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A b s t r a c t  
The saturated attractor analysis, an approach proposed first in [FP] for a comprehensive study of the 
dynamics of the Linsker model and then successfully applied to the dynamic link model[FT1], is further 
developed here. By a unified approach to the Hopfield model, the Linsker model and the dynamic link 
model, three typical models in the field of the neural networks, we show a way to choose the parameters 
of these dynamics in order to obtain any chosen saturated attractor which is general enough in most 
applications. We generalize our previous results for the Linsker model and the dynamic link model with 
the clipping function to the case of the sigmoid like function. Our results allow us for the first time to 
understand the underlying mechanism among these models and thus to furnish a useful guidance in the 
further possible applications. 

w INTRODUCTION 

The past decade has seen an explosive growth in the studies of neural networks, the theory underlying 
learning and computing in networks has developed into a mature subfield existing somewhere between 
mathematics, physics, computer science and neurobiology. In part this was the result of many deep 
and interesting theoretical exposition in physics and mathematics, for example, the application of the 
spin glas~ theory to the Hopfield model allows us to understand clearly the phase transition from the 
retrieval to non retrieval state. Another major impulse was provided by the successful explanation of some 
biological phenomena, at least in a primitive level, for example, the Linsker model mimics the ontogenesis 
development of the primary visual system[Lin]. Of course, the most important impulse comes from the 
learning techniques successfully applied to some practical problems which were traditionally thought of 
as some of the hardest problems in the AI. One of the recent examples of such an application is the face 
recognition using the dynamic link model, a model proposed by vonder  Malsbnrg first in 1981[KMM]. 

However, at this moment, the theoretical treatment of these models is obviously far away from being 
satisfactory, mainly due to the lack of theoretical tools to deal with the nonlinearity exploited in most 
of the models reported today. In the present paper, in terms of our previous work on the Linsker model 
and the dynamic link model we develop a unified theoretical framework for tackling the Hopfield model, 
the Linsker model and the dynamic link model. 

Our approach allows us to reformulate many problems studied in the Hop field model. A concrete 
criterion to check whether a stored pattern is an attractor of the network is given. The capacity, a quantity 
which plays a central role in the spin glass approach to the Hopfield model, is naturally introduced here. 
One advantage of the present approach is that we do not impose the restriction of the symmetry of 
the connection matrix. Our results also reveal the role of different parameters in the Hopfield model. 
We consider the Linsker model with the sigmoid like function in the updating dynamics of its synaptic 
connections(a definition of the slgmoid like function is in section 2). All conclusions in [FP][FPR] are 
reobtalned, where the clipping function, a special case of the sigmoid like function and so a special case of 
the present paper, is used for the development of the synaptic connections. The present paper tells that 
the appearance of the structured receptive fields is independent of the choice of the clipping function, 
which is thought of as one of the drawback of the Linsker model. Furthermore, we also take into account 
on the reason for the appearance of the oriented receptive field in the further layers of the Linsker network. 
For the dynamic link model, a principle to choose all five parameter employed in the model is furnished, 
which confirms our previous claim that all results contained in [FT1] for the clipping function are true 
for a more general class of function, i.e. for tile sigmoid like function. 

Although here we confine ourselves to the models on which we worked before [ATYD] [FP] [FPP,] [FQ] 
[FT1], the essential part of our approach is to analyze the dynamics with the sigmoid like function, and 



354 

it is possible to adopt our method here to analyze other models in the field of the neural networks such 
as the B.P. and the recurrent network. 

