller than the sum d(Ai
j , C

i
j) + d(Bi

j , D
i
j), and we refer to the configuration

Ai
jB

i
jC

i
jD

i
j as the short state of the block and to the configuration Ai

jC
i
jB

i
jD

i
j as the

long state. Another property of our construction is that neither the order in which
the blocks are visited nor the order of the gadgets is changed during the sequence of
2-changes. Again with the exception of the intermediate configurations, the order in
which the blocks are visited is B0

1B0
2B1

1B1
2 . . .Bn−1

1 Bn−1
2 (see Figure 3.1).

Due to the aforementioned properties, we can describe every non-intermediate tour
that occurs during the sequence of 2-changes completely by specifying for every block
if it is in its short state or in its long state. In the following, we denote the state of
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A0
1

B0
1

D0
1

C0
1

A0
2

B0
2

D0
2

C0
2

Am
1

Bm
1

Dm
1

Cm
1

Am
2

Bm
2

Dm
2

Cm
2

. . .

Bm
1 Bm

2B0
2B0

1

G0 Gm

Figure 3.1: In the illustration, we use m to denote n − 1. Every tour that occurs in
the sequence of 2-changes contains the thick edges. For each block, either both solid or
both dashed edges are contained. In the former case the block is in its short state; in
the latter case the block is in its long state.

a gadget Gi by a pair (x1, x2) with xj ∈ {S, L}, meaning that block Bi
j is in its short

state if and only if xj = S. Since every gadget consists of two blocks, there are four
possible states for each gadget. However, only three of them appear in the sequence
of 2-changes, namely (L,L), (S, L), and (S, S). We call state (L,L) the zero state and
state (S, S) the one state. In order to guarantee the existence of an exponentially long
sequence of 2-changes, the gadgets we construct possess the following property.

Property 3.1. If, for i ∈ {0, . . . , n − 2}, gadget Gi is in state (L,L) or (S, L) and
gadget Gi+1 is in state (S, S), then there exists a sequence of seven consecutive 2-changes
terminating with gadget Gi being in state (S, L) or (S, S), respectively, and gadget Gi+1

in state (L,L). In this sequence only edges of and between the gadgets Gi and Gi+1 are
involved.

If this property is satisfied and if in the initial tour gadget G0 is in its zero state
(L,L) and every other gadget is in its one state (S, S), then there exists an exponentially
long sequence of 2-changes in which gadget Gi changes 2i times from state zero to state
one, as the following lemma shows.

Lemma 3.2. If, for i ∈ {0, . . . , n − 2}, gadget Gi is in the zero state (L,L) and all
gadgets Gj with j > i are in the one state (S, S), then there exists a sequence of 2n+3−i−
14 consecutive 2-changes in which only edges of and between the gadgets Gj with j ≥ i
are involved and that terminates in a state in which all gadgets Gj with j ≥ i are in the
one state.

Proof. We prove the lemma by induction on i. If gadget Gn−1 is in state (L,L), then it
can change its state with two 2-changes to (S, S) without affecting the other gadgets.
Hence, the lemma is true for i = n−1. Now assume that the lemma is true for i+1 and
consider a state in which gadget Gi is in state (L,L) and all gadgets Gj with j > i are in
state (S, S). Due to Property 3.1, there exists a sequence of seven consecutive 2-changes
in which only edges of and between Gi and Gi+1 are involved terminating with Gi being
in state (S, L) and Gi+1 being in state (L,L). By the induction hypothesis there exists
a sequence of 2n+2−i − 14 2-changes after which all gadgets Gj with j > i are in state
(S, S). Then, due to Property 3.1, there exists a sequence of seven consecutive 2-changes
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in which only Gi changes its state from (S, L) to (S, S) while resetting gadget Gi+1 again
from (S, S) to (L,L). Hence, we can apply the induction hypothesis again, yielding that
after another 2n+2−i − 14 2-changes all gadgets Gj with j ≥ i are in state (S, S). This
concludes the proof as the number of 2-changes performed is 14 + 2(2n+2−i − 14) =
2n+3−i − 14.

In particular, this implies that, given Property 3.1, one can construct instances
consisting of 2n gadgets, i. e., 16n points, whose state graphs contain paths of length
22n+3 − 14 > 2n+4 − 22, as desired in Theorem 1.1.

3.1.1 Detailed description of the sequence of steps

Now we describe in detail how a sequence of 2-changes satisfying Property 3.1 can be
constructed. First, we assume that gadget Gi is in state (S, L) and that gadget Gi+1

is in state (S, S). Under this assumption, there are three consecutive blocks, namely
Bi

2, B
i+1
1 , and Bi+1

2 , such that the leftmost one is in its long state, and the other blocks
are in their short states. We need to find a sequence of 2-changes in which only edges
of and between these three blocks are involved and after which the first block is in its
short state and the other blocks are in their long states. Remember that when the edges
{u1, u2} and {v1, v2} are removed from the tour and the vertices appear in the order
u1, u2, v1, v2 in the current tour, then the edges {u1, v1} and {u2, v2} are added to the
tour and the subtour between u1 and v2 is visited in reverse order. If, e. g., the current
tour corresponds to the permutation (1, 2, 3, 4, 5, 6, 7) and the edges {1, 2} and {5, 6}
are removed, then the new tour is (1, 5, 4, 3, 2, 6, 7). The following sequence of 2-changes
has the desired properties. Brackets indicate the edges that are removed from the tour.

1)
[
Ai

2 Ci
2

]
Bi

2 Di
2 Ai+1

1 Bi+1
1 Ci+1

1 Di+1
1 Ai+1

2 Bi+1
2

[
Ci+1

2 Di+1
2

]
2) Ai

2 Ci+1
2

[
Bi+1

2 Ai+1
2

]
Di+1

1 Ci+1
1 Bi+1

1 Ai+1
1

[
Di

2 Bi
2

]
Ci

2 Di+1
2

3) Ai
2 Ci+1

2

[
Bi+1

2 Di
2

]
Ai+1

1 Bi+1
1

[
Ci+1

1 Di+1
1

]
Ai+1

2 Bi
2 Ci

2 Di+1
2

4) Ai
2 Ci+1

2 Bi+1
2 Ci+1

1

[
Bi+1

1 Ai+1
1

]
Di

2 Di+1
1 Ai+1

2 Bi
2

[
Ci

2 Di+1
2

]
5)

[
Ai

2 Ci+1
2

]
Bi+1

2 Ci+1
1 Bi+1

1 Ci
2

[
Bi

2 Ai+1
2

]
Di+1

1 Di
2 Ai+1

1 Di+1
2

6) Ai
2 Bi

2 Ci
2 Bi+1

1

[
Ci+1

1 Bi+1
2

]
Ci+1

2 Ai+1
2 Di+1

1 Di
2

[
Ai+1

1 Di+1
2

]
7) Ai

2 Bi
2

[
Ci

2 Bi+1
1

]
Ci+1

1 Ai+1
1

[
Di

2 Di+1
1

]
Ai+1

2 Ci+1
2 Bi+1

2 Di+1
2

Ai
2 Bi

2 Ci
2 Di

2 Ai+1
1 Ci+1

1 Bi+1
1 Di+1

1 Ai+1
2 Ci+1

2 Bi+1
2 Di+1

2

If gadget Gi is in state (L,L) instead of state (S, L), a sequence of steps that satisfies
Property 3.1 can be constructed analogously. Additionally, one has to take into account
that the three involved blocks Bi

1, B
i+1
1 , and Bi+1

2 are not consecutive in the tour but
that block Bi

2 lies between them. However, one can easily verify that this block is not
affected by the sequence of 2-changes, as after the seven 2-changes have been performed,
the block is in the same state and at the same position as before.

3.1.2 Embedding the construction into the Euclidean plane

The only missing step in the proof of Theorem 1.1 for the Euclidean plane is to find
points such that all of the 2-changes that we described in the previous section are
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bc bc

bc

bc

bc

bc

bc

bc

A
n−1

j B
n−1

j

C
n−1

j

D
n−1

j

A
n−2

j

B
n−2

j

C
n−2

j

D
n−2

j

Figure 3.2: This illustration shows the points of the gadgets Gn−1 and Gn−2. One can
see that Gn−2 is a scaled, rotated, and translated copy of Gn−1.

improving. We specify the positions of the points of gadget Gn−1 and give a rule how
the points of gadget Gi can be derived when all points of gadget Gi+1 have already
been placed. In our construction it happens that different points have exactly the same
coordinates. This is only for ease of notation; if one wants to obtain a TSP instance
in which distinct points have distinct coordinates, one can slightly move these points
without affecting the property that all 2-changes are improving. For j ∈ [2], we choose
An−1

j = (0, 0), Bn−1
j = (1, 0), Cn−1

j = (−0.1, 1.4), and Dn−1
j = (−1.1, 4.8). Then

An−1
j Bn−1

j Cn−1
j Dn−1

j is the short state because

d(An−1
j , Cn−1

j ) + d(Bn−1
j , Dn−1

j )− (d(An−1
j , Bn−1

j ) + d(Cn−1
j , Dn−1

j )) > 2.09 .

We place the points of gadget Gi as follows (see Figure 3.2):

1. Start with the coordinates of the points of gadget Gi+1.

2. Rotate these points around the origin by 3π/2.

3. Scale each coordinate with a factor of 3.

4. Translate the points by the vector (−1.2, 0.1).

For j ∈ [2], this yields An−2
j = (−1.2, 0.1), Bn−2

j = (−1.2,−2.9), Cn−2
j = (3, 0.4), and

Dn−2
j = (13.2, 3.4).

From this construction it follows that each gadget is a scaled, rotated, and translated
copy of gadget Gn−1. If one has a set of points in the Euclidean plane that admit certain
improving 2-changes, then these 2-changes are still improving if one scales, rotates, and
translates all points in the same manner. Hence, it suffices to show that the sequences
in which gadget Gn−2 resets gadget Gn−1 from (S, S) to (L,L) are improving. There
are two such sequences; in the first one, gadget Gn−2 changes its state from (L,L) to
(S, L), in the second one, gadget Gn−2 changes its state from (S, L) to (S, S). Since the
coordinates of the points in both blocks of gadget Gn−2 are the same, the inequalities
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for both sequences are also identical. The improvements made by the steps in both
sequences are bounded from below by 0.03, 0.91, 0.06, 0.05, 0.43, 0.06, and 0.53. This
concludes the proof of Theorem 1.1 for the Euclidean plane as it shows that all 2-changes
in Lemma 3.2 are improving.

3.2 Exponential Lower Bound for Lp Metrics

We were not able to find a set of points in the plane such that all 2-changes in Lemma 3.2
are improving with respect to the Manhattan metric. Therefore, we modify the construc-
tion of the gadgets and the sequence of 2-changes. Our construction for the Manhattan
metric is based on the construction for the Euclidean plane, but it does not possess the
property that every gadget resets its neighboring gadget twice. This property is only
true for half of the gadgets. To be more precise, we construct two different types of
gadgets which we call reset gadgets and propagation gadgets. Reset gadgets perform
the same sequence of 2-changes as the gadgets that we constructed for the Euclidean
plane. Propagation gadgets also have the same structure as the gadgets for the Eu-
clidean plane, but when such a gadget changes its state from (L,L) to (S, S), it resets
its neighboring gadget only once. Due to this relaxed requirement it is possible to find
points in the Manhattan plane whose distances satisfy all necessary inequalities. Instead
of n gadgets, our constructions consists of 2n gadgets, namely n propagation gadgets
GP

0 , . . . , GP
n−1 and n reset gadgets GR

0 , . . . , GR
n−1. The order in which these gadgets

appear in the tour is GP
0 GR

0 GP
1 GR

1 . . . GP
n−1G

R
n−1.

As before, every gadget consists of two blocks and the order in which the blocks
and the gadgets are visited does not change during the sequence of 2-changes. Consider
a reset gadget GR

i and its neighboring propagation gadget GP
i+1. Then Property 3.1

is still satisfied. That is, if GR
i is in state (L,L) or (S, L) and GP

i+1 is in state (S, S),
then there exists a sequence of seven consecutive 2-changes resetting gadget GP

i+1 to
state (L,L) and leaving gadget GR

i in state (S, L) or (S, S), respectively. The situation
is different for a propagation gadget GP

i and its neighboring reset gadget GR
i . In this

case, if GP
i is in state (L,L), it first changes its state with a single 2-change to (S, L).

After that, gadget GP
i changes its state to (S, S) while resetting gadget GR

i from state
(S, S) to state (L,L) by a sequence of seven consecutive 2-changes. In both cases, the
sequences of 2-changes in which one block changes from its long to its short state while
resetting two blocks of the neighboring gadget from their short to their long states are
chosen analogously to the ones for the Euclidean plane described in Section 3.1.1.

In the initial tour, only gadget GP
0 is in state (L,L) and every other gadget is in state

(S, S). With similar arguments as for the Euclidean plane, we can show that gadget
GR

i is reset from its one state (S, S) to its zero state (L,L) 2i times and that the total
number of steps is 2n+4 − 22.

3.2.1 Embedding the construction into the Manhattan plane

Similar to the construction in the Euclidean plane, the points in both blocks of a re-
set gadget GR

i have the same coordinates. Also in this case one can slightly move
all the points without affecting the inequalities if one wants distinct coordinates for
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distinct points. Again, we choose points for the gadgets GP
n−1 and GR

n−1 and de-
scribe how the points of the gadgets GP

i and GR
i can be chosen when the points of

the gadgets GP
i+1 and GR

i+1 are already chosen. For j ∈ [2], we choose An−1
R,j = (0, 1),

Bn−1
R,j = (0, 0), Cn−1

R,j = (−0.7, 0.1), and Dn−1
R,j = (−1.2, 0.08). Furthermore, we choose

An−1
P,1 = (−2, 1.8), Bn−1

P,1 = (−3.3, 2.8), Cn−1
P,1 = (−1.3, 1.4), Dn−1

P,1 = (1.5, 0.9), An−1
P,2 =

(−0.7, 1.6), Bn−1
P,2 = (−1.5, 1.2), Cn−1

P,2 = (1.9,−1.5), and Dn−1
P,2 = (−0.8,−1.1).

Before we describe how the points of the other gadgets are chosen, we first show
that the 2-changes within and between the gadgets GP

n−1 and GR
n−1 are improving. For

j ∈ [2], An−1
R,j Bn−1

R,j Cn−1
R,j Dn−1

R,j is the short state because

d(An−1
R,j , Cn−1

R,j ) + d(Bn−1
R,j , Dn−1

R,j )− (d(An−1
R,j , Bn−1

R,j ) + d(Cn−1
R,j , Dn−1

R,j )) = 1.36 .

