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Abstract

We study the performance of a spiking network model based on integrate-and-fire
neurons when performing a benchmark discrimination task. The task consists of determining
the direction of moving dots in a noisy context. By varying the synaptic parameters of the
integrate-and-fire neurons, we illustrate the counter-intuitive importance of the second-
order statistics (input noise) in improving the discrimination accuracy of the model.
Surprisingly, we found that measuring the firing rate (FR) of a population of neurons
considerably enhances the discrimination accuracy as well, in comparison with the firing rate
of a single neuron.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Discriminating between inputs is a fundamental task for the visual system. In
most cases, the accuracy of the discrimination is directly linked to the reaction
time: this is expressed as the Fitts law. Experiments with random dots stimuli are
classical ways to study it, Newsome and Shadlen [5] have experimented on this
discrimination process in Macaque monkeys. Specifically, they have studied
neurons from the lateral intraparietal (LIP) area of the cortex, whose behavior
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depends both on the input category and on the decision of the monkey. So, those
neurons are typical of sensorimotor decision processes, neither completely
determined by the stimuli nor completely independent from it. Recently, interesting
relations between reaction time (RT) and discrimination accuracy have been
shown. We implemented a neural network model for this discrimination task using
integrate-and-fire (IF) neurons, so that we could model the time course of spike
generation. Even if the model takes simplistic assumptions, this simplicity renders
the obvious phenomenon it exhibits. We measured the firing rate (FR) both from a
single and from a population of neurons, which enabled us to model a
discrimination task within a biologically realistic time scale. We compared the
discriminative accuracy of the population model to the performance of the single
neuron, relatively to the number of emitted spikes and to the processing time.
In our model, the role of inhibitory inputs and input noise can account for the
Fitts law.

2. The discrimination task

We have implemented a detailed model of the LIP neurons that take part in the
decision of the monkey during the two choices discrimination task set up by
Newsome et al. in for example [5,6]. In this set of experiments, the monkeys had to
watch a display of dots, a certain percentage of them moving consistently in one
direction or its opposite, and the rest of the dots appearing at random places on the
screen as a perturbing noise. Then they had to signify the direction by an eye
movement. The difficulty of the task was controlled by modifying the percentage of
coherently moving dots. We assume that the discriminating neurons receive
synaptic inputs composed of an actual signal perturbed by noise. If a percentage n,
of dots moves coherently in one direction, the same percentage of synapses receives
coherent input. Furthermore, we assume that the spike trains arriving to those
synapses are correlated. The rest of the synapses receive randomly distributed
inputs. The synaptic inputs are modelled as Poisson processes. It has been shown
that the motion detectors of area MT and MST that are involved in the decision
process of the monkey [1] are constituted of columns of neurons, and a model has
been proposed for this organization [7]. So, it is probable that the neurons
encoding for the same direction are close to each other and thus fire synchronously.
The outputs of the discriminating neurons are spike trains whose FRs are related to
the input of the movement, so that we can crudely model that this FR being bigger
or smaller than a criteria means a command for the eye to move respectively up or
down. Since there is a variation in the output FR, this command can be erroneous,
e.g. the FR is bigger than the criterium when the movement is downwards. This
mimics an error made by the monkey, and follows the behavior of the real LIP
neurons that suggest that ““the decision might be embodied in direct transforma-
tions between the relevant sensory and motor systems” [5]. Of course, the clearer
the stimulus, the more widely separated the efferent spike trains, and thus the less
errors the model makes.
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3. Model description

The discriminating neuron model used here is the classical IF model [4,9]. We
simplistically assumed that each synapse receives a Poisson process whose rate is
proportionally linked to the direction of one moving dot on the screen, but
independent on the velocity. So, for n. dots that move coherently, the n. synapses
that receive coherent inputs are correlated by a constant ¢, and reflect the correlation
of activity of different synapses as studied in [3,11]. Using the diffusion
approximation as in [8,9], we reach the simplified following description of the
dynamics of our discriminating neuron, with 7 as the membrane potential:
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e The ratio between inhibitory inputs and excitatory inputs: r is variable.

® The number of incoming synapses (corresponding to the number of dots in the
experiments): N = 100.