The general idea behind the saturated attractor analysis is quite straightforward. Consider a dynamics 
defined on the space [-1,  1] ~,  where N is either the number of neurons (the Hopfield model and the 
dynamic link model) or the number of connections (the Linsker model). It is reasonable to confine 
ourselves to a subset of all the fixed points of the dynamics, i.e. to all saturated fixed points in {-1 ,  1~} ~r 
since in the Hopfidd model all the stored patterns take values on { -1 ,  1} ~,  while in the Linsker model and 
the dynamic link model this confinement has been confirmed by the numerical simulations[Lin][KMM]. In 
particular, the fast dynamic link model is proposed in terms of this observation[KMM]. As we all know, 
it is relatively easy to determine the whole region of the dynamic parameters, say r (w),  in which a given 
pattern w of particular interest (in the Hopfield it is one of the stored patterns, in the Linsker model it 
is the structured receptive field, in the dynamic link model it is the on-center configuration) is a fixed 
point. If we are further able to prove the stability of the fixed point w, we assert that  if and only if as 
the dynamic parameters are in the region r(tv), w is an attractor of the dynamics. Fortunately, due to 
the special form of the sigmoid like function and we restrict ourselves to all saturated fixed points, the 
idea above can be carried out as in [FP][FPR][FT1], but for a more general and more significant class of 
functions, the sigmoid like functions. We call such an approach the saturated agtractor analysis. 

Due to the limitation of the space, we are only able to briefly report our results. For a full exposition 
and detailed proofs, we refer the reader to our whole paper[FT2]. 

w GENERAL MODEL AND NOTATION 

For a given positive integer N, an N x N matrix Q = (q i j , i , j  ":" 1 , . . - , N )  and an N dimensional 
vector r = (ri, i = 1 , . . .  , N),  consider the following dynamics 

N 

w,(~ + 1) = f(w,(~) + kl + )-~[(q~j + k2)rj~A~)]) (1) 
j = l  

where ~" = 1 ,2 , . - .  is the discrete time, w(r) = (wi(v), i  = 1 , . . .  ,N )  E ~ g ,  (kt,k2) are two parameters 
of the dynamics, and f is a continuous function defined on R 1 satisfying 
(fl). f ( z )  = 1, if z > 1, f ( z )  = --l ,  if z < --1, 
(f2). f ( z  I is a strictly increasing and continuous function for z E [-1,1],  f ( z )  >_ z 

i f z  e (0,1] and f ( z )  < z i f z  e [-1,0).  
We call a function with the properties (fl) and (f2) a sigmoid like function. 
Note that for the sigmoid function ~ with range between - 1  and 1, a~(z) = 2 - 1, both 

conditions (fl) and (f2) are approximately satisfied when ~ is large. It is reasonable to expect that in 
the numerical simulation, both (fl / and (f2) are true for the sigmoid function ~Z with large ft. Due to 
this reason, we believe that  our results on the dynamics (1) with the sigmoid like function below reflect 
the exact properties of dynamics (1 / with f = ~rZ (fl large) which are mostly observed by numerical 
simulation. The function termed as the clipping fnnclion and used in the dynamics of the development of 
the synaptic connection of the Linsker network is defined by fr = ~ if [z[ < 1, and fr = 1 i f z  > 1, 
fc(z) = - 1  if z < - 1 ,  which of course fulfills both (fI) and (t"2) [Lin][FP][FPR]. In the dynamic link 
model, fast dynamic link model, or the discrete version of it, the function f adopted for the dynamics is 
either the clipping function or the sigmoid function [KMM][FT1]. 

It is easily seen that the conditions on the range of the function (fl) is not essential and can be relaxed. 
Let us now introduce three functions which will play a crucial role in our later development. Let w E 

{ -1 ,  11/r be a given configuration then J+(w) = {i, wi -- 11, J - ( w )  = {i, wl = -1}  are (respectively) 
the set of all sites with wi = 1 and all sites with wl = - 1 .  

First we introduce the slope function c(w) on { - I ,  11 N defined by 

, j -  Z "J- (2) 
i~J+(,~,) i~J-(w) 

Then we consider the intercept functions dl(w) and d:(w) : 

all(w)= max ~ q i  r - 

'EJ+(w) jeJ-(w) jeJ+(w) 
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and 

d2(w) = min .[. ~ q , j r j -  E qijrj]. (4) 

The reason why we call them slope function and intercept functions will be clear after the Theorem 1 
below. 

w THE SET OF ALL SATURATED ATTRACTORS 

The set of all fixed points of the dynamics (1) is F P  = {w; wl = f (wi  + ~7=1(qi j + k2)rjwj + kl), i = 
1 , . - - ,  N}. From the compactness of the range of the function f and the continuity of f ,  we get that the 
set F P  is nonempty by the Brouwer's fixed point theorem. A fixed point is called an attractor if it is 
a stable fixed point. We will confine ourselv~ to a subset of all attractors in {-1 ,  1} ~' which is general 
enough in most of applications. 