Also the 2-change in which GP
n−1 changes its state from (L,L) to (S, L) is improving

because

d(An−1
P,1 , Cn−1

P,1 ) + d(Bn−1
P,1 , Dn−1

P,1 )− (d(An−1
P,1 , Bn−1

P,1 ) + d(Cn−1
P,1 , Dn−1

P,1 )) = 2.2 .

The improvements made by the 2-changes in the sequence in which GP
n−1 changes its

state from (S, L) to (S, S) while resetting GR
n−1 are 0.04, 0.4, 0.04, 0.16, 0.4, 0.04, and

0.6.
Again, our construction possesses the property that each pair of gadgets GP

i and GR
i

is a scaled and translated version of the pair GP
n−1 and GR

n−1. Since we have relaxed the
requirements for the gadgets, we do not even need rotations here. We place the points
of GP

i and GR
i as follows:

1. Start with the coordinates specified for the points of gadgets GP
i+1 and GR

i+1.

2. Scale each coordinate with a factor of 7.7.

3. Translate the points by the vector (1.93, 0.3).

For j ∈ [2], this yields An−2
R,j = (1.93, 8), Bn−2

R,j = (1.93, 0.3), Cn−2
R,j = (−3.46, 1.07), and

Dn−2
R,j = (−7.31, 0.916). Similar to our construction for the Euclidean plane, it suffices

to show that the sequences in which gadget GR
n−2 resets gadget GP

n−1 from (S, S) to
(L,L) are improving. As the coordinates of the points in the two blocks of gadget GR

n−2

are the same, the inequalities for both sequences are also identical. The improvements
made by the steps in both sequences are 1.06, 1.032, 0.168, 1.14, 0.06, 0.4, and 0.012.
This concludes the proof of Theorem 1.1 for the Manhattan metric as it shows that all
2-changes are improving.

Let us remark that this also implies Theorem 1.1 for the L∞ metric because distances
w. r. t. the L∞ metric coincide with distances w. r. t. the Manhattan metric if one rotates
all points by π/4 around the origin and scales every coordinate with 1/

√
2.

3.2.2 Embedding the construction into general Lp metrics

It is also possible to embed our construction into the Lp metric for p ≥ 3. For j ∈ [2],
we choose An−1

R,j = (0, 1), Bn−1
R,j = (0, 0), Cn−1

R,j = (3.5, 3.7), and Dn−1
R,j = (7.8,−3.2).

Moreover, we choose An−1
P,1 = (−2.5,−2.4), Bn−1

P,1 = (−4.7,−7.3), Cn−1
P,1 = (−8.6,−4.6),
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Dn−1
P,1 = (3.7, 9.8), An−1

P,2 = (3.2, 2), Bn−1
P,2 = (7.2, 7.2), Cn−1

P,2 = (−6.5,−1.6), and Dn−1
P,2 =

(−1.5,−7.1). We place the points of GP
i and GR

i as follows:

1. Start with the coordinates specified for the points of gadgets GP
i+1 and GR

i+1.

2. Rotate these points around the origin by π.

3. Scale each coordinate with a factor of 7.8.

4. Translate the points by the vector (7.2, 5.3).

It can be calculated that the distances of these points when measured according to the
Lp metric for any p ≥ 3 satisfy all necessary inequalities.

4 Expected Number of 2-Changes

We analyze the expected number of 2-changes on random d-dimensional Manhattan and
Euclidean instances, for an arbitrary constant dimension d ≥ 2, and on general TSP
instances. The previous results on the expected number of 2-changes due to Kern [Ker89]
and Chandra, Karloff, and Tovey [CKT99] are based on the analysis of the improvement
made by the smallest improving 2-change. If the smallest improvement is not too small,
then the number of improvements cannot be large. In our analyses for the Manhattan
and the Euclidean metric, we consider not only a single step but certain pairs of steps.
We show that the smallest improvement made by any such pair is typically much larger
than the improvement made by a single step, which yields our improved bounds. Our
approach is not restricted to pairs of steps. One could also consider sequences of steps
of length k for any small enough k. In fact, for general φ-perturbed graphs with m
edges, we consider sequences of length

√
log m. The reason why we can analyze longer

sequences for general graphs is that these inputs possess more randomness than φ-
perturbed Manhattan and Euclidean instances because every edge length is a random
variable that is independent of the other edge lengths. Hence, the analysis for general
φ-perturbed graphs demonstrates the limits of our approach under optimal conditions.
For Manhattan and Euclidean instances, the gain of considering longer sequences is
small due to the dependencies between the edge lengths.

4.1 Manhattan Instances

In this section, we analyze the expected number of 2-changes on φ-perturbed Manhattan
instances. First we prove a weaker bound than the one in Theorem 1.2. The proof of
this weaker bound illustrates our approach and reveals the problems one has to tackle
in order to improve the upper bounds. It is solely based on an analysis of the smallest
improvement made by any of the possible 2-Opt steps. If with high probability every
2-Opt step decreases the tour length by a polynomially large amount, then with high
probability only polynomially many 2-Opt steps are possible before a local optimum is
reached.

Theorem 4.1. Starting with an arbitrary tour, the expected number of steps performed
by 2-Opt on φ-perturbed Manhattan instances with n vertices is O(n6 · log n · φ).
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Proof. In order to prove the desired bound on the expected convergence time, we only
need two simple observations. First, the initial tour can have length at most dn as the
number of edges is n and every edge has length at most d. And second, every 2-Opt step
decreases the length of the tour by a polynomially large amount with high probability.
The latter can be shown by a union bound over all possible 2-Opt steps. Consider a
fixed 2-Opt step S, let e1 and e2 denote the edges removed from the tour in step S, and
let e3 and e4 denote the edges added to the tour. Then the improvement ∆(S) of step
S can be written as

∆(S) = d(e1) + d(e2)− d(e3)− d(e4) . (4.1)

Without loss of generality let e1 = (v1, v2) be the edge between the vertices v1 and v2,
and let e2 = (v3, v4), e3 = (v1, v3), and e4 = (v2, v4). Furthermore, for i ∈ {1, . . . 4}, let
xi ∈ Rd denote the coordinates of vertex vi. Then the improvement ∆(S) of step S can
be written as

∆(S) =
d∑

i=1

(
|x1

i − x2
i |+ |x3

i − x4
i | − |x1

i − x3
i | − |x2

i − x4
i |
)

.

Depending on the order of the coordinates, ∆(S) can be written as linear combination
of the coordinates. If, e. g., for all i ∈ [d], x1

i ≥ x2
i ≥ x3

i ≥ x4
i , then the improvement

∆(S) can be written as
∑d

i=1(−2x2
i + 2x3

i ). There are (4!)d such orders and each one
gives rise to a linear combination of the xj

i ’s with integer coefficients. For each of these
linear combinations, the probability that it takes a value in the interval (0, ε] is bounded
from above by εφ, following, e. g., from Lemma A.1. Since ∆(S) can only take a value
in the interval (0, ε] if one of the linear combinations takes a value in this interval, the
probability of the event ∆(S) ∈ (0, ε] can be upper bounded by (4!)dεφ.

Let ∆min denote the improvement of the smallest improving 2-Opt step S, i. e.,
∆min = min{∆(S) | ∆(S) > 0}. We can estimate ∆min by a union bound, yielding

Pr [∆min ≤ ε] ≤ (4!)dεn4φ

as there are at most n4 different 2-Opt steps. Let T denote the random variable de-
scribing the number of 2-Opt steps before a local optimum is reached. Observe that T
can only exceed a given number t if the smallest improvement ∆min is less than dn/t,
and hence

Pr [T ≥ t] ≤ Pr
[
∆min ≤

dn

t

]
≤ d(4!)dn5φ

t
.

Since there are at most (n!) different TSP tours and none of these tours can appear
twice during the local search, T is always bounded by (n!). Altogether, we can bound
the expected value of T by

E [T ] =
n!∑

t=1

Pr [T ≥ t] ≤
n!∑

t=1

d(4!)dn5φ

t
.

Since we assumed the dimension d to be a constant, bounding the n-th harmonic number
by ln(n) + 1 and using ln(n!) = O(n log n) yields

E [T ] = O(n6 · log n · φ) .
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The bound in Theorem 4.1 is only based on the smallest improvement ∆min made
by any of the 2-Opt steps. Intuitively, this is too pessimistic since most of the steps
performed by 2-Opt yield a larger improvement than ∆min. In particular, two consec-
utive steps yield an improvement of at least ∆min plus the improvement ∆′

min of the
second smallest step. This observation alone, however, does not suffice to improve the
bound substantially. Instead, we regroup the 2-changes to pairs such that each pair of
2-changes is linked by an edge, i. e., one edge added to the tour in the first 2-change is
removed from the tour in the second 2-change, and we analyze the smallest improve-
ment made by any pair of linked 2-Opt steps. Obviously, this improvement is at least
∆min + ∆′

min but one can hope that it is much larger because it is unlikely that the
2-change that yields the smallest improvement and the 2-change that yields the second
smallest improvement form a pair of linked steps. We show that this is indeed the case
and use this result to prove the bound on the expected length of the longest path in the
state graph of 2-Opt on φ-perturbed Manhattan instances claimed in Theorem 1.2.

4.1.1 Construction of pairs of linked 2-changes

Consider an arbitrary sequence of consecutive 2-changes of length t. The following
lemma guarantees that the number of disjoint linked pairs of 2-changes in every such
sequence increases linearly with the length t.

Lemma 4.2. In every sequence of t consecutive 2-changes, the number of disjoint pairs
of 2-changes that are linked by an edge, i. e., pairs such that there exists an edge added
to the tour in the first 2-change of the pair and removed from the tour in the second
2-change of the pair, is at least t/3− n(n− 1)/4.

Proof. Let S1, . . . , St denote an arbitrary sequence of consecutive 2-changes. The se-
quence is processed step by step and a list L of disjoint linked pairs of 2-changes is
created. Assume that the 2-changes S1, . . . , Si−1 have already been processed and that
now 2-change Si has to be processed. Assume further that in step Si the edges e1 and e2

are exchanged with the edges e3 and e4. Let j denote the smallest index with j > i such
that edge e3 is removed from the tour in step Sj if such a step exists, and let j′ denote
the smallest index with j′ > i such that edge e4 is removed from the tour in step Sj′ if
such a step exists. If the index j is defined, the pair (Si, Sj) is added to the constructed
list L. If the index j is not defined but the index j′ is defined, the pair (Si, Sj′) is added
to the constructed list L. After that, both steps Sj and Sj′ (if defined) are removed
from the sequence of 2-changes, that is, they are not processed in the following in order
to guarantee disjointness of the pairs in L.

If one 2-change is processed, it excludes at most two other 2-changes from being
processed. Hence, the number of pairs added to L is at least t/3− n(n− 1)/4 because
there can be at most bn(n− 1)/4c steps Si for which neither j nor j′ is defined.

Consider a fixed pair of 2-changes linked by an edge. Without loss of generality
assume that in the first step the edges {v1, v2} and {v3, v4} are exchanged with the
edges {v1, v3} and {v2, v4}, for distinct vertices v1, . . . , v4. Also without loss of generality
assume that in the second step the edges {v1, v3} and {v5, v6} are exchanged with the
edges {v1, v5} and {v3, v6}. However, note that the vertices v5 and v6 are not necessarily
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Figure 4.1: A pair of type 1.

v1

v4

v2

v3

v1

v3

v5

v2
v1

v3
v5

v2a) b)

Figure 4.2: Pairs of type 2.

distinct from the vertices v2 and v4. We distinguish between three different types of
pairs.

1. |{v2, v4} ∩ {v5, v6}| = 0. This case is illustrated in Figure 4.1.

2. |{v2, v4} ∩ {v5, v6}| = 1. We can assume w. l. o. g. that v2 ∈ {v5, v6}. We have to
distinguish between two subcases: a) The edges {v1, v5} and {v2, v3} are added to
the tour in the second step. b) The edges {v1, v2} and {v3, v5} are added to the
tour in the second step. These cases are illustrated in Figure 4.2.

3. |{v2, v4} ∩ {v5, v6}| = 2. The case v2 = v5 and v4 = v6 cannot appear as it would
imply that the tour is not changed by performing the considered pair of steps.
Hence, for pairs of this type, we must have v2 = v6 and v4 = v5.

When distances are measured according to the Euclidean metric, pairs of type 3
result in vast dependencies and hence the probability that there exists a pair of this
type in which both steps are improvements by at most ε w. r. t. the Euclidean metric
cannot be bounded appropriately. In order to reduce the number of cases we have to
consider and in order to prepare the analysis of φ-perturbed Euclidean instances, we
exclude pairs of type 3 from our probabilistic analysis by leaving out all pairs of type 3
when constructing the list L in the proof of Lemma 4.2.

We only need to show that there are always enough pairs of type 1 or 2. Consider
two steps Si and Sj with i < j that form a pair of type 3. Assume that in step Si the
edges {v1, v2} and {v3, v4} are replaced by the edges {v1, v3} and {v2, v4}, and that in
step Sj these edges are replaced by the edges {v1, v4} and {v2, v3}. Now consider the
next step Sl with l > j in which the edge {v1, v4} is removed from the tour if such a
step exists and the next step Sl′ with l′ > j in which the edge {v2, v3} is removed from
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the tour if such a step exists. Observe that neither (Sj , Sl) nor (Sj , Sl′) can be a pair
of type 3 because otherwise the improvement of one of the steps Si, Sj , and Sl, or Sl′ ,
respectively, must be negative. In particular, we must have l 6= l′.

If we encounter a pair (Si, Sj) of type 3 in the construction of the list L, we mark step
Si as being processed without adding a pair of 2-changes to L and without removing Sj

from the sequence of steps to be processed. Let x denote the number of pairs of type 3
that we encounter during the construction of the list L. Our argument above shows
that the number of pairs of type 1 or 2 that are added to L is at least x− n(n− 1)/4.
This implies t ≥ 2x − n(n − 1)/4 and x ≤ t/2 + n(n − 1)/8. Hence, the number of
relevant steps reduces from t to t′ = t − x ≥ t/2 − n(n − 1)/8. Using this estimate in
Lemma 4.2 yields the following lemma.

Lemma 4.3. In every sequence of t consecutive 2-changes the number of disjoint pairs
of 2-changes of type 1 or 2 is at least t/6− 7n(n− 1)/24.