® /; is the direction of the jth dot.

® The time decay parameter y = 20 ms.

e The time step for the integration df = 0.01 ms.

e The correlation coefficient between coherent motion ¢ = 0.1.

® The number of coherent inputs 7, is variable. Coherent inputs are dots that move
consistently in one direction. Thus, the coherence is defined as n./Nce.

® The resting membrane potential Vi = 0mV.

® The threshold membrane potential Vipeshoid = 20mV.

® N is a normally distributed random variable, N+/ds is the Brownian motion.

Instead of using only one neuron, we can measure the FR of a whole population. On
average, generating 100 spikes with 100 neurons only requires the time for one
neuron to generate one spike; increasing the population enables us to generate as
many spikes as we want in a very short time. This rehabilitates the FR measure, in a
visual system that only has time for “one spike per neuron’ as argued in [8]. All the
neurons of the population, modelled as above, receive independent inputs with the
same rates.

3.1. Increasing the input noise

We can interpret the equation of the dynamics of the membrane potential of the
IF model (3) as a leaky membrane (—Vdt/y) that receives an input u(4uds),
perturbed by a stochastic noise (¢N+/df). Since this stochastic perturbation is
proportional to (1 + r) and the mean is proportional to (1 — r), the stochastic effect
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of the synapse increases with r, the ratio between inhibitory and excitatory inputs. As
explained in [3], an increase in the coefficient of variability in the input will increase
the coefficient of variability of the efferent spike train of the neuron. Thus,
intuitively, it should be more difficult to discriminate between two inputs from their
efferent FR. However, Feng and his colleagues [2] have formally proven that this is
not the case when the coherent inputs (those upon which we discriminate) are
correlated. More precisely, he obtained the following conclusion: when the
correlation is positive, the accuracy of the discrimination increases with r. We use
a correlation coefficient of 0.1, for synapses that receive the coherent input. It has
been shown [11] that in area V5 of the visual cortex of the monkeys, the level of
correlation is 0.1 and although being weak, has a significant impact on the global
behavior. The theoretically counter-intuitive results that the larger the coefficient of
variation (CV) of the input, the better the discrimination which is confirmed by the
following simulation results.

4. Simulation results
4.1. A performance criterium: total probability of misclassification (TPM)

For each set of parameter values, we perform 100 discrimination trials, for each
direction, and measure the FR each time. The FR is the number of emitted spikes
divided by the time window. The experimenter uses the FR as decisive evidence: if
the FR is larger than a ‘discrimination boundary’, than the movement is classified
upward, if the FR is smaller, then the movement is classified downward. This
discrimination boundary depends on the FR values, thus it is optimal for each set of
parameter values.

4.2. Discrimination with a 100 spikes

Extensive simulations over the range of r, and over the range of input coherence
(percentage of coherently moving dots), produced the following results, summarized
in Fig. I:

e Obviously, the TPM decreases when the coherence increases: the more separated
the inputs are, the easier the discrimination task is.

® The TPM decreases when r increases. This decrease is not monotonic. For the
single neuron, the better performance achieved by increasing the input noise
occurs only for r>0.7.

e The population performs much better, for almost one order of magnitude, than
the single neuron, and its TPM decreases steadily with r.

The better performance of the population can be explained as follows. In the
population approach, we use the first 100 spikes of a 100 neurons to measure the FR,
which means that we use on average one spike per neuron. Long interspike intervals
(ISI) are unlikely to be produced, because there will be hundred spikes produced
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Fig. 1. Comparison of the TPM of one single neuron and of a population, for various r and coherences,
using 100 spikes. Left panel, coherence = 15%. The time window needed to collect these 100 spikes varies
a lot with parameter values, especially it increases dramatically with r. We will evaluate the effect of time in

Fig. 2.
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Fig. 2. Coherence = 15%. Left: time to get a hundred spikes versus r, with a population of a hundred
neurons and with a single neuron. Middle: Illustration of the numerical estimation of the time to reach an
acceptable discrimination performance (TPM = 0.1). Right: comparison of the evolution of the TPM for
long time windows, reaching to one second, with r = 0.98 and r = 0. When we wait for one second, the
TPM for r = 0.98 is 0.03 and the TPM for r = 0 is 0.09.

before a spike following a long ISI will ever occurs. These longer ISIs increase
significantly the variability of the efferent FR, thus increasing the TPM. This is the
reason for the better performance of the population.