Def in i t ion  1. A configuration in the set f2 := {w E {-1 ,  1}N; there exists a nonempt~/ neighborhood 
B(w) of w in {-1,  1} Jv such that l im~_~ w ( r ) =  w if w(O) E B(w) and kl + ~7=l(qiJ + k2)wj ~ 0,Vi = 
1, . . .  , N}  is called a saturated attractor of the dynamics (1). 

The following theorem establishes that, for the case of the dynamics (1), the condition (5) below is 
strong enough to ensure that w is an attractor of the dynamics. 

T h e o r e m  1. If  w is a saturated attractor of the dynamics (1), l im,-cr  w(r) = to, then "there exists a 
T > 0 such that w = w ( T +  r ) ,Vr  > 0. Furthermore w is a saturated attractor of the dynamics (1) if  
and only if 

dl(w) < kl + c(w)k2 < d2(w). (5) 

For a given configuration w, Theorem 1 tells that w is a saturated attractor of the dynamics (1) if and 
only if (kl, ks) lies in between the two parallel lines(see Fig. 1) kl + k2c(w) = dl(w) and kl + k2e(w) = 
d2(w). Hence c(w) is the slope function of the lines above, and dl, d2 are the two intercept functions. 
If d2(w) > da(w), the parameter region r(w) := {(kl,ks) such that w is a saturated attractor of the 
dynamics (1)} is a nonempty set. If d2(w) < dl(w) r(w) is an empty set. So in this sense the larger 
is the difference between d~(w) and dl(w), the more stable is the attractor to. From Theorem 1 we can 
derive some interesting consequences which are shown in the following corollaries: 

Coro l la ry  L (Fiy. 1) 
1) The parameter region of (kl, k2) in which (1 , - - . ,  1) is a saturated attractor of the dynamics (1) is 

N 
k t + Z r j k 2  > d ( + ) : =  - i=,min.. ~ r E q l j r j  (6) 

j ' ' j-----1 

~) The parameter region of(k1, k2) in which ( - 1 , . - - ,  - 1 )  is a saturated attractor of the dynamics (1) is 

N 

kl - ~ r j k 2  < d ( - ) : =  min ~--"qi, r" 
i = l  ... N ~__ 1 . , (7) 

J 

Coro l l a ry  2. (Fig. 1) 
1) I f  qij depends only on j ,  then only the configuration (1, . - - ,  1) and ( - 1 , - . - , - 1 )  are saturated attractors 
of the dynamics (1). 
s I f  q O = 61j, and min{r j , j  = 1 , - - - , N}  > 0, then any configuration w E {-1,1} jv is a saturated 
attractor of the dynamics (1). 

w A P P L I C A T I O N  T O  T H E  H O P F I E L D  ]k/JODEL, T H E  L I N S K E R  MODEL AND T H E  DYNAMIC LINK MODEL 

The Hopfield model, to which most of the theoretical investigations in the field of the neural network 
have been devoted so far, is defined by qlj = Tij = ~ P ~u~u, i , j  )'-~u=l = 1,- . .  , N and by the equalities 
kl = O, the threshold, k2 = h, the external field and r i : 1,i = 1, . . .  ,N .  toi(r) is the neural activity at 
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time r of the i-th neuron, and/[~ = ( ~ , i  = 1 , - - - ,  N) is the p-th pattern to be stored in the network. 
The dynamics (1) now reads 

N 
wi('r -'t- 1) = f (wi(r)  "4- y~(T//-'1- h)wa'(r) -'F" 0), i = 1 , . . . ,  N. (8) 

./=1 

In most of the theoretical investigations, in particular in the statistical physics approach, ~ is assumed 
to be i.i.d, and p ( ~  = 1) = p(~' = - 1 )  = ~, Vi,#. 