4.1.2 Analysis of pairs of linked 2-changes

The following lemma gives a bound on the probability that there exists a pair of type 1
or 2 in which both steps are small improvements.

Lemma 4.4. In a φ-perturbed Manhattan instance with n vertices, the probability that
there exists a pair of type 1 or type 2 in which both 2-changes are improvements by at
most ε is bounded by O(n6 · ε2 · φ2).

Proof. First, we consider pairs of type 1. We assume that in the first step the edges
{v1, v2} and {v3, v4} are replaced by the edges {v1, v3} and {v2, v4} and that in the
second step the edges {v1, v3} and {v5, v6} are replaced by the edges {v1, v5} and {v3, v6}.
For i ∈ [6], let xi ∈ Rd denote the coordinates of vertex vi. Furthermore, let ∆1 denote
the (possibly negative) improvement of the first step and let ∆2 denote the (possibly
negative) improvement of the second step. The random variables ∆1 and ∆2 can be
written as

∆1 =
d∑

i=1

|x1
i − x2

i |+ |x3
i − x4

i | − |x1
i − x3

i | − |x2
i − x4

i |

and

∆2 =
d∑

i=1

|x1
i − x3

i |+ |x5
i − x6

i | − |x1
i − x5

i | − |x3
i − x6

i | .

For any fixed order of the coordinates, ∆1 and ∆2 can be expressed as linear com-
binations of the coordinates with integer coefficients. For i ∈ [d], let σi denote an order
of the coordinates x1

i , . . . , x
6
i , let σ = (σ1, . . . , σd), and let ∆σ

1 and ∆σ
2 denote the cor-

responding linear combinations. We denote by A the event that both ∆1 and ∆2 take
values in the interval (0, ε], and we denote by Aσ the event that both linear combina-
tions ∆σ

1 and ∆σ
2 take values in the interval (0, ε]. Obviously A can only occur if for at

least one σ, the event Aσ occurs. Hence, we obtain

Pr [A] ≤
∑

σ

Pr [Aσ] .
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Since there are (6!)d different orders σ, which is constant for constant dimension d, it
suffices to show that for every tuple of orders σ, the probability of the event Aσ is
bounded from above by O(ε2φ2). Then a union bound over all possible pairs of linked
2-changes of type 1 yields the lemma for pairs of type 1.

We divide the set of possible pairs of linear combinations (∆σ
1 ,∆σ

2 ) into three classes.
We say that a pair of linear combinations belongs to class A if at least one of the linear
combinations equals 0, we say that it belongs to class B if ∆σ

1 = −∆σ
2 , and we say that

it belongs to class C if ∆σ
1 and ∆σ

2 are linearly independent. For tuple of orders σ that
yield pairs from class A or B, the event Aσ can never occur because in both cases the
value of at least one linear combination is at most 0. For tuples σ that yield pairs from
class C, we can apply Lemma A.1 from Appendix A, which shows that the probability
of the event Aσ is bounded from above by (εφ)2. Hence, we only need to show that
every pair (∆σ

1 ,∆σ
2 ) of linear combinations belongs either to class A, B, or C.

Consider a fixed tuple of orders σ = (σ1, . . . , σd). We split ∆σ
1 and ∆σ

2 into d
parts that correspond to the d dimensions. To be precise, for j ∈ [2], we write ∆σ

j =∑
i∈[d] X

σi,j
i , where Xσi,j

i is a linear combination of the variables x1
i , . . . , x

6
i . For i ∈ [d],

we show that the pair of linear combinations (Xσi,1
i , Xσi,2

i ) belongs either to class A, B,
or C. This directly implies that also (∆σ

1 ,∆σ
2 ) must belong to one of these classes.

Assume that the pair of linear combinations (Xσi,1
i , Xσi,2

i ) is linearly dependent for
the fixed order σi. Observe that this can only happen if Xσi,1

i does not contain x2
i

and x4
i and if Xσi,2

i does not contain x5
i and x6

i . The former can only happen if either
x3

i ≥ x4
i , x2

i ≥ x4
i , and x2

i ≥ x1
i or if x3

i ≤ x4
i , x2

i ≤ x4
i , and x2

i ≤ x1
i . The latter can only

happen if either x5
i ≥ x6

i , x3
i ≥ x6

i , and x5
i ≥ x1

i or if x5
i ≤ x6

i , x3
i ≤ x6

i , and x5
i ≤ x1

i .
If one chooses the order such that x2

i , x4
i , x5

i , and x6
i cancel out and such that

x1
i ≥ x3

i , one can verify by a case distinction that Xσi,1
i ∈ {0,−2x1

i + 2x3
i } and Xσi,2

i ∈
{0, 2x1

i−2x3
i }. Hence, in this case the resulting pair of linear combinations belongs either

to class A or B. Analogously, if one chooses the order such that x2
i , x4

i , x5
i , and x6

i cancel
out and such that x3

i ≥ x1
i , we have Xσi,1

i ∈ {0, 2x1
i −2x3

i } and Xσi,2
i ∈ {0,−2x1

i +2x3
i }.

Hence, also in this case, the pair of resulting linear combinations belongs either to
class A or B.

With similar arguments we prove the lemma for pairs of type 2. We first prove the
lemma for pairs of type 2 a). Using the same notations as for pairs of type 1, we can
write the improvement ∆2 as

∆2 =
∑
i∈[d]

|x1
i − x3

i |+ |x2
i − x5

i | − |x1
i − x5

i | − |x2
i − x3

i | .

Again we show that, for every i ∈ [d] and every order σi, the pair of linear combina-
tions (Xσi,1

i , Xσi,2
i ) belongs either to class A, B, or C. Assume that the pair is linearly

dependent for the fixed order σi. Observe that this can only happen if Xσi,1
i does not

contain x4
i and if Xσi,2

i does not contain x5
i . The former can only happen if either

x3
i ≥ x4

i and x2
i ≥ x4

i or if x3
i ≤ x4

i and x2
i ≤ x4

i . The latter can only happen if either
x2

i ≥ x5
i and x1

i ≥ x5
i or if x2

i ≤ x5
i and x1

i ≤ x5
i .

If one chooses the order such that x4
i and x5

i cancel out and such that x1
i ≥ x3

i , one
can verify by a case distinction that Xσi,1

i ∈ {0,−2x1
i + 2x2

i ,−2x1
i + 2x3

i ,−2x2
i + 2x3

i }
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and Xσi,2
i ∈ {0, 2x1

i − 2x2
i , 2x1

i − 2x3
i , 2x2

i − 2x3
i }. Hence, under the assumption that the

linear combinations Xσi,1
i and Xσi,2

i are linearly dependent, the pair of resulting linear
combinations in the case x1

i ≥ x3
i belongs either to class A or B. Analogously, if one

chooses the order such that x4
i and x5

i cancel out and such that x3
i ≥ x1

i , we have Xσi,1
i ∈

{0, 2x1
i −2x2

i , 2x1
i −2x3

i , 2x2
i −2x3

i } and Xσi,2
i ∈ {0,−2x1

i +2x2
i ,−2x1

i +2x3
i ,−2x2

i +2x3
i }.

Hence, also in this case, the pair of resulting linear combinations belongs either to class A
or B.

It remains to consider pairs of type 2 b). For these pairs, we can write ∆2 as

∆2 =
d∑

i=1

|x1
i − x3

i |+ |x2
i − x5

i | − |x1
i − x2

i | − |x3
i − x5

i | .

Assume that the pair of linear combinations (Xσi,1
i , Xσi,2

i ) is linearly dependent for the
fixed order σi. Observe that this can only happen if Xσi,1

i does not contain x4
i and if

Xσi,2
i does not contain x5

i . As we have already seen for pairs of type 2 a), the former
can only happen if either x3

i ≥ x4
i and x2

i ≥ x4
i or if x3

i ≤ x4
i and x2

i ≤ x4
i . The latter

can only happen if either x2
i ≥ x5

i and x3
i ≥ x5

i or if x2
i ≤ x5

i and x3
i ≤ x5

i .
If one chooses the order such that x4

i and x5
i cancel out and such that x1

i ≥ x3
i , one

can verify by a case distinction that Xσi,1
i ∈ {0,−2x1

i + 2x2
i ,−2x1

i + 2x3
i ,−2x2

i + 2x3
i }

and Xσi,2
i ∈ {0, 2x1

i − 2x2
i , 2x1

i − 2x3
i , 2x2

i − 2x3
i }. Hence, under the assumption that the

linear combinations Xσi,1
i and Xσi,2

i are linearly dependent, the pair of resulting linear
combinations belongs either to class A or B. If one chooses the order such that x4

i and
x5

i cancel out and such that x3
i ≥ x1

i , one can verify by a case distinction that Xσi,1
i ∈

{0, 2x1
i −2x2

i , 2x1
i −2x3

i , 2x2
i −2x3

i } and Xσi,2
i ∈ {0,−2x1

i +2x2
i ,−2x1

i +2x3
i ,−2x2

i +2x3
i }.

Hence, also in this case, the pair of resulting linear combinations belongs either to class A
or B.

4.1.3 Expected number of 2-changes

Based on Lemmas 4.3 and 4.4, we are now able to prove part a) of Theorem 1.2.

Proof of Theorem 1.2 a). Let T denote the random variable that describes the length
of the longest path in the state graph. If T ≥ t, then there must exist a sequence
S1, . . . , St of t consecutive 2-changes in the state graph. We start by identifying a set of
linked pairs of type 1 and 2 in this sequence. Due to Lemma 4.3, we know that we can
find at least t/6− 7n(n− 1)/24 such pairs. Let ∆∗

min denote the smallest improvement
made by any pair of improving 2-Opt steps of type 1 or 2. For t > 2n2, we have
t/6− 7n(n− 1)/24 > t/48 and hence due to Lemma 4.4,

Pr [T ≥ t] ≤ Pr
[
∆∗

min ≤
48dn

t

]
= O

(
min

{
n8φ2

t2
, 1
})

.

Since T cannot exceed (n!), this implies the following bound on the expected number
of 2-changes:

E [T ] ≤ 2n2 +
n!∑

t=2n2+1

O

(
min

{
n8φ2

t2
, 1
})

= O(n4 · φ) .

18



This concludes the proof of part a) of the theorem.

Chandra, Karloff, and Tovey [CKT99] show that for every metric that is induced by
a norm on Rd, and for any set of n points in the unit hypercube [0, 1]d, the optimal tour
visiting all n points has length O(n(d−1)/d). Furthermore, every insertion heuristic finds
an O(log n)-approximation [RSI77]. Hence, if one starts with a solution computed by an
insertion heuristic, the initial tour has length O(n(d−1)/d · log n). Using this observation
yields part a) of Theorem 1.3.

Proof of Theorem 1.3 b). Since the initial tour has length O(n(d−1)/d · log n), we obtain
for an appropriate constant c and t > 2n2,

Pr [T ≥ t] ≤ Pr

[
∆∗

min ≤
c · n(d−1)/d · log n

t

]
= O

(
min

{
n8−2/d · log2 n · φ2

t2
, 1

})
.

This yields

E [T ] ≤ 2n2 +
n!∑

t=2n2+1

O

(
min

{
n8−2/d · log2 n · φ2

t2
, 1

})
= O(n4−1/d · log n · φ) .

4.2 Euclidean Instances

In this section, we analyze the expected number of 2-changes on φ-perturbed Euclidean
instances. The analysis is similar to the analysis of Manhattan instances in the previous
section, only Lemma 4.4 needs to be replaced by its equivalent version for the L2 metric.

Lemma 4.5. For φ-perturbed L2 instances, the probability that there exists a pair of
type 1 or type 2 in which both 2-changes are improvements by at most ε ≤ 1/2 is bounded
by O(n6 · φ5 · ε2 · log2(1/ε)) + O(n5 · φ4 · ε3/2 · log(1/ε)).

The bound that this lemma provides is slightly weaker than its L1 counterpart, and
hence also the bound on the expected running time is slightly worse for L2 instances.
The crucial step to prove Lemma 4.5 is to gain a better understanding of the random
variable that describes the improvement of a single fixed 2-change. In the next section,
we analyze this random variable under several conditions, e. g., under the condition that
the length of one of the involved edges is fixed. With the help of these results, pairs of
linked 2-changes can easily be analyzed. Let us mention that our analysis of a single
2-change yields a bound of O(n7 · log2(n) ·φ3) for the expected number of 2-changes. For
Euclidean instances in which all points are distributed uniformly at random over the unit
square, this bound already improves the best previously known bound of O(n10 · log n).

4.2.1 Analysis of a single 2-change

We analyze a 2-change in which the edges {O,Q1} and {P,Q2} are exchanged with
the edges {O,Q2} and {P,Q1} for some vertices O, P , Q1, and Q2. In the input
model we consider, each of these points has a probability distribution over the unit
hypercube according to which it is chosen. In this section, we consider a simplified
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O

P = (0, τ)

Qrα
τ

Figure 4.3: The random variable Z is defined as r − d(P,Q).

random experiment in which O is chosen to be the origin and P , Q1, and Q2 are chosen
independently and uniformly at random from a d-dimensional hyperball with radius

√
d

centered at the origin. In the next section, we argue that the analysis of this simplified
random experiment helps to analyze the actual random experiment that occurs in the
probabilistic input model.

Due to the rotational symmetry of the simplified model, we assume without loss of
generality that P lies at position (0, T ) for some T ≥ 0. For i ∈ [2], Let Zi denote
the difference d(O,Qi) − d(P,Qi). Then the improvement ∆ of the 2-change can be
expressed as Z1 −Z2. The random variables Z1 and Z2 are identically distributed, and
they are independent if T is fixed. We denote by fZ|T=τ,R=r the density of Z1 and Z2

under the conditions that d(O,Q1) = r and d(O,Q2) = r, respectively, and T = τ .

Lemma 4.6. For τ, r ∈ (0,
√

d], and z ∈ (−τ,min{τ, 2r − τ}),

fZ|T=τ,R=r(z) ≤


√

2
τ2−z2 if r ≥ τ,√

2
(τ+z)(2r−τ−z) if r ≤ τ.

For z /∈ [−τ,min{τ, 2r − τ}], the density fZ|T=τ,R=r(z) is 0.