4.3. Time related performance

For most biological systems, the absolute performance must take into account not
only the accuracy at realizing the task, but also the time spent to achieve it. The time
to generate spikes varies a lot when r increases. In fact, when r =1, the only
postsynaptic input is noise, and the FR is very low. We see in Fig. 2 that generating a



208 B. Gaillard, J. Feng | Neurocomputing 65-66 (2005) 203-209

number of spikes sufficient to reliably measure an FR increases dramatically the
processing time. The population approach partly solves this problem, but, in order
to put the TPM in perspective, we have to measure the evolution of the quantity of
errors with the size of the time window during which we collect the spikes. Those
time considerations undermine the advantage gained with increasing the input
noise; as we see in Fig. 2, it is much quicker to achieve an acceptable performance
with exclusively excitatory inputs. However, the performance of the system can be
much better, over a long time window, with balanced excitatory and inhibitory
inputs (r 2~ 1).

5. Conclusions

We have shown that measuring the FR of a population of neurons enables
us to overcome the time scale impossibilities often associated with the FR
approach. Although augmenting r, i.e. the input noise, increases the perfor-
mance per spike, it increases the reaction time dramatically. The probability
of misclassification decreases much quicker for smaller ratios. However, we have
seen that only ratios close to one can reach a certain level of performance
unreachable by the FR of a population with exclusively excitatory synapses. Those
very good performances are achieved at the cost of a very long RT. This
phenomenon of increased accuracy with a longer processing time in living
organisms is known as the Fitts law. Furthermore, the fact that inhibitory inputs
play a central role in a discrimination task is in agreement with biological data as
reported in [10,6].

References

[1] K.H. Britten, W.T. Newsome, M.N. Shadlen, S. Celebrini, J.A. Movshon, A relationship between
behavioral choice and the visual responses of neurons in macaque MT, Visual Neurosci. 13 (1996)
87-100.

[2] Y. Deng, P. Williams, F. Liu, J. Feng, Neuronal discrimination capacity, J. Phys. A: Math. General
36 (2003) 12379-12398.

[3]1 J. Feng, Is the integrate-and-fire model good enough?—a review, Neural Networks 14 (2001)
955-975.

[4] W. Gerstner, W. Kistler, Spiking Neuron Models, Single Neurons, Populations, Plasticity,
Cambridge University Press, Cambridge, 2002.

[5] M. Shadlen, W.T. Newsome, Neural basis of a perceptual decision in the parietal cortex (area lip) of
the rhesus monkey, J. Neurophysiol. 86 (2001) 1835-1916.

[6] M. Shadlen, J.I. Gold, The neurophysiology of decision making as a window on cognition, in:
M.S. Gazzaniga (Ed.), The Cognitive Neuroscience, third ed., MIT Press, Cambridge, MA,
2004.

[7] E.P. Simoncelli, D.J. Heeger, A model of neuronal responses in visual area MT, Visual Res. 38 (1998)
743-761.

[8] S. Thorpe, R. Vanrullen, Is it a bird, is it a plane? Ultra-rapid visual categorization of natural and
artifactual categories, Perception (2000) 539-550.



B. Gaillard, J. Feng | Neurocomputing 65-66 (2005) 203-209 209

[9] H.C. Tuckwell, Introduction to Theoretical Neurobiology (2), Cambridge University Press,
Cambridge, 1988.

[10] X.J. Wang, Probabilistic decision making by slow reverberation in cortical circuits, Neuron 36 (2002)
955-968.

[11] E. Zohary, M. Shadlen, W. Newsome, Correlated neuronal discharge and its implications for
psychological performance, Nature 370 (1994) 140-143.



	Modelling a visual discrimination task
	Introduction
	The discrimination task
	Model description
	Increasing the input noise

	Simulation results
	A performance criterium: total probability of misclassification (TPM)
	Discrimination with a 100 spikes
	Time related performance

	Conclusions
	References