The dynamics (8) is a discrete time version of the continuous ttopfidd model. Next we apply our 
results of section 3 to the Hopfield model. Since the stored patterns take values +1 and -1 ,  it is enough 
general for us to restrict ourselves to the space {-1,1} N. d2(w) and dl(w) may be expressed using the 

1 ~"~N ~/J overlap parameters re(w, 6,") := ~ L,i=l wi~i 

and similarly, 

p 

dl(w) = - .  rain S " ~ m ( w , ~ " )  (9) 
~r ~__ 1 

p 
d2(w)---- max ~'/Urn(w,,~). (10) 

iEJ-(w)#= 1 

Combining (9), (10) and Theorem 1, we see that the criterion for the existence of a saturated attractor 
of the Hopfield model is that 

T h e o r e m  2. For the dynamics (8), a configuration w E {-1,  1} N is a saturated attractor of the Itopfield 
model i f  and only i f  

p p 
- ra in  Ef,  gm(w,~U) < O+c(w)h < - m a x  E ~ g m ( w , ~ U ) .  (11) 

iEJ+(w) #.~-I ifiJ-(w) p=l 

In the practical applications, we are mainly interested to establish if w = ~", p -- 1 , . - - ,  p is a saturated 
attractor of the dynamics (8), a fact which can be easily checked by using Theorem 2. Note that 
this criterion is not based on the independence of the patterns ~ .  Many interesting examples can be 
constructed using this approach[FT2]. 

In spite of the extensive investigation of the Hopfield model, a little attention was paid to the parameter 
(0, h) until now. Our theorem allows us for the first time to have a clear understanding of the role played 
by the two parameters in the dynamics (8) as explained below. The Hopfield model is described by a 
picture of the type of Fig. 1,  which is redrawn in Fig. 2. It is easily seen from the Fig. 2 that the number 
of stored patterns, i.e, of saturated attractors, of the Hopfield model depends on the parameters (0, h). 
There is one region in which many saturated attractors coexist(see Fig. 2). In this region, the network 
will have the highest capacity, a quantity studied extensively in the literature. Outside this region, the 
capacity will become lower and lower. When h, the external field, is negative, there will be only one 
saturated attractor corresponding to one of the stored patterns if c(~ ~) ~- e(~ ~) for p -~ v. Thus the 
capacity for the network is only t I N  in this case. However this region is good for retrieving a specific 
memory w if it is a saturated attractor. This remark suggests a way to recall an information avoiding 
the spurious states[FQ]. The above example suggests us the following definition of the critical capacity 
of the Hopfield model which can be applied to more general models also with dependent patterns: 

Def in i t ion  2. The critical capacity otc of the dynamics (8) is 

ar := inf{(~ = p/N,  (d2(~u)) - (dl(~u)) = 0 for any p = 1 , . . -  ,p}, (12) 

where (.) represents the expectation with respect to the distribution P of ~ u. 

Further discussion on the relation of ctc defined above and the critical capacity founded in the spin 
glass approach is contained in [FT2] and tim numerical simulation of a t  is shown in [FT2] also. 

Now we consider the Linsker model. 
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The Linsker's model [Lin][FP][FPR] resembles the visual system, with an input feeding onto a number 
o f  layers corresponding to the layers of the visual cortex. The units of the network are linear and 
are organized into two-dimensional layers indexed Lo(input), L1, .--  and so on. We suppose that each 
layer has N neurons and periodic boundary condition(wrapped up). There are feed-forward connections 
between adjacent layers, with each unit receiving inputs decreasing monotonically with the distance from 
the neurons belonging to the underlying layer. Let w~)(r)  be the synaptic connection between the neuron 
i of the (n - 1)-th layer and the neuron k of n-th layer, r(k~. ) is the synaptic density function between the 
( n  - 1)-th layer and the n-th layer, (~"~=a r(k~ ") = 1, V n, k). Making the averages with respect to the 
neuron activities we get 