Proof. We denote by Z the random variable d(O,Q) − d(P,Q), where Q is a point
chosen uniformly at random from a d-dimensional hyperball with radius

√
d centered at

the origin. In the following, we assume that the plane spanned by the points O, P , and
Q is fixed arbitrarily, and we consider the random experiment conditioned on the event
that Q lies in this plane. To make the calculations simpler, we use polar coordinates
to describe the location of Q. Since the radius d(O,Q) = r is given, the point Q is
completely determined by the angle α between the y-axis and the line between O and
Q (see Figure 4.3). Hence, the random variable Z can be written as

Z = r −
√

r2 + τ2 − 2rτ · cos α .

It is easy to see that Z can only take values in the interval [−τ,min{τ, 2r − τ}], and
hence the density fZ|T=τ,R=r(z) is 0 outside this interval.

Since Q is chosen uniformly at random, the angle α is chosen uniformly at random
from the interval [0, 2π). For symmetry reasons, we can assume that α is chosen uni-
formly from the interval [0, π). When α is restricted to the interval [0, π), then there
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exists a unique inverse function mapping Z to α, namely

α(z) = arccos
(

τ2 + 2zr − z2

2rτ

)
.

The density fZ|T=τ,R=r can be expressed as

fZ|T=τ,R=r(z) = fα(α(z)) ·
∣∣∣∣ d

dz
α(z)

∣∣∣∣ = − 1
π
· d

dz
α(z) ,

where fα denotes the density of α, i. e., the uniform density over [0, π). For |x| < 1, the
derivative of the arc cosine is

(arccos(x))′ = − 1√
1− x2

.

Hence, the derivative of α(z) equals

r − z

rτ
· −1√

1− (τ2+2zr−z2)2

4r2τ2

=
2(z − r)√

4r2τ2 − 4r2z2 − 4rτ2z + 4rz3 − τ4 + 2τ2z2 − z4
.

In order to prove the lemma, we distinguish between the cases r ≥ τ and r ≤ τ .
First case: r ≥ τ .

In this case, it suffices to show

4r2τ2 − 4r2z2 − 4rτ2z + 4rz3 − τ4 + 2τ2z2 − z4 ≥ 2(z − r)2(τ2 − z2) ,

which is implied by

4r2τ2 − 4r2z2 − 4rτ2z + 4rz3 − τ4 + 2τ2z2 − z4 − 2(z − r)2(τ2 − z2)

= 2r2(τ2 − z2)− τ4 + z4 ≥ 2τ2(τ2 − z2)− τ4 + z4 = (τ2 − z2)2 ≥ 0 .

Second case: r ≤ τ .
In this case, it suffices to show

4r2τ2 − 4r2z2 − 4rτ2z + 4rz3 − τ4 + 2τ2z2 − z4 ≥ 2(z − r)2(τ + z)(2r − τ − z) ,

which is implied by

4r2τ2 − 4r2z2 − 4rτ2z + 4rz3 − τ4 + 2τ2z2 − z4 − 2(z − r)2(τ + z)(2r − τ − z) ≥ 0

⇐⇒ (−2r + z + τ)(τ + z)(z2 + 2τz − 2rz + 2r2 − τ2 − 2τr) ≥ 0

⇐⇒ z2 + 2τz − 2rz + 2r2 − τ2 − 2τr ≤ 0 ,

which follows from

z2 + 2τz − 2rz + 2r2 − τ2 − 2τr

=z2 + 2z(τ − r) + 2r2 − τ2 − 2τr

≤(2r − τ)2 + 2(2r − τ)(τ − r) + 2r2 − τ2 − 2τr

=2(r2 − τ2) ≤ 0 .
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Based on Lemma 4.6, the density of the random variable ∆ = Z1 − Z2 under the
conditions R1 := d(O,Q1) = r1, R2 := d(O,Q2) = r2, and T := d(O,P ) = τ can be
computed as the convolution of the density fZ|T=τ,R=r with itself.

Lemma 4.7. Let τ, r1, r2 ∈ (0,
√

d], and let Z1 and Z2 be independent random vari-
ables drawn according to the densities fZ|T=τ,R=r1

and fZ|T=τ,R=r2
, respectively. For

δ ∈ (0, 1/2] and a sufficiently large constant κ, the density f∆|T=τ,R1=r1,R2=r2
(δ) of the

random variable ∆ = Z1 − Z2 is bounded from above by
κ
τ · ln δ−1 if τ ≤ r1, τ ≤ r2,

κ√
r1r2

·
(
ln δ−1 + ln |2(r1 − r2)− δ|−1 + κ

)
if r1 ≤ τ, r2 ≤ τ,

κ√
τr1

· ln δ−1 if r1 ≤ τ ≤ r2,
κ√
τr2

·
(
ln δ−1 + ln |2(τ − r2)− δ|−1 + κ

)
if r2 ≤ τ ≤ r1.

The simple but somewhat tedious calculation that yields Lemma 4.7 is deferred to
Appendix B.1. In order to prove Lemma 4.5, we need bounds on the densities of the
random variables ∆, Z1, and Z2 under certain conditions. We summarize these bounds
in the following lemma.

Lemma 4.8. Let τ, r ∈ (0,
√

d], δ ∈ (0, 1/2], and let κ denote a sufficiently large
constant.

a) For i ∈ [2], the density of ∆ under the condition Ri = r is bounded by

f∆|Ri=r(δ) ≤
κ√
r
· ln δ−1 .

b) The density of ∆ under the condition T = τ is bounded by

f∆|T=τ (δ) ≤
κ

τ
· ln δ−1 .

c) The density of ∆ is bounded by

f∆(δ) ≤ κ · ln δ−1 .

d) For i ∈ [2], the density of Zi under the condition T = τ is bounded by

fZi|T=τ (z) ≤ κ√
τ2 − z2

if |z| < τ . Since Zi takes only values in the interval [−τ, τ ], the conditional density
fZi|T=τ (z) is 0 for z /∈ [−τ, τ ].

Lemma 4.8 follows from Lemmas 4.6 and 4.7 by integrating over all values of the
unconditioned distances. The proof can be found in Appendix B.2.
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4.2.2 Simplified random experiments

In the previous section we did not analyze the random experiment that really takes place.
Instead of choosing the points according to the given density functions, we simplified
their distributions by placing point O in the origin and by giving the other points P , Q1,
and Q2 uniform distributions centered around the origin. In our input model, however,
each of these points is described by a density function over the unit hypercube. We
consider the probability of the event ∆ ∈ [0, ε] in both the original input model as well
as in the simplified random experiment. In the following, we denote this event by E . We
claim that the simplified random experiment that we analyze is only slightly dominated
by the original random experiment, in the sense that the probability of the event E in
the simplified random experiment is smaller by at most some factor depending on φ.

In order to compare the probabilities in the original and in the simplified random
experiment, consider the original experiment and assume that the point O lies at position
x ∈ [0, 1]d. Then one can identify a region Rx ⊆ R3d with the property that the event
E occurs if and only if the random vector (P,Q1, Q2) lies in Rx. No matter of how the
position x of O is chosen, this region always has the same shape, only its position is
shifted. Let V = supx∈[0,1]d Vol(Rx∩ [0, 1]3d). Then the probability of E can be bounded
from above by φ3 · V in the original random experiment. Since ∆ is invariant under
translating O, P , Q1, and Q2 by the same vector, we obtain

Vol
(
Rx ∩ [0, 1]3d

)
= Vol

(
R0d ∩ ([−x1, 1− x1]× · · · × [−xd, 1− xd])3

)
≤ Vol

(
R0d ∩ [−1, 1]3d

)
.

Hence, V ≤ V ′ := Vol(R0d ∩ [−1, 1]3d). Since the hyperball centered around the origin
with radius

√
d contains the hypercube [−1, 1]d completely, the probability of E in the

simplified random experiment can be bounded from below by V ′/Vd(
√

d)3, where Vd(
√

d)
denotes the volume of a d-dimensional hyperball with radius

√
d. Since this hyperball is

contained in a hypercube with side length 2
√

d, its volume can be bounded from above
by (4d)d/2. Hence, the probability of E in the simplified random experiment is smaller
by at most a factor of φ3(4d)3d/2 compared to the original random experiment.

Taking into account this factor and using Lemma 4.8 c) and a union bound over
all possible 2-changes yields the following lemma about the improvement of a single
2-change.

Lemma 4.9. The probability that there exists an improving 2-change whose improve-
ment is at most ε ≤ 1/2 is bounded from above by O(n4 · φ3 · ε · log(1/ε)).

Using similar arguments as in the proof of Theorem 4.1 yields the following upper
bound on the expected number of 2-changes.

Theorem 4.10. Starting with an arbitrary tour, the expected number of steps performed
by 2-Opt on φ-perturbed Euclidean instances is O(n7 · log2 (n) · φ3).

Pairs of type 1. In order to improve upon Theorem 4.10, we consider pairs of linked
2-changes as in the analysis of φ-perturbed Manhattan instances. Since our analysis of
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pairs of linked 2-changes is based on the analysis of a single 2-change that we presented
in the previous section, we also have to consider simplified random experiments when
analyzing pairs of 2-changes. For a fixed pair of type 1, we assume that point v3 is
chosen to be the origin and the other points v1, v2, v4, v5, and v6 are chosen uniformly
at random from a hyperball with radius

√
d centered at v3. Let E denote the event that

both ∆1 and ∆2 lie in the interval [0, ε], for some given ε. With the same arguments
as above, one can see that the probability of E in the simplified random experiment is
smaller compared to the original experiment by at most a factor of ((4d)d/2φ)5.

Pairs of type 2. For a fixed pair of type 2, we consider the simplified random ex-
periment in which v2 is placed in the origin and the other points v1, v3, v4, and v5 are
chosen uniformly at random from a hyperball with radius

√
d centered at v2. In this

case, the probability in the simplified random experiment is smaller by at most a factor
of ((4d)d/2φ)4.

4.2.3 Analysis of pairs of linked 2-changes

Finally, we can prove Lemma 4.5.

Proof of Lemma 4.5. We start by considering pairs of type 1. We consider the simplified
random experiment in which v3 is chosen to be the origin and the other points are drawn
uniformly at random from a hyperball with radius

√
d centered at v3. If the position of

the point v1 is fixed, then the events ∆1 ∈ [0, ε] and ∆2 ∈ [0, ε] are independent as only
the vertices v1 and v3 appear in both the first and the second step. In fact, because
the densities of the points v2, v4, v5, and v6 are rotationally symmetric, the concrete
position of v1 is not important in our simplified random experiment anymore, but only
the distance R between v1 and v3 is of interest.

For i ∈ [2], we determine the conditional probability of the event ∆i ∈ [0, ε] under
the condition that the distance d(v1, v3) is fixed with the help of Lemma 4.8 a) and
obtain

Pr [∆i ∈ [0, ε] | d(v1, v3) = r] =
∫ ε

0
f∆|Ri=r(δ) dδ

≤
∫ ε

0

κ√
r

ln δ−1 dδ

≤ 3κ√
r
· ε · ln(1/ε) . (4.2)

Since for fixed distance d(v1, v3) the random variables ∆1 and ∆2 are independent, we
obtain

Pr [∆1,∆2 ∈ [0, ε] | d(v1, v3) = r] ≤ 9κ2

r
· ε2 · ln2(1/ε) . (4.3)

For r ∈ [0,
√

d], the density fd(v1,v3) of the random variable d(v1, v3) in the simplified
random experiment is rd−1/dd/2−1. Combining this observation with the bound given
in (4.3) yields

Pr [∆1,∆2 ∈ [0, ε]] ≤
∫ √

d

0

9κ2 · rd−2

dd/2−1
· ε2 · ln2(1/ε) dr = O

(
ε2 · ln2(1/ε)

)
.
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There are O(n6) different pairs of type 1, hence a union bound over all of them concludes
the first part of the proof when taking into account the factor ((4d)d/2φ)5 that results
from considering the simplified random experiment.

It remains to consider pairs of type 2. We consider the simplified random experiment
in which v2 is chosen to be the origin and the other points are drawn uniformly at random
from a hyperball with radius

√
d centered at v2. In contrast to pairs of type 1, pairs

of type 2 exhibit larger dependencies as only 5 different vertices are involved in these
pairs. Fix one pair of type 2. The two 2-changes share the whole triangle consisting
of v1, v2, and v3. In the second step, there is only one new vertex, namely v5. Hence,
there is not enough randomness contained in a pair of type 2 such that ∆1 and ∆2 are
nearly independent as for pairs of type 1.

We start by considering pairs of type 2 a). First, we analyze the probability that
∆1 lies in the interval [0, ε]. After that, we analyze the probability that ∆2 lies in
the interval [0, ε] under the condition that the points v1, v2, v3, and v4 have already
been chosen. In the analysis of the second step we cannot make use of the fact that
the distances d(v1, v3) and d(v2, v3) are random variables anymore since we exploited
their randomness already in the analysis of the first step. The only distances whose
randomness we can exploit are the distances d(v1, v5) and d(v2, v5). We pessimistically
assume that the distances d(v1, v3) and d(v2, v3) have been chosen by an adversary. This
means the adversary can determine an interval of length ε in which the random variable
d(v2, v5)− d(v1, v5) must lie in order for ∆2 to lie in [0, ε].

Analogously to (4.2), the probability of the event ∆1 ∈ [0, ε] under the condition
d(v1, v2) = r can be bounded by

Pr [∆1 ∈ [0, ε] | d(v1, v2) = r] ≤ 3κ√
r
· ε · ln(1/ε) . (4.4)

Due to Lemma 4.8 d), the conditional density of the random variable Z = d(v2, v5) −
d(v1, v5) under the condition d(v1, v2) = r can be bounded by

fZ| d(v1,v2)=r(z) ≤ κ√
r2 − z2

for |z| ≤ r.
The intervals the adversary can specify which have the highest probability of Z

falling into them are [−r,−r + ε] and [r − ε, r]. Hence, the conditional probability of
the event ∆2 ∈ [0, ε] under the condition d(v1, v2) = r and for fixed points v3 and v4 is
bounded from above by∫ r

max{r−ε,−r}

κ√
r2 − z2

dz ≤ κ√
r
·
∫ r

max{r−ε,−r}

1√
r − |z|

dz ≤ κ′
√

ε√
r

for a sufficiently large constant κ′. Combining this inequality with (4.4) yields

Pr [∆1,∆2 ∈ [0, ε] | d(v1, v2) = r] ≤ 3κκ′

r
ε3/2 · ln(1/ε) .