N 
(,") (,0 C"* ) w~-)(r-.I- 1) = f(w~)(r) + kl + E(q i j  + k2)rkj wkj (r)). (13) 

../=1 

(see the above bibliography for more details). The dynamics (13) is the updating process of the synaptie 
connections and characterizes the Linsker network. The index k can be dropped from the equation (13) 
since the appearance of a structured receptive field does not depend on it. We change our notation a 
little bit in order to apply theorem 1 of the section 3 to the dynamics (13). Let 

dl(W,n) = . m a x  [ ~ .(n)_Cn) _(-)_(nh 
,~.1+(,,,)j_,w)~u.,_( '.i - ~ '~u '.~ J, j~J+(,,,) 

d2(w,n)= min [ ~ ~ij-(nl-(")~j E _(n)_(.), - ~ i j  ' j  .I- 
jeJ-(~)  ie~-(~,) jeJ+(w) 

T h e o r e m  3. I f  w is a satnrated altractor of the Linsker model, lhen there ezisLs T > 0 such fhal 
w = w ( T +  r ) ,Vr  > 0. Furthermore w is a saturated a~tractor oflhe dynamics (13) i f  and only i f  

d l (w,n)  < kt + c(w)k~ < d2(w,n), n = 1 , . - - .  (14) 

In the Linsker model a structured ( an on-center or an oriented) receptive field is of particular interest. 
We know from the simulations that these receptive fields appear between the LI and L~ layers if all 
the synaptic connections between the L0 layer and the L1 layer are kept positive. Recently this kind of 
structured receptive field has been founded important in the application of similar networks to the image 
recognition (see next section). Theorem 3 gives results which agree with what has been discovered by 
Linsker in its numerical simulations for the third layer (L~) [FPR]. These results are shown in Fig. 3. 
The application of this theorem becomes more important as we encounter the necessity, in the practical 
application, to control the size of the on-center receptive field configuration by selecting the parameter 
of the dynamics (13). All results in [FP] [FPR] are true for the dynamics (13), we will not repeat them 
here and refer the reader to them for more details. 

An interesting problem for us to do in the future is to check which model is the most optimal one in 
the sense to have the biggest dz(w) - dr(w) among the models proposed to describe the ontogenesis of 
the visual system[Mal] here w is a structured receptive field. Our approach here makes this comparison 
possible. 

Next we are going to consider the dynamic link model. 
The power of the dynamic link network, a model proposed by yon der Malsburg first in 1981, is 

demonstrated and developed in recent years in different applications, see for example [KMM]. In [FT1], 
a discrete version of the dynamic link model is proposed and a principle for choosing parameters used 
in the dynamic link model is given for the clipping function defined as in section 2. Here, by our results 
of section 3, we are able to reobtain all results in [FT1]. The dynamic link network is essentially a two 
layers network, say layer X and layer Y with both inter-laver connections and intra-layer connections. 
There are N neurons in the two layers and they are arranged in a two dimensional torus (i.e with periodic 
boundary conditions ). For the details of the model the reader can refer to the paper [KMM]. In this 
model there are two time scales, one (r) varied rapidly corresponding to the neural dynamics and the 
other one (z/) associated to the characteristic time scale of the synaptic dynamics. Making analogous 
transformations as those in [FT1] the neuron dynamics can be written in a form which is similar for the 
two layers 
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(~( ~ + 1,~) = I(E~=~ k,i,i(~,~) + Ii(~,~)) 
(15) 

~(0,  v) = 0 

and which is the dynamics we will focus on. The input Ii(r, v) is different for the two layers and contains 
all the information connected with the image recognition problem. We suppose here that  li(r, v) is 
independent of  i and r denoting it as I(v). The case of the dependence of I on i and r is considered in 
[FT1]. The matr ix klj is defined by klj --- 7e -II/-jB2/$ - p -- 7pij - p where pij is the weight interaction 
function inside the layer X or Y, 3' > 0 and p > 0 are the intensities of excitatory or inhibitory connections 
respectively. Let c(w) be defined as in Section 3 and ea(w) and e2(w) he two functions of the configuration 
w defined similar to dl(w) and d2(w) 

e l ( w ) =  m a x , [  y ~  P' i--  E P'J]' e2(w)=,emll~w) r w) p ' 3 -  E P,j]. (16) 
ieJ+(w) .i~.~'U(w) jel+(~) jeJ+(to) 

Then we can apply Theorem 1 of section 3 to the dynamic link model. The proofs are similar to that  
in [FT1]. 