In order to get rid of the condition d(v1, v2) = r, we integrate over all possible values
the random variable d(v1, v2) can take, yielding

Pr [∆1,∆2 ∈ [0, ε]] ≤
∫ √

d

0

3κκ′ · rd−2

dd/2 − 1
· ε3/2 · ln(1/ε) dr = O

(
ε3/2 · ln(1/ε)

)
.
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Applying a union bound over all O(n5) possible pairs of type 2 a) concludes the proof
when one takes into account the factor ((4d)d/2φ)4 due to considering the simplified
random experiment.

For pairs of type 2 b), the situation looks somewhat similar. We analyze the first
step and in the second step, we can only exploit the randomness of the distances d(v2, v5)
and d(v3, v5). Due to Lemma 4.8 b) and similar to (4.2), the probability of the event
∆1 ∈ [0, ε] under the condition d(v2, v3) = τ can be bounded by

Pr [∆1 ∈ [0, ε] | d(v2, v3) = τ ] ≤ 3κ

τ
· ε · ln(1/ε) . (4.5)

The remaining analysis of pairs of type 2 b) can be carried out completely analogously
to the analysis of pairs of type 2 a).

4.2.4 The expected number of 2-changes

Based on Lemmas 4.3 and 4.5, we are now able to prove part b) of Theorem 1.2.

Proof of Theorem 1.2 b). We use the same notations as in the proof of part a) of the
theorem. For t > 2n2, we have t/6− 7n(n− 1)/24 > t/48 and hence due to Lemma 4.5,

Pr [T ≥ t] ≤ Pr

[
∆∗

min ≤
48
√

dn

t

]

= O

(
min

{
n8 · log2(t) · φ5

t2
, 1
})

+ O

(
min

{
n13/2 · log(t) · φ4

t3/2
, 1

})
.

This implies that the expected length of the longest path in the state graph is bounded
from above by

2n2 +
n!∑

t=2n2+1

(
O

(
min

{
n8 · log2(t) · φ5

t2
, 1
})

+ O

(
min

{
n13/2 · log(t) · φ4

t3/2
, 1

}))
.

Splitting the sums at t = n4 · log(nφ) ·φ5/2 and t = n13/3 · log2/3(nφ) ·φ8/3, respectively,
yields

E [T ] = O
(
n4 · log(nφ) · φ5/2

)
+ O

(
n13/3 · log2/3(nφ) · φ8/3

)
.

This concludes the proof of part b) of the theorem.

Using the same observations as in the proof of Theorem 1.3 a) also yields part b).

Proof of Theorem 1.3 b). Estimating the length of the initial tour by O(n(d−1)/d · log n)
instead of O(n) improves the upper bound on the expected number of 2-changes by a
factor of Θ(n1/d/ log n) compared to Theorem 1.2 b). This observation yields the bound
claimed in Theorem 1.3 b).
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4.3 General Graphs

In this section, we analyze the expected number of 2-changes on φ-perturbed graphs.
Observe that φ-perturbed graphs contain more randomness than φ-perturbed Man-
hattan or Euclidean instances because each edge length is a random variable that is
independent of the other edge lengths. It is easy to obtain a polynomial bound on the
expected number of local improvements by just estimating the smallest improvement
made by any of the 2-changes. For Manhattan and Euclidean instances we improved
this simple bound by considering pairs of linked 2-changes. For φ-perturbed graphs we
pursue the same approach but due to the larger amount of randomness, we are now able
to consider not only pairs of linked steps but longer sequences of linked steps.

We know that every sequence of steps that contains k distinct 2-changes shortens the
tour by at least ∆(k) = ∆(1)

min+· · ·+∆(k)
min, where ∆(i)

min denotes the i-th smallest improve-
ment. This observation alone, however, does not suffice to improve the simple bound
substantially. Instead we show that one can identify in every long enough sequence
of consecutive 2-changes, subsequences that are linked, where a sequence S1, . . . , Sk of
2-changes is called linked if for every i ∈ [k − 1], there exists an edge that is added to
the tour in step Si and removed from the tour in step Si+1. We analyze the smallest
improvement of a linked sequence that consists of k distinct 2-Opt steps. Obviously,
this improvement must be at least ∆(k) as in the worst-case, the linked sequence consists
of the k smallest improvements. Intuitively, one can hope that it is much larger than
∆(k) because it is unlikely that the k smallest improvements form a sequence of linked
steps. We show that this is indeed the case and use this result to prove the desired
upper bound on the expected number of 2-changes.

We introduce the notion of witness sequences, i. e., linked sequences of 2-changes
that satisfy some additional technical properties. We show that the smallest total
improvement made by a witness sequence yields an upper bound on the running time.
That is, whenever the 2-Opt heuristic needs many local improvement steps to find a
locally optimal solution, there must be a witness sequence whose total improvement is
small. Furthermore, our probabilistic analysis reveals that it is unlikely that there exists
a witness sequence whose total improvement is small. Together, these results yield the
desired bound on the expected number of 2-changes.

4.3.1 Definition of witness sequences

In this section, we give a formal definition of the notion of a k-witness sequence. As
mentioned above, a witness sequence S1, . . . , Sk has to be linked, i. e., for i ∈ [k − 1],
there must exist an edge that is added to the tour in step Si and removed from the tour
in step Si+1. Let m denote the number of edges in the graph. Then there are at most
4k−1 ·mk+1 such linked sequences as there are at most m2 different choices for S1, and
once Si is fixed, there are at most 4m different choices for Si+1. For a fixed 2-change,
the probability that it is an improvement by at most ε is bounded by εφ. We would
like to show an upper bound of (εφ)k on the probability that each step in the witness
sequence S1, . . . , Sk is an improvement by at most ε. For general linked sequences, this
is not true as the steps can be dependent in various ways. Hence, we need to introduce
further restrictions on witness sequences.
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Figure 4.4: Illustration of the notations used in Definitions 4.11, 4.12, and 4.13. Every
node in the DAG corresponds to an edge involved in one of the 2-changes. An arc from
a node u to a node v indicates that in one of the 2-changes, the edge corresponding to
node u is removed from the tour and the edge corresponding to node v is added to the
tour. Hence, every arc is associated with one 2-change.

In the following definitions, we assume that a linked sequence S1, . . . , Sk of 2-changes
is given. For i ∈ [k], in step Si the edges ei−1 and fi−1 are removed from the tour and
the edges ei and gi are added to the tour, i. e., for i ∈ [k− 1], ei denotes an edge added
to the tour in step Si and removed from the tour in step Si+1. These definitions are
illustrated in Figure 4.4.

Definition 4.11 (witness sequences of type 1). If for every i ∈ [k], the edge ei does not
occur in any step Sj with j < i, then S1, . . . , Sk is called a k-witness sequence of type 1.

Intuitively, witness sequences of type 1 possess enough randomness as every step
introduces an edge that has not been seen before. Based on this observation, we prove
in Lemma 4.14 the desired bound of (εφ)k on the probability that every step is an
improvement by at most ε for these sequences.

Definition 4.12 (witness sequences of type 2). Assume that for every i ∈ [k], the edge
ei does not occur in any step Sj with j < i. If both endpoints of fk−1 occur in steps Sj

with j < k, then S1, . . . , Sk is called a k-witness sequence of type 2.

Also for witness sequences of type 2, we obtain the desired bound of (εφ)k on the
probability that every step is an improvement by at most ε. Due to the additional
restriction on fk−1, there are less than 4k−1mk+1 witness sequences of type 2. As the
two endpoints of fk−1 must be chosen among those vertices that occur in steps Sj with
j < k, there are only O(k2) choices for the last step Sk. This implies that the number
of k-witness sequences of type 2 can be upper bounded by O(4kk2mk).

Definition 4.13 (witness sequences of type 3). Assume that for every i ∈ [k − 1], the
edge ei does not occur in any step Sj with j < i. If the edges ek and gk occur in steps
Sj with j < k and if fk−1 does not occur in any step Sj with j < k, then S1, . . . , Sk is
called a k-witness sequence of type 3.

Also witness sequences of type 3 possess enough randomness to bound the probability
that every step is an improvement by at most ε by (εφ)k as also the last step introduces
a new edge, namely fk−1.
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4.3.2 Improvement made by witness sequences

In this section, we analyze the probability that there exists a k-witness sequence in
which every step is an improvement by at most ε.

Lemma 4.14. The probability that there exists a k-witness sequence in which every step
is an improvement by at most ε

a) is bounded from above by 4k−1mk+1(εφ)k for k-witness sequences of type 1.

b) is bounded from above by k24k−1mk(εφ)k for k-witness sequences of type 2.

c) is bounded from above by k24kmk(εφ)k for k-witness sequences of type 3.

Proof. We use a union bound to estimate the probability that there exists a witness
sequence in which every step is a small improvement.

a) We consider k-witness sequences of type 1 first. As already mentioned in the
previous section, the number of such sequences is bounded by 4k−1mk+1 as there are at
most m2 choices for the first step S1, and once Si is fixed, there are at most 4m choices
for step Si+1. The number 4m follows since if Si is fixed, there are two choices for the
edge added to the tour in step Si and removed from the tour in step Si+1, there are
at most m choices for the other edge removed in step Si+1, and once these edges are
determined, there are two possible 2-Opt steps in which these edges are removed from
the tour.

Now fix an arbitrary k-witness sequence S1, . . . , Sk of type 1. We use the same
notations as in Figure 4.4 to denote the edges involved in this sequence. In the first
step, the edges e0 and f0 are replaced by the edges e1 and g1. We assume that the
lengths of the edges e0, f0, and g1 are determined by an adversary. The improvement of
step S1 can be expressed as a simple linear combination of the lengths of the involved
edges. Hence, for fixed lengths of e0, f0, and g1, the event that S1 is an improvement by
at most ε corresponds to the event that the length d(e1) of e1 lies in some fixed interval
of length ε. Since the density of d(e1) is bounded by φ, the probability that d(e1) takes
a value in the given interval is bounded by εφ. Now consider a step Si and assume that
arbitrary lengths for the edges ej and fj with j < i and for gj with j ≤ i are chosen.
Since the edge ei is not involved in any step Sj with j < i, its length is not determined.
Hence, analogously to the first step, the probability that step Si is an improvement by
at most ε is bounded by εφ independent of the improvements of the steps Sj with j < i.
Applying this argument to every step Si yields the desired bound of (εφ)k.

b) In witness sequences of type 2, there are at most m2 choices for step S1. Anal-
ogously to witness sequences of type 1, the number of possible choices for Si with
1 < i < k− 1 is at most 4m. The number of different vertices involved in steps Sj with
j < k is at most 4 + 2(k − 2) = 2k as the first step introduces four new vertices and
every other step at most 2. Since the endpoints of the edge fk−1 must be chosen among
those vertices that have been involved in the steps Sj with j < k, there are at most
4k2 possible choices for step Sk−1. This implies that the number of different k-witness
sequences of type 2 is bounded by 4 · k24k−2mk = k24k−1mk.

For a fixed witness sequence of type 2, applying the same arguments as for wit-
ness sequences of type 1, yields a probability of at most (εφ)k that every step is an
improvement by at most ε.
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c) The number of different edges involved in the steps Si with i < k is at most
4 + 3(k − 2) < 3k. Hence, the number of k-witness sequences of type 3 is bounded
by 9k24k−2mk < k24kmk. Furthermore, similar to witness sequences of type 1, we
can bound the probability that a fixed k-witness sequence of type 3 consists only of
improvements by at most ε by (εφ)k since the last step introduces an edge which does
not occur in the steps Si with i < k, namely fk−1.

Definition 4.15. In the following, we use the term k-witness sequence to denote a
k-witness sequence of type 1 or an i-witness sequence of type 2 or 3 with i ≤ k. We call
a k-witness sequence improving if every 2-change in the sequence is an improvement.
Moreover, by ∆(k)

ws we denote the smallest total improvement made by any improving
k-witness sequence.

Due to Lemma 4.14, it is unlikely that there exists an improving witness sequence
whose total improvement is small.

Corollary 4.16. For k ∈ N and 0 < ε ≤ (4m(k−1)/(k−2)φ)−1,

Pr
[
∆(k)

ws ≤ ε
]
≤ 64k3(mεφ)2 .

Proof. Due to Lemma 4.14 and the fact that witness sequences of type 2 or 3 must
consist of at least two steps, applying a union bound yields the following bound on the
probability that there exists an improving k-witness sequence whose total improvement
is at most ε:

Pr
[
∆(k)

ws ≤ ε
]
≤4k−1mk+1(εφ)k +

k∑
i=2

i24i−1mi(εφ)i +
k∑

i=2

i24imi(εφ)i

≤4k−1mk+1(εφ)k + 2k2
k∑

i=2

(4mεφ)i .

Since 4mεφ < 1, we can bound the sum by

Pr
[
∆(k)

ws ≤ ε
]
≤ 4k−1mk+1(εφ)k + 2k3(4mεφ)2 ,

which implies the corollary because for ε ≤ (4m(k−1)/(k−2)φ)−1, the second term in the
sum is at least as large as first one.

4.3.3 Finding witness sequences

In the previous section, we have shown an upper bound on the probability that there
exists an improving k-witness sequence whose total improvement is small. In this sec-
tion, we show that in every long enough sequence of consecutive 2-changes, one can
identify a certain number of disjoint k-witness sequences. This way, we obtain a lower
bound on the improvement made by any long enough sequence of consecutive 2-changes
in terms of ∆(k)

ws .
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Lemma 4.17. Let k ∈ N, and let S1, . . . , St denote a sequence of consecutive 2-changes
performed by the 2-Opt heuristic with t > n4k+1. The sequence S1, . . . , St shortens the
tour by at least t/4k+3 ·∆(k)

ws .

Basically, we have to show that one can find t/4k+3 disjoint k-witness sequences in
the given sequence of consecutive 2-changes. Therefore, we first introduce a so-called
witness DAG (directed acyclic graph) which represents the sequence S1, . . . , St of 2-
changes. In order to not confuse the constructed witness DAG W with the input graph
G, we use the terms nodes and arcs when referring to the DAG W and the terms vertices
and edges when referring to G. Nodes of W correspond to edges of G combined with a
time stamp. The construction is started by adding the edges of the initial tour as nodes
into W . These nodes get the time stamps 1, . . . , n in an arbitrary order. Then the
sequence S1, . . . , St is processed step by step. Assume that the steps S1, . . . Si−1 have
already been processed and that step Si is to be processed next. Furthermore, assume
that in step Si the edges ei−1 and fi−1 are exchanged with the edges ei and gi. Since
the edges ei−1 and fi−1 are contained in the tour after the steps S1, . . . , Si−1, there are
nodes in W corresponding to these edges. Let u1 and u2 denote the nodes with the
most recent time stamps corresponding to ei−1 and fi−1, respectively. We create two
new nodes u3 and u4 corresponding to the edges ei and gi, each with time stamp n + i.
Finally, four new arcs are added to W , namely the arcs (u1, u3), (u1, u4), (u2, u3), and
(u2, u4). We refer to these four arcs as twin arcs. Observe that each node in W has
indegree and outdegree at most 2. We call the resulting DAG W a t-witness DAG.

By the height of a node u, we denote the length of a shortest path from u to a leaf
of W . After the witness DAG has been completely constructed, we associate with each
node u with height at least k a sub-DAG of W . The sub-DAG Wu associated with such
a node u is the induced sub-DAG of those nodes of W that can be reached from u by
traversing at most k arcs. The following two lemmas imply Lemma 4.17.

Lemma 4.18. For every sub-DAG Wu, the 2-changes represented by the arcs in Wu

and their twin arcs yield a total improvement of at least ∆(k)
ws .

Lemma 4.19. For t > n4k+1, every t-witness DAG contains at least t/4k+2 nodes u
whose corresponding sub-DAGs Wu are pairwise disjoint.

Proof of Lemma 4.18. Assume that a sub-DAG Wu with root u is given. Since node
u has height k, one can identify 2k−1 distinct sequences of linked 2-changes of length
k in the sub-DAG Wu. In the following, we show that at least one of these sequences
is a k-witness sequence or a sequence whose total improvement is as large as the total
improvement of one of the k-witness sequences. We give a recursive algorithm Sequ
that constructs such a sequence step by step. It is initialized with the sequence which
consists only of the first step S1 that is represented by the two outgoing arcs of the root
u and their twin arcs.

Assume that Sequ is called with a sequence of steps S1, . . . , Si that has been con-
structed so far. Given this sequence, it has to decide if the sequence is continued with
a step Si+1 such that Si and Si+1 are linked or if the construction is stopped since a
k-witness sequence is found. In Figure 4.5, we summarize the notations that we use
in the following. In step Sj for j ≤ i − 1 and j = i + 1, the edges ej−1 and fj−1 are
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Figure 4.5: Construction of a path in the witness DAG: The path has been constructed
up to step Si and now it has to be decided whether to continue it along ei or e′i.

exchanged with the edges ej and gj . In step Si, the edges ei−1 and fi−1 are exchanged
with the edges ei and e′i, and in step S′i+1, the edges e′i and f ′i are exchanged with the
edges e′i+1 and g′i+1. We denote by Ei all edges that are involved in steps Sj with j ≤ i.
Similarly, by Ei−1 we denote all edges that are involved in steps Sj with j ≤ i− 1.

Our construction ensures that whenever Sequ is called with a sequence S1, . . . , Si

as input, then at least one of the edges that is added to the tour in step Si is not
contained in Ei−1. In the following, assume without loss of generality that ei /∈ Ei−1.
When we call the algorithm recursively with the sequence S1, . . . , Si+1 or with the
sequence S1, . . . , Si, S

′
i+1, then either the recursive call never gives back a return value

since a witness sequence is found in the recursive call, which immediately stops the
construction, or a 2-change S is returned. Whenever a 2-change S is returned, the
meaning is as follows: There exists a sequence of linked 2-changes in the sub-DAG Wu

starting with Si+1 or S′i+1, respectively, whose net effect equals the 2-change S. That
is, after all steps in the sequence have been performed, the same two edges as in S are
removed from the tour, the same two edges are added to the tour, and all other edges
either stay in or out of the tour. In this case, we can virtually replace step Si+1 or S′i+1,
respectively, by the new step S.

When Sequ is called with the sequence S1, . . . , Si, then it first identifies the steps
Si+1 and S′i+1 based on the last step Si. If i = k, then S1, . . . , Si is a k-witness sequence
of type 1, and Sequ stops. Otherwise, the following steps are performed, where we
assume that whenever Sequ has identified a witness sequence, it immediately stops the
construction.

1. Type 2 Sequence: If fi−1 ∈ Ei−1, then S1, . . . , Si is a witness sequence of type 2
because we assumed ei /∈ Ei−1.

2. Continuation: If ei+1 /∈ Ei or gi+1 /∈ Ei, then call Sequ recursively with
Sequ(S1, . . . , Si+1). If e′i /∈ Ei−1 and (e′i+1 /∈ Ei or g′i+1 /∈ Ei), then call Sequ
recursively with Sequ(S1, . . . , Si, S

′
i+1).

If in one of the recursive calls a step S is returned, which happens only in case
3 (c), then replace the corresponding step Si+1 or S′i+1 virtually by the returned
step. That is, in the following steps of the algorithm, assume that Si+1 or S′i+1
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equals step S. The algorithm ensures that the edges that are added to the tour
in the new step S are always chosen from the set Ei.

3. No Continuation I: e′i ∈ Ei−1 and ei+1, gi+1 ∈ Ei and fi−1 /∈ Ei−1

(a) If fi /∈ Ei, then S1, . . . , Si+1 is a witness sequence of type 3.

(b) If ei+1, gi+1 ∈ Ei−1, then S1, . . . , Si is a witness sequence of type 2 since
one endpoint of fi−1 equals one endpoint of e′i and the other one equals one
endpoint of either ei+1 or gi+1.

(c) If fi ∈ Ei and (ei+1 ∈ Ei \ Ei−1 or gi+1 ∈ Ei \ Ei−1), then one can assume
w. l. o. g. that gi+1 = fi−1 and ei+1 ∈ Ei−1 since ei+1 6= e′i and gi+1 6= e′i
(ei+1 and gi+1 share one endpoint with ei; e′i does not share an endpoint
with ei.) In this case, return the step S = (ei−1, fi) → (ei+1, e

′
i). Observe

that ei+1, e
′
i ∈ Ei−1, as desired.

4. No Continuation II: e′i /∈ Ei−1 and ei+1, gi+1, e
′
i+1, g

′
i+1 ∈ Ei and fi−1 /∈ Ei−1

(a) If ei+1, gi+1, e
′
i+1, g

′
i+1 ∈ Ei−1, then S1, . . . , Si is a witness sequence of type 2.

(b) If fi /∈ Ei, then S1, . . . , Si+1 is a witness sequence of type 3.

(c) If f ′i /∈ Ei, then S1, . . . , Si, S
′
i+1 is a witness sequence of type 3.

(d) If fi, f
′
i ∈ Ei and (ei+1 ∈ Ei \Ei−1 or gi+1 ∈ Ei \Ei−1) and (e′i+1 ∈ Ei \Ei−1

or g′i+1 ∈ Ei\Ei−1), then as in case 3 (c), assume w. l. o. g. gi+1 = g′i+1 = fi−1

and ei+1, e
′
i+1 ∈ Ei−1. In this case, it must be fi 6= e′i and f ′i 6= ei as otherwise

step Si would be reversed in step Si+1 or S′i+1. Hence, fi, f
′
i ∈ Ei−1, and

S1, . . . , Si is a witness sequence of type 2 since one endpoint of fi−1 equals
one endpoint of fi and the other endpoint equals one endpoint of f ′i .

(e) If |{ei+1, e
′
i+1, gi+1, g

′
i+1}∩(Ei \Ei−1)| = 1, assume w. l. o. g. ei+1, gi+1, e

′
i+1 ∈

Ei−1 and g′i+1 = fi−1. As in the previous case, it must f ′i ∈ Ei−1. For
the step S = (ei−1, f

′
i) → (ei, e

′
i+1), the sequence S1, . . . , Si−1, S is a witness

sequence of type 2 as f ′i ∈ Ei−1. Observe that the original sequence S1, . . . , Si

together with the step S′i+1 yields the same net effect and hence the same
improvement as the sequence S1, . . . , Si−1, S.

Observe that basically Sequ just constructs a path through the DAG starting at node
u. When a path corresponding to the sequence S1, . . . , Si of 2-changes has been con-
structed, Sequ decides to either stop the construction since a witness sequence has been
found, or, if possible, to continue the path with an arc corresponding to a step Si+1 or
S′i+1. In some situations, it can happen that Sequ has not found a witness sequence yet
but cannot continue the construction. In such cases, step Si is pruned and Sequ recon-
siders the path S1, . . . , Si−1. Based on the pruned step Si, it can then either decide that
a witness sequence has been found, that also Si−1 has to be pruned, or it can decide to
continue the path with S′i instead of Si.

This concludes the proof as the presented algorithm always identifies a k-witness
sequence whose total improvement is at most as large as the improvement made by the
steps in the sub-DAG Wu.
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Proof of Lemma 4.19. A t-witness DAG W consists of n+2t nodes and n of these nodes
are leaves. Since the indegree and the outdegree of every node is bounded by 2, there
are at most n2k nodes in W whose height is less than k. Hence, there are at least
n+2t−n2k ≥ t nodes in W with an associated sub-DAG. We construct a set of disjoint
sub-DAGs in a greedy fashion: We take an arbitrary sub-DAG Wu and add it to the
set of disjoint sub-DAGs that we construct. After that, we remove all nodes, arcs, and
twin arcs of Wu from the DAG W . We repeat these steps until no sub-DAG Wu is left
in W .

In order to see that the constructed set consists of at least t/4k+2 disjoint sub-DAGs,
observe that each sub-DAG consists of at most 2k+1− 1 nodes as its height is k. Hence,
it contains at most 2k − 1 pairs of twin arcs, and there are at most 2k+2 − 4 arcs that
belong to the sub-DAG or that have a twin arc belonging to the sub-DAG. Furthermore,
observe that each of these arcs can be contained in at most 2k − 1 sub-DAGs. Hence,
every sub-DAG Wu can only be non-disjoint from at most 22k+2 = 4k+1 other sub-
DAGs. Thus, the number of disjoint sub-DAGs must be at least bt/4k+1c > t/4k+2,
where the last inequality follows because we assumed t > n4k+1.

4.3.4 The expected number of 2-changes

Now we can prove Theorem 1.2.

Proof of Theorem 1.2 c). We combine Corollary 4.16 and Lemma 4.17 to obtain an
upper bound on the probability that the length T of the longest path in the state graph
exceeds t. For t > n4k+1, the tour is shortened by the sequence of 2-changes by at least
t/4k+2 ·∆(k)

ws . Hence, for t > n4k+1,

Pr [T ≥ t] ≤ Pr
[

t

4k+2
·∆(k)

ws ≤ n

]
= Pr

[
∆(k)

ws ≤
n · 4k+2

t

]
.

Combining this inequality with Corollary 4.16 yields for t ≥ 4k+3 · n · φ ·m(k−1)/(k−2),

Pr [T ≥ t] ≤ 64k3

(
4k+2 · n ·m · φ

t

)2

.

Hence, we can bound the expected number of 2-changes by

E [T ] ≤ 4k+3 · n · φ ·m(k−1)/(k−2) +
n!∑

t=1

min

{
64k3

(
4k+2 · n ·m · φ

t

)2

, 1

}
.

Splitting the sum at t = k3/2 · 4k+2 · n ·m · φ yields

E [T ] = O
(
k3/2 · 4k · n ·m(k−1)/(k−2) · φ

)
.

Setting k =
√

log m yields the theorem.
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5 Expected Approximation Ratio

In this section, we consider the expected approximation ratio of the solution found by
2-Opt on φ-perturbed Lp instances. Chandra, Karloff, and Tovey [CKT99] show that if
one has a set of n points in the unit hypercube [0, 1]d and the distances are measured
according to a metric that is induced by a norm, then every locally optimal solution has
length at most c · n(d−1)/d for an appropriate constant c depending on the dimension d
and the metric. Hence, it follows for every Lp metric that 2-Opt yields a tour of length
at most O(n(d−1)/d) on φ-perturbed Lp instances. This implies that, in order to bound
the expected approximation ratio of 2-Opt on these instances, we just need to upper
bound the expected value of 1/Opt, where Opt denotes the length of the shortest tour.

Lemma 5.1. Let p ∈ N ∪ {∞}. For φ-perturbed Lp instances with n points, it holds

E
[

1
Opt

]
= O

(
d
√

φ

n(d−1)/d

)
.

Proof. Let v1, . . . , vn ∈ Rd denote the points of the φ-perturbed instance. We partition
the unit hypercube into k = dnφe smaller hypercubes with volume 1/k each and analyze
how many of these smaller hypercubes contain at least one of the points. Assume that
X of these hypercubes contain a point, then the optimal tour must have length at least
X/(3d d

√
k). In order to see this, we construct a set P ⊆ {v1, . . . , vn} of points as follows:

Consider the points v1, . . . , vn one after another, and insert a point vi into P if P does
not contain a point in the same hypercube as vi or in one of its 3d − 1 neighboring
hypercubes yet. Due to the triangle inequality, the optimal tour on P is at most as
long as the optimal tour on v1, . . . , vn. Furthermore, P contains at least X/3d points
and every edge between two points from P has length at least 1/ d

√
k since P does not

contain two points in the same or in two neighboring hypercubes.
Hence, it remains to analyze the random variable X. For each hypercube i with

1 ≤ i ≤ k, we define a random variables Xi which takes value 0 if hypercube i is empty
and value 1 if hypercube i contains at least one point. The density functions that specify
the locations of the points induce for each pair of hypercube i and point j a probability
pj

i such that point j falls into hypercube i with probability pj
i . Hence, one can think

of throwing n balls into k bins in a setting where each ball has its own probability
distribution over the bins. Due to the bounded density, we have pj

i ≤ φ/k. For each
hypercube i, let Mi denote the probability mass associated with the hypercube, that is

Mi =
n∑

j=1

pj
i ≤

nφ

k
.

We can write the expected value of the random variable Xi as

E [Xi] = Pr [Xi = 1] = 1−
n∏

j=1

(1− pj
i ) ≥ 1−

(
1− Mi

n

)n

as, under the constraint
∑

j(1− pj
i ) = n−Mi, the term

∏
j(1− pj

i ) is maximized if all
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pj
i are equal. Due to linearity of expectation, the expected value of X is

E [X] ≥
k∑

i=1

1−
(

1− Mi

n

)n

= k −
k∑

i=1

(
1− Mi

n

)n

.