T h e o r e m  4. 
(1). For Vw e {--1, 1} N, w # ( 1 . - - ,  1 ) , ( - 1 , . . .  , - 1 ) ,  a necessary and sufficient condition ensuring 
that there exists a nonempty set of (It, 7, s, I) in which w is a saturated attractor of the dynamic (15) is 
e2(w) > e~(w) and 3' > 7o := 2/[e2(w) -e l (w)] .  Furthermore the larger the % the bigger the parameter 
region ensuring that w is a saturated attractor of the dynamics (15}. 
(2). In the circumstances of (1), there exists a positive number I~o such thai when t t is in the set 
{p,/t >_ /to} gl {/~,3'el(w) + 1 < I(v)  - c(w),u < 3'e2(w) - 1} then w is a saturated attractor of the 
dynamics (15) and ( 1 , . - . ,  1), ( - 1 , . . .  , - 1 )  will no longer be attractors of the dynamics (15). 
(3). I t s  is large enough so that Pij, i , j  = 1 , . - . ,  N are constants independent oft ,  j ,  then only ( 1 , . - - ,  1) 
and ( - l ~ r - .  , - 1 )  are the only possible saturated attractors of the dynamics (15). 
(4). I t s  is small enough so that Pl/ = 6ij with 3' > 1 , then any state w E {-1 ,  1} N is an attractor of 
the dynamics (15). 
(5}. w is a saturated attractor of the dynamics (15) i f  and only i f  l (v)  E [3'el (w) + e(w)/t + 1, 7e2(w) + 
e(w)u -- 1]. 

For an explanation of Theorem 4, we refer the reader to Fig. 4. Theorem 4 shows that the effect 
of the lateral inhibition is to have some non trivial pattern as an attractor of the dynamics (15) and 
to avoid the region in which the trivial configuration (1 , . . . ,  1) or ( - 1  . . . . .  - 1 )  is the global minima. 
Theorem 4, (5) establishes the good fluctuation region of the input signal. If I(v) is in the region of 
[Tel(w) + e(w)p + 1, 7e2(w) + e(w)lt - 1], w will remain as an attractor of the dynamics (15) (Fig. 4). 
The interval in which I(v) changes can be taken as an estimate for an effective interval in the case when 
the input signal is not translation invariant and depends on the time r of the neural dynamics. From 
all the above arguments one derives a useful way for choosing the four parameters p, 7, s, I x in order to 
have an on-center configuration which is an attractor of the dynamics (15). 

From Theorem 4 one can show that  if the input I ( r )  increases, the size of the on-center of the 
configuration which is an attractor of the dynamics (15) will increase also(see Fig. 4) if p > 0, the 
opposite will happen if p is negative. One important open question here is how to ensure the convergence 
of the algorithm. A simple way to achieve it, as one may suggest similar to that  in the Kohonen network 
, is to shrink the size of the on-center field. This can be done by decreasing the input I ( r )  as well(Fig. 
4). However from our Theorem 4 it follows after some estimates that  in general it is impossible to shrink 
arbitrarily the size of the on-center pattern if s is fixed. This is a main difference between the Kohonen 
network and the dynamic link model[KMM]. 

w CONCLUSIONS 

This paper unifies the approach to the Hopfield model, the Linsker model and the dynamic link model, 
three typical networks arising from three typical areas in the study 0 f the  neural network. Since most of 
models proposed so far in the field of the neural networks use the sigmoid function in their dynamics of 
learning or retrieving procedure, as discussed in section 2, we are able to characterize the attractors of 
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these models in terms of the present approach. So the power of the present method is not restricted to 
these three models reported here. 