Observe that
∑

i Mi = n. Thus, the sum
∑

i(1 −Mi/n) becomes maximal if the Mi’s
are chosen as unbalanced as possible. Hence, we assume that dk/φe of the Mi’s take
their maximal value of nφ/k and the other Mi’s are zero. This yields, for sufficiently
large n,

E [X] ≥k −
(⌈

k

φ

⌉(
1− φ

k

)n

+
(

k −
⌈

k

φ

⌉))
≥k

φ
− 2k

φ

(
1− φ

k

)n

≥k

φ

(
1− 2

(
1− 1

n + 1

)n)
≥ n

5
.

Hence, we obtain the following bound on the expected length of the optimal tour

E [Opt] ≥ E [X]
3d d
√

k
≥ n

5 · 3d d
√

k
≥ n(d−1)/d

5 · 3d d
√

φ + 1
.

We still need to determine the expected value of the random variable 1/Opt. There-
fore, we first show that X is sharply concentrated around its mean value. The random
variable X is the sum of n 0-1-random variables. If these random variables were inde-
pendent, we could simply use a Chernoff bound to bound the probability that X takes
a value that is smaller than its mean value. The Xi’s are negatively associated, in the
sense that whenever we already know that some of the Xi’s are zero, then the proba-
bility of the event that another Xi also takes the value zero becomes smaller. Hence,
intuitively, the dependencies can only help to bound the probability that X takes a
value smaller than its mean value. Dubhashi and Ranjan [DR98] formalize this intu-
ition by introduction the notion of negative dependence and by showing that in the case
of negative dependent random variables, one can still apply a Chernoff bound. This
yields

Pr
[
X ≤ n

10

]
≤ e−n/40 .

Thus, as 1/X ≤ 1 with certainty, for sufficiently large n,

E
[

1
X

]
≤ (1− e−n/40) · 10

n
+ e−n/40 ≤ 11

n

Altogether, this implies

E
[

1
Opt

]
≤ E

[
3d · d

√
dnφe

X

]
= O

(
d
√

φ

n(d−1)/d

)
.

If one combines Lemma 5.1 with the result of Chandra, Karloff, and Tovey that
every locally optimal solution has length O(n(d−1)/d), one obtains Theorem 1.4.
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6 Smoothed Analysis

Smoothed Analysis was introduced by Spielman and Teng [ST04] as a hybrid of worst
case and average case analysis. The semi-random input model in a smoothed analysis
is designed to capture the behavior of algorithms on typical inputs better than a worst
case or average case analysis alone as it allows an adversary to specify an arbitrary
input which is randomly perturbed afterwards. In Spielman and Teng’s analysis of
the Simplex algorithm the adversary specifies an arbitrary linear program which is
perturbed by adding independent Gaussian random variables to each number in the
linear program. Our probabilistic analysis of Manhattan and Euclidean instances can
also be seen as a smoothed analysis in which an adversary can choose the distributions
for the points over the unit hypercube. The adversary is restricted to distributions
that can be represented by densities that are bounded by φ. Our model cannot handle
Gaussian perturbations directly because the support of Gaussian random variables is
not bounded.

Assume that every point v1, . . . , vn is described by a density whose support is re-
stricted to the hypercube [−α, α]d, for some α ≥ 1. Then after appropriate scaling and
translating, we can assume that all supports are restricted to the unit hypercube [0, 1]d.
Thereby, the maximal density φ increases by at most a factor of (2α)d. Hence, after
appropriate scaling and translating, Theorems 1.2, 1.3, and 1.4 can still be applied if
one takes into account the increased densities.

One possibility to cope with Gaussian perturbations is to consider truncated Gaus-
sian perturbations. In such a perturbation model, the coordinates of each point are
initially chosen from [0, 1]d and then perturbed by adding Gaussian random variables
with some standard deviation σ to them that are conditioned to lie in [−α, α] for some
α ≥ 1. The maximal density of such truncated Gaussian random variables for σ ≤ 1 is
bounded from above by

1/(σ
√

2π)
1− σ · exp(−α2/(2σ2))

.

After such a truncated perturbation, all points lie in the hypercube [−α, 1+α]d. Hence,
one can apply Theorems 1.2, 1.3, and 1.4 with

φ =
(2α + 1)d

(σ
√

2π − σ2
√

2π exp(−α2/(2σ2)))d
= O

(
αd

σd

)
.

It is not necessary to truncate the Gaussian random variables if the standard de-
viation is small enough. For σ ≤ min{α/

√
2(n + 1) ln n + 2 ln d, 1}, the probability

that one of the Gaussian random variables has an absolute value larger than α ≥ 1 is
bounded from above by n−n. In this case, even if one does not truncate the random
variables, Theorems 1.2, 1.3, and 1.4 can be applied with φ = O(αd/σd). To see this, it
suffices to observe that the worst-case bound for the number of 2-changes is (n!) and the
worst-case approximation ratio is O(log n) [CKT99]. Multiplying these values with the
failure probability of n−n constitutes less than 1 to the expected values. In particular,
this implies that the expected length of the longest path in the state graph is bounded
by O(poly(n, 1/σ)).
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7 Conclusions and Open Problems

We have shown several new results on the running time and the approximation ratio
of the 2-Opt heuristic. However, there is still a variety of open problems regarding this
algorithm. Our lower bounds only show that there exist families of instances on which
2-Opt takes an exponential number of steps if it uses a particular pivot rule. It would
be interesting to analyze the diameter of the state graph and to either present instances
on which every pivot rule needs an exponential number of steps or to prove that there
is always an improvement sequence of polynomial length to a locally optimal solution.
Also the worst number of local improvements for some natural pivot rules like, e. g.,
the one that always makes the largest possible improvement or the one that always
chooses a random improving 2-change, is not known yet. Furthermore, the complexity
of computing locally optimal solutions is open. The only result in this regard is due to
Krentel [Kre89] who shows that it is PLS-complete to compute a local optimum for the
metric TSP for k-Opt for some constant k. It is not known whether his construction
can be embedded into the Euclidean metric and whether it is PLS-complete to compute
locally optimal solutions for 2-Opt. Fischer and Torenvliet [FT95] show, however, that
for the general TSP, it is PSPACE-hard to compute a local optimum for 2-Opt that is
reachable from a given initial tour.

The obvious open question concerning the probabilistic analysis is how the gap be-
tween experiments and theory can be narrowed further. In order to tackle this question,
new methods seem to be necessary. Our approach, which is solely based on analyzing
the smallest improvement made by a sequence of linked 2-changes, seems to yield too
pessimistic bounds. Another interesting area to explore is the expected approxima-
tion ratio of 2-Opt. In experiments, approximation ratios close to 1 are observed. For
instances that are chosen uniformly at random, the bound on the expected approxima-
tion ratio is a constant but unfortunately a large one. It seems to be a very challenging
problem to improve this constant to a value that matches the experimental results.

Besides 2-Opt, there are also other local search algorithms that are successful for
the traveling salesperson problem. In particular, the Lin-Kernighan heuristic [LK73]
is one of the most successful local search algorithm for the symmetric TSP. It is a
variant of k-Opt in which k is not fixed and it can roughly be described as follows:
Each local modification starts by removing one edge {a, b} from the current tour, which
results in a Hamiltonian path with the two endpoints a and b. Then an edge {b, c} is
added, which forms a cycle; there is a unique edge {c, d} incident to c whose removal
breaks the cycle, producing a new Hamiltonian path with endpoints a and d. This
operation is called a rotation. Now either a new Hamiltonian cycle can be obtained by
adding the edge {a, d} to the tour or another rotation can be performed. There are a
lot of different variants and heuristic improvements of this basic scheme, but little is
known theoretically. Papadimitriou [Pap92] shows for a variant of the Lin-Kernighan
heuristic that computing a local optimum is PLS-complete, which is a sharp contrast to
the experimental results. Since the Lin-Kernighan heuristic is widely used in practice, a
theoretical explanation for its good behavior in practice is of great interest. Our analysis
of 2-Opt relies crucially on the fact that there is only a polynomial number of different
2-changes. For the Lin-Kernighan heuristic, however, the number of different local
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improvements is exponential. Hence, it is an interesting question whether nonetheless
the smallest possible improvement is polynomially large or whether different methods
yield a polynomial upper bound on the expected running time of the Lin-Kernighan
heuristic.
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A Some Probability Theory

Lemma A.1. Let X1, . . . , Xn be independent d-dimensional random row vectors, and,
for i ∈ [n] and some φ ≥ 1, let fi : [0, 1]d → [0, φ] denote the joint density of the entries
of Xi. Furthermore, let λ1, . . . , λk ∈ Zdn be linearly independent row vectors. For i ∈ [n]
and a fixed ε ≥ 0, we denote by Ai the event that λi · X takes a value in the interval
[0, ε], where X denotes the vector X = (X1, . . . , Xn)T. Under these assumptions,

Pr

[
k⋂

i=1

Ai

]
≤ (εφ)k .

Proof. The main tool for proving the lemma is a change of variables. Instead of using the
canonical basis of the dn-dimensional vector space Rdn, we use the given linear combina-
tions as basis vectors. To be more precise, the basis B that we use consists of two parts:
it contains the vectors λ1, . . . , λk and it is completed by some vectors from the canoni-
cal basis {e1, . . . , edn}, where ei denotes the i-th canonical row vector, i. e., ei

i = 1 and
ei
j = 0 for j 6= i. That is, the basis B can be written as {λ1, . . . , λk, eπ(1), . . . , eπ(dn−k)},

for some injective function π : [dn− k] → [dn].
Let Φ: Rdn → Rdn be defined by Φ(x) = Ax, where A denotes the (dn)×(dn)-matrix

λ1

...
λk

eπ(1)

...
eπ(dn−k)


.

Since B is a basis of Rdn, the function Φ is a bijection. We define Y = (Y1, . . . , Ydn)T as
Y = Φ(X), and for i ∈ [n], we denote by Y i the vector (Yd(i−1)+1, . . . , Ydi). Let f : Rdn →
R denote the joint density of the entries of the random vectors X1, . . . , Xn, and let
g : Rdn → R denote the joint density of the entries of the random vectors Y 1, . . . , Y n.
Due to the independence of the random vectors X1, . . . , Xn, we have f(x1, . . . , xdn) =
f1(x1, . . . , xd) · · · · · fn(xd(n−1)+1, . . . , xdn). We can express the joint density g as

g(y1, . . . , ydn) = |det
∂

Φ−1(y1, . . . , ydn) | · f(Φ−1(y1, . . . , ydn)) ,

where det∂ denotes the determinant of the Jacobian matrix of Φ−1.
The matrix A is invertible as B is a basis of Rdn. Hence, for y ∈ Rdn, Φ−1(y) = A−1y

and the Jacobian matrix of Φ−1 equals A−1. Thus, det∂ Φ−1 = det A−1 = (det A)−1.
Since all entries of A are integers, also its determinant must be an integer, and since
it has rank dn, we know that det A 6= 0. Hence, |det A | ≥ 1 and |det A−1 | ≤ 1.
For y ∈ Rdn, we decompose Φ−1(y) ∈ Rdn into n subvectors with d entries each, i. e.,
Φ−1(y) = (Φ−1

1 (y), . . . ,Φ−1
n (y)) with Φ−1

i (y) ∈ Rd for i ∈ [n]. This yields

g(y) = |det A−1 | · f(Φ−1(y)) ≤ f1(Φ−1
1 (y)) · · · · · fn(Φ−1

n (y)) .
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The probability we want to estimate can be written as

Pr

[
k⋂

i=1

Ai

]
=
∫ ε

y1=0
· · ·
∫ ε

yk=0

∫ ∞

yk+1=−∞
· · ·
∫ ∞

ydn=−∞
g(y1, . . . , ydn) dydn . . . dy1 . (A.1)

Since all entries of the vectors X1, . . . , Xn take only values in the interval [0, 1] and
since for i ∈ {k + 1, . . . , dn}, the random variable Yi coincides with one of these entries,
(A.1) simplifies to

Pr

[
k⋂

i=1

Ai

]
=
∫ ε

y1=0
· · ·
∫ ε

yk=0

∫ 1

yk+1=0
· · ·
∫ 1

ydn=0
g(y1, . . . , ydn) dydn . . . dy1 . (A.2)

Without loss of generality, we assume that {i | @j ∈ [dn − k] : π(j) = i} ⊆ [dk],
i. e., only vectors ei from the canonical basis with i ≤ dk are replaced by the vectors
λ1, . . . , λk in the basis B. Furthermore, we can assume w. l. o. g. π(i) = i, for i > dk.
Under these assumptions, the density g can be upper bounded as follows:

g(y1, . . . , ydn) ≤ φk · fk+1(ydk+1, . . . , yd(k+1)) · · · · · fn(yd(n−1)+1, . . . , ydn) . (A.3)

Putting together (A.2) and (A.3) yields

Pr

[
k⋂

i=1

Ai

]
≤ (εφ)k ·

∫ 1

ydk+1=0
· · ·
∫ 1

yd(k+1)=0
fk+1(ydk+1, . . . , yd(k+1))

. . .

∫ 1

yd(n−1)+1=0

∫ 1

ydn=0
fn(yd(n−1)+1, . . . , ydn) dydn . . . dydk+1

= (εφ)k ,

where the last equation follows because fk+1, . . . , fn are density functions.

B Proofs of some Lemmas from Section 4.2

B.1 Proof of Lemma 4.7

Let a, c ∈ (0, C] for some C > 0. In the following proof, we use the following two
identities: ∫ c

0

1√
z(c− z)

dz = π

and ∫ a

0

1√
z(z + c)

dz = ln
( c

2
+ a +

√
a(a + c)

)
+ ln

(
2
c

)
≤ ln

(
3
2
c + 2a

)
+ ln

(
2
c

)
≤ ln (4C) + ln

(
2
c

)
.
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Proof of Lemma 4.7. The conditional density of ∆ can be calculated as convolution of
the conditional densities of Z1 and Z2 as follows:

f∆|T=τ,R1=r1,R2=r2
(δ) =

∫ ∞

−∞
fZ|T=τ,R=r1

(z) · fZ|T=τ,R=r2
(z − δ) dz .

In order to estimate this integral, we distinguish between several cases. In the following,
let κ denote a sufficiently large constant.

First case: τ ≤ r1 and τ ≤ r2.
Since Zi takes only values in the interval [−τ, τ ], we can assume 0 < δ ≤ min{1/2, 2τ}
and

f∆|T=τ,R1=r1,R2=r2
(δ) =

∫ τ

−τ+δ
fZ|T=τ,R=r1

(z) · fZ|T=τ,R=r2
(z − δ) dz .

Due to Lemma 4.6, we can estimate the densities of Z1 and Z2 by

fZ|T=τ,R=ri
(z) ≤

√
2

τ2 − z2
≤

√
2

τ(τ − |z|)
≤
√

2
τ

(
1√

τ − z
+

1√
τ + z

)
.

For δ ∈ (0,min{1/2, 2τ}], we obtain the following upper bound on the density of ∆:

f∆|T=τ,R1=r1,R2=r2
(δ)

≤2
τ

∫ τ

−τ+δ

(
1√

τ − z
+

1√
τ + z

)(
1√

τ − z + δ
+

1√
τ + z − δ

)
dz

=
2
τ

(∫ 2τ−δ

0

1√
z(z + δ)

dz +
∫ 2τ

δ

1√
z(2τ + δ − z)

dz

+
∫ 2τ−δ

0

1√
z(2τ − δ − z)

dz +
∫ 2τ−δ

0

1√
z(z + δ)

dz

)
≤2

τ

(
2π + 2 ln(8

√
d) + 2 ln

(
2δ−1

))
≤ κ

τ
· ln δ−1 .

Second case: r1 ≤ τ and r2 ≤ τ .
Since Zi takes only values in the interval [−τ, 2ri − τ ], we can assume 0 < δ ≤
min{1/2, 2r1} and

f∆|T=τ,R1=r1,R2=r2
(δ) =

∫ min{2r1−τ,2r2−τ+δ}

−τ+δ
fZ|T=τ,R=r1

(z) · fZ|T=τ,R=r2
(z − δ) dz .

Due to Lemma 4.6, we can estimate the densities of Z1 and Z2 by

fZ|T=τ,Ri=ri
(z) ≤

√
2

(τ + z)(2ri − τ − z)
≤


√

2
ri(τ+z) if z ≤ ri − τ√

2
ri(2ri−τ−z) if z ≥ ri − τ

≤
√

2
ri

(
1√

τ + z
+

1√
2ri − τ − z

)
.
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Case 2.1: δ ∈ (max{0, 2(r1 − r2)}, 2r1].
We obtain the following upper bound on the density of ∆:

f∆|T=τ,R1=r1,R2=r2
(δ)

≤ 2
√

r1r2

∫ 2r1−τ

−τ+δ

(
1√

τ + z
+

1√
2r1 − τ − z

)(
1√

τ + z − δ
+

1√
2r2 − τ − z + δ

)
dz

=
2

√
r1r2

(∫ 2r1−δ

0

1√
z(z + δ)

dz +
∫ 2r1−δ

0

1√
z(2r1 − δ − z)

dz

+
∫ 2r1

δ

1√
z(2r2 + δ − z)

dz +
∫ 2r1−δ

0

1√
z(2(r2 − r1) + δ + z)

dz

)
≤ 2
√

r1r2

(
2π + 2 ln(8

√
d) + ln

(
2δ−1

)
+ ln

(
2(2(r2 − r1) + δ)−1

))
≤ κ
√

r1r2

(
ln δ−1 + ln

(
(2(r2 − r1) + δ)−1

)
+ κ
)

.

Case 2.2: δ ∈ (0,max{0, 2(r1 − r2)}].
We obtain the following upper bound on the density of ∆:

f∆|T=τ,R1=r1,R2=r2
(δ)

≤ 2
√

r1r2

∫ 2r2−τ+δ

−τ+δ

(
1√

τ + z
+

1√
2r1 − τ − z

)(
1√

τ + z − δ
+

1√
2r2 − τ − z + δ

)
dz

=
2

√
r1r2

(∫ 2r2

0

1√
z(z + δ)

dz +
∫ 2r2

0

1√
z(2r1 − δ − z)

dz

+
∫ 2r2

0

1√
z(2r2 + δ − z)

dz +
∫ 2r2

0

1√
z(2(r1 − r2)− δ + z)

dz

)
≤ 2
√

r1r2

(
2π + 2 ln(8

√
d) + ln

(
2δ−1

)
+ ln

(
2(2(r1 − r2)− δ)−1

))
≤ κ
√

r1r2

(
ln δ−1 + ln

(
(2(r1 − r2)− δ)−1

)
+ κ
)

.

Third case: r1 ≤ τ ≤ r2.
Since Z1 takes only values in the interval [−τ, 2r1 − τ ] and Z2 takes only values in the
interval [−τ, τ ], we can assume 0 < δ ≤ min{1/2, 2r1} and

f∆|T=τ,R1=r1,R2=r2
(δ) =

∫ 2r1−τ

−τ+δ
fZ|T=τ,R=r1

(z) · fZ|T=τ,R=r2
(z − δ) dz .
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For δ ∈ (0,min{1/2, 2r1}], we obtain the following upper bound on the density of ∆:

f∆|T=τ,R1=r1,R2=r2
(δ)

≤ 2
√

τr1

∫ 2r1−τ

−τ+δ

(
1√

τ + z
+

1√
2r1 − τ − z

)(
1√

τ − z + δ
+

1√
τ + z − δ

)
dz

=
2

√
τr1

(∫ 2r1

δ

1√
z(2τ + δ − z)

dz +
∫ 2r1−δ

0

1√
z(2(τ − r1) + δ + z)

dz

+
∫ 2r1−δ

0

1√
z(z + δ)

dz +
∫ 2r1−δ

0

1√
z(2r1 − δ − z)

dz

)
≤ 2
√

τr1

(
2π + 2 ln(8

√
d) + ln

(
2δ−1

)
+ ln

(
2(2(τ − r1) + δ)−1

))
≤ κ
√

τr1
· ln δ−1 .

Fourth case: r2 ≤ τ ≤ r1.
Since Z1 takes only values in the interval [−τ, τ ] and Z2 takes only values in the interval
[−τ, 2r2 − τ ], we can assume 0 < δ ≤ min{1/2, 2τ} and

f∆|T=τ,R1=r1,R2=r2
(δ) =

∫ min{2r2−τ+δ,τ}

−τ+δ
fZ|T=τ,R=r1

(z) · fZ|T=τ,R=r2
(z − δ) dz .

Case 4.1: δ ∈ (0, 2(τ − r2)].
We obtain the following upper bound on the density of ∆:

f∆|T=τ,R1=r1,R2=r2
(δ)

≤ 2
√

τr2

∫ 2r2−τ+δ

−τ+δ

(
1√

τ − z
+

1√
τ + z

)(
1√

τ + z − δ
+

1√
2r2 − τ − z + δ

)
dz

=
2

√
τr2

(∫ 2r2

0

1√
z(z + δ)

dz +
∫ 2r2

0

1√
z(2τ − δ − z)

dz

+
∫ 2r2

0

1√
z(2r2 + δ − z)

dz +
∫ 2r2

0

1√
z(2(τ − r2)− δ + z)

dz

)
≤ 2
√

τr2

(
2π + 2 ln(8

√
d) + ln

(
2δ−1

)
+ ln

(
2(2(τ − r2)− δ)−1

))
≤ κ
√

τr2

(
ln δ−1 + ln

(
(2(τ − r2)− δ)−1

)
+ κ
)

.

Case 4.2: δ ∈ (2(τ − r2), 2τ ].

45



We obtain the following upper bound on the density of ∆:

f∆|T=τ,R1=r1,R2=r2
(δ)

≤ 2
√

τr2

∫ τ

−τ+δ

(
1√

τ − z
+

1√
τ + z

)(
1√

τ + z − δ
+

1√
2r2 − τ − z + δ

)
dz

=
2

√
τr2

(∫ 2τ−δ

0

1√
z(2τ − δ − z)

dz +
∫ 2τ−δ

0

1√
z(z + δ)

dz

+
∫ 2τ−δ

0

1√
z(2(r2 − τ) + δ + z)

dz +
∫ 2τ

δ

1√
z(2r2 + δ − z)

dz

)
≤ 2
√

τr2

(
2π + 2 ln(8

√
d) + ln

(
2δ−1

)
+ ln

(
2(2(r2 − τ) + δ)−1

))
≤ κ
√

τr2

(
ln δ−1 + ln

(
(2(r2 − τ) + δ)−1

)
+ κ
)

.

Altogether, this yields the lemma.

B.2 Proof of Lemma 4.8

First, we derive the following lemma, which gives bounds on the conditional density of
the random variable ∆ when only one of the radii R1 and R2 is given.

Lemma B.1. Let r1, r2, τ ∈ (0,
√

d) and δ ∈ (0, 1/2]. In the following, let κ denote a
sufficiently large constant.

a) The density of ∆ under the conditions T = τ and R1 = r1 is bounded by

f∆|T=τ,R1=r1
(δ) ≤

{
κ√
τr1

· ln δ−1 if r1 ≤ τ,
κ
τ · ln δ−1 if r1 ≥ τ.

b) The density of ∆ under the conditions T = τ and R2 = r2 is bounded by

f∆|T=τ,R2=r2
(δ) ≤

{
κ√
τr2

· (ln δ−1 + ln |2(τ − r2)− δ|−1 + κ) if r2 ≤ τ,
κ
τ · ln δ−1 if r2 ≥ τ.

Proof. a) We can write the density of ∆ under the conditions T = τ and R1 = r1 as

f∆|T=τ,R1=r1
(δ) =

∫ √
d

0
fR2(r2) · f∆|T=τ,R1=r1,R2=r2

(δ) dr2

=
∫ √

d

0

rd−1
2

dd/2−1
· f∆|T=τ,R1=r1,R2=r2

(δ) dr2 ,
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where fR2 denotes the density of the length R2 = d(O,Q2). We use Lemma 4.7 to
bound this integral. For r1 ≤ τ and sufficiently large constants κ′ and κ′′, we obtain

f∆|T=τ,R1=r1
(δ) ≤

∫ τ

0

rd−1
2

dd/2−1
· κ
√

r1r2

(
ln δ−1 + ln |2(r1 − r2)− δ|−1 + κ

)
dr2

+
∫ √

d

τ

rd−1
2

dd/2−1
· κ
√

τr1
· ln δ−1 dr2

≤ κ′
√

r1
· ln δ−1 +

κ′
√

r1

∫ √
d

0
ln |2(r1 − r2)− δ|−1 dr2 +

κ
√

τr1
· ln δ−1

≤ κ′′
√

τr1
· ln δ−1 .

For τ ≤ r1 and a sufficiently large constant κ′, we obtain analogously

f∆|T=τ,R1=r1
(δ) ≤

∫ τ

0

rd−1
2

dd/2−1
· κ
√

τr2

(
ln δ−1 + ln |2(τ − r2)− δ|−1 + κ

)
dr2

+
∫ √

d

τ

rd−1
2

dd/2−1
· κ

τ
· ln δ−1 dr2

≤ κ′

τ
· ln δ−1 .

b) We can write the density of ∆ under the conditions T = τ and R2 = r2 as

f∆|T=τ,R2=r2
(δ) =

∫ √
d

0

rd−1
1

dd/2−1
· f∆|T=τ,R1=r1,R2=r2

(δ) dr1 .

For r2 ≤ τ and sufficiently large constants κ′ and κ′′, we obtain

f∆|T=τ,R2=r2
(δ) ≤

∫ τ

0

rd−1
1

dd/2−1
· κ
√

r1r2

(
ln δ−1 + ln |2(r1 − r2)− δ|−1 + κ

)
dr1

+
∫ √

d

τ

rd−1
1

dd/2−1
· κ
√

τr2

(
ln δ−1 + ln |2(τ − r2)− δ|−1 + κ

)
dr1

≤ κ′
√

r2
(ln δ−1 + κ) +

κ′
√

r2

∫ √
d

0
ln |2(r1 − r2)− δ|−1 dr1

+
κ

√
τr2

(
ln δ−1 + ln |2(τ − r2)− δ|−1 + κ

)
≤ κ′′
√

τr2
(ln δ−1 + ln |2(τ − r2)− δ|−1 + κ) .

For τ ≤ r2 and a sufficiently large constant κ′, we obtain

f∆|T=τ,R2=r2
(δ) ≤

∫ τ

0

rd−1
1

dd/2−1
· κ
√

τr1
· ln δ−1 dr1 +

∫ √
d

τ

rd−1
1

dd/2−1
· κ

τ
· ln δ−1 dr1

≤ κ′

τ
· ln δ−1 .
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Now we are ready to prove Lemma 4.8.

Proof of Lemma 4.8. a) In order to prove part a), we integrate f∆|T=τ,R1=r(δ) over all
values τ that T can take:

f∆|R1=r(δ) =
∫ √

d

0

τd−1

dd/2−1
· f∆|T=τ,R1=r(δ) dτ

≤
∫ r

0

τd−1

dd/2−1
· κ

τ
· ln δ−1 dτ +

∫ √
d

r

τd−1

dd/2−1
· κ√

τr
· ln δ−1 dτ

≤ κ′√
r
· ln δ−1 .

Furthermore, we integrate f∆|T=τ,R2=r(δ) over all values τ that T can take:

f∆|R2=r(δ) =
∫ √

d

0

τd−1

dd/2−1
· f∆|T=τ,R2=r(δ) dτ

≤
∫ r

0

τd−1

dd/2−1
· κ

τ
· ln δ−1 dτ

+
∫ √

d

r

τd−1

dd/2−1
· κ√

τr
(ln δ−1 + ln |2(τ − r)− δ|−1 + κ) dτ

≤ κ′√
r
· ln δ−1 .

b) For a sufficiently large constant κ′,

f∆|T=τ (δ) =
∫ √

d

0

rd−1

dd/2−1
· f∆|T=τ,R1=r(δ) dr

≤
∫ τ

0

rd−1

dd/2−1
· κ√

τr
· ln δ−1 dr +

∫ √
d

τ

rd−1

dd/2−1
· κ

τ
· ln δ−1 dr

≤ κ′

τ
· ln δ−1 .

c) For a sufficiently large constant κ′,

f∆(δ) =
∫ √

d

0

τd−1

dd/2−1
· κ

τ
· ln δ−1 dτ ≤ κ′ · ln δ−1 .

d) For sufficiently large constants κ′ and κ′′,

fZ|T=τ (z) =
∫ τ

r=0

rd−1

dd/2−1

√
2

(τ + z)(2r − τ − z)
dr +

∫ √
d

r=τ

rd−1

dd/2−1

√
2

τ2 − z2
dr

≤
√

2
τ + z

d1/2

∫ τ

r=0

√
1

2r − τ − r
dr +

√
2

τ2 − z2

≤ κ′√
τ + z

+

√
2

τ2 − z2
≤ κ′′√

τ2 − z2
.
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