In the Hopfield model, we give a sufficient and necessary condition in order to check if a given pattern 
is an attractor of the network. The capacity of the network is reconsidered from a point of view different 
from the usual statistical physics approach. It is also obvious that  we could apply our method here to 
analyze generalizations of the Hopfield model. 

The present approach becomes more efficient if we are mainly interested in one or a few kind of 
patterns. This is the case in the Linsker network and in the dynamic link network. For the former 
network, the appearance of the on-center and oriented receptive field is the core of  its dynamics. For the 
latter, the on-center structured pattern is an important  one in its dynamics. The present paper asserts 
that  the appearance of the structured receptive field in the Linsker model is universal in the sense that  the 
appearance of the structured receptive field is independent of the specific choice of the clipping function 
used in the numerical simulation in the Linsker's network. For the dynamic link network, we propose a 
principle for the selection of these parameters employed in the model. 

The significance of this unification approach is obvious. It helps us to understand the mechanism 
underlying each model more deeply. It furnishs a useful guidance in the practical application of these 
models, in particular in choosing the parameters of the dynamics. For example, the results in the Linsker 
network suggest a way to shrink the size of the on-center receptive field, which may help the convergence 
of the algorithm used in the pattern recognition based upon the dynamic !ink network; essentially the 
self-organization in the Linsker model and the dynamic link model is a procedure of retrieving 'memory' ,  
the structured receptive field ( 'memory')  is stored in the model already; and so on. Besides these findings 
we report here and in [FT2], there is still a lot of work to be done further. 

A c k n o w l e d g e m e n t .  This paper is partially supported by the CNR of Italy. 
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Fig.  1. The parameter region of different saturated attractors of the dynamics (1). [] is the parameter 
region of the all positive attractors wl  --- 1, i = 1 , . . . ,  N (Corollary 1). [] is the parameter region of the 
all negative attractors wi = - 1 ,  i = 1 , . - -  , N (Corollary 1) and [] + [] is the parameter region of the all 
positive and the all negative attractor. The region of (kl, k2) between two dark lines is the parameter 
region in which w ~ ( 1 , - - . ,  I), ( - 1 , . - - , - 1 )  is an attractor of the dynamics (1). The region of (1r ks) 
between two dash dark lines is the parameter region in which - w  is an attractor of the dynamics (1)(see 
also [FT2]). 

Fig.  2. The parameter region of (8, h) in which w is a saturated attractor of the Hopfield model (see 
Fig. 1 also). In the region I enclosed by dark lines, the Hopfield model has the highest capacity. In 
this region, for example, ~ , ~  are both attractors of the Hopfield model. When h = h'(  horizontal dash 
line), the capacity of the model becomes lower. 
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Fig.  3. The smaller is the size of the on-center, the narrower is the band in which that the on- 
center receptive field is an attractor([FPR]). The same conclusion is true for the off-center receptive field. 
When kl decreases(k2 < 0), the system passes through region I(a]l-excitatory), II(on-eenter), III(several 
attractors coexist), IV(off-center), V(atl-inhibitory). If kl decreases(k2 > 0), we go from region I'(all- 
excitatory), II'(off-center), III'(several attractors coexist), IV'(on-center), V'(alt-inhibitory). If we fix 
kx > 0, decrease k2 < 0 the size of the on-center of the configuration which is an attractor of the Linsker 
model becomes smaller and smaller. 
Fig.  4. The parameter region of (l(v),  p )  in the dynamic link model. The slope of the dark lines is c(w). 
So for fixed p = P0, the smaller is the l(v),  the smaller is the radius of the on-center of the configuration 
which is an attractor of the dynamics (15). As r is small enough, the configuration with on-center radius 
r will no long be an attractor of the dynamics. For fixed I(v) > 0, when p > 0 becomes small, the size of 
the on-center of the configuration which is a saturated attractor of the dynamics (15) will become large. 
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