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Abstract. We propose a novel approach based upon a superposition
of ‘colored’ and ‘white’ noise to approximate current inputs in neural
models. Numerical results show that the novel approach substantially
improves the approximation within widely, physiologically reasonable re-
gions of the rising time of α-wave inputs.

1 Introduction

Although single neurone model with random inputs has been widely studied
in computo, most of such studies are done under the assumption that inputs
are instantaneous [1,2,3,4,5,13]. This assumption is certainly an approximation
to the physiological data: any physical process takes time to accomplish. The
rising time of excitatory postsynaptic potentials, for example, ranges from a few
milliseconds to a few hundred milliseconds (see [10] at page 184). Theoretically
in [14] the authors have found the interesting impact of EPSP rising time courses
in synchronising neuronal activities.

In this paper we address the following two important issues: how the time
courses of EPSPs and IPSPs affect the output of a single neuron model–the
integrate-and-fire model and the Hodgkin-Huxley model–and how to employ
the Ornstein-Uhlenbeck type process to approximate the models with current
inputs. The second issue is important since we all know that theoretically it is
very difficult to deal with a system with Poissonian form inputs. For example
it has been investigated for decades to use the Ornstein-Uhlenbeck process to
approximate neuronal models with Poisson inputs.

We take into account two most commonly encountered noninstantaneous
inputs: α-wave and square-wave inputs. We find that the mean and variance of
α-wave and square-wave inputs are both weaker than that of Poisson inputs,
as one might expect, and therefore the mean of interspike intervals (ISIs) of
efferent spike trains of the integrate-and-fire model and the Hodgkin-Huxley
model is greater than that of Poisson inputs. The classical approach, the usual
approximation, is first applied to approximate the models with current inputs.
By the usual approximation, we mean to approximate a stochastic process by a
diffusion process, i.e.

dxt = b(xt, t)dt + σ(xt, t)dBt

where Bt is the standard Brownian motion (’white’ noise) and b, σ are appropri-
ately defined functions. For the integrate-and-fire model, the approximation to
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the mean firing time of efferent ISIs is always valid when the ratio between in-
hibitory and excitatory inputs is low, but not for the CV. In other words, in the
regions of small ratio between inhibitory and excitatory inputs and in order to
tell the difference between inputs from different sources, we have to consider the
high order statistics of efferent spike trains. Combining our previous results [6]
and the results in this paper, we further conclude that in the regions of high ratio
between inhibitory and excitatory inputs, the mean firing time is very sensitive
to small perturbations. For the Hodgkin-Huxley model we find that the usual
approximation is not satisfying even at a very low ratio between inhibitory and
excitatory inputs. This also reveals an essential difference between some simple,
linear model such as the integrate-and-fire model and the biophysical, nonlinear
model such as the Hodgkin-Huxley model. We then propose a novel scheme to
approximate the models with current inputs: to replace the ‘white’ noise in the
usual approximation by a superposition of ‘color’ and ’white’ noise. Numerical
results show that the novel scheme considerably improves the approximation,
for both the integrate-and-fire and the Hodgkin-Huxley model, within widely,
physiologically reasonable regions of model parameters.

This is the third of our series of papers aiming to elucidate how more re-
alistic inputs, in contrast to conventional i.i.d. Poisson inputs which has been
intensively studied in the literature, affect the outputs of simple neuronal mod-
els and thus possibly to provide a full spectrum of the behaviour inherent in
these models, thus documenting more thoroughly the restrictions and potential
of the models. In [5] we have considered the behaviour of the integrate-and-fire
model subjected to independent inputs with different distribution tails; in [6]
we have taken into account the behaviour of the integrate-and-fire model with
correlated inputs. On the other hand we have generalised these considerations
to biophysical models and some intriguing properties have been found[2,7].

Due to space limit, we only summarize results here and refere the reader to
[8] for details.

2 Integrate-and-Fire Model with Synaptic Inputs

Suppose that when the membrane potential Vt is between the resting potential
Vrest and the threshold Vthre, it is given by

dVt = − 1
γ

(Vt − Vrest)dt + Isyn(t)dt (1)

where 1/γ is the decay rate. When Vt is greater than Vthre a spike is emitted
and Vt is reset to Vrest. The model is termed as the integrate-and-fire model.
Synaptic input Isyn(t) is modelled by

Isyn(t) = a

∞∑
k=1

f(t− TEk )I{t≥TE
k
} − b

∞∑
k=1

f(t− T Ik )I{t≥T I
k
}

where TEk =
∑k
i=1 t

E
i (T Ik =

∑k
i=1 t

I
i ) for i.i.d. random sequences tEi , t

I
i , i =

1, 2, · · ·, a > 0, b > 0 the magnitude of single EPSP and IPSP and I is the
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indicator function. In the remaining part of the paper we always assume that
the distribution of tEi is identical to tIi and so when we speak of a property of
EPSP inputs we simply imply the same property is true for IPSP inputs. tE1 is
assumed to be exponentially distributed with intensity λ.

Example 1 When
f(t− TEk ) = δ(t−TE

k
)(0)

then N(t) =
∫ t
0 Isyn(s)ds (instantaneous inputs) is the Poisson process with in-

tensity λ.

The Poisson process input is an approximation to cell’s synaptic inputs. It
assumes that the responds to the input instantaneously. There are some other
optimal properties such as optimising the mutual information etc. for Poisson
inputs[12].

Example 2 When

f(t− TEk ) = α2(t− TEk ) exp(−α(t− TEk )) t > TEk

we have α-wave inputs or an α-synapse. α-wave input is, of course, again an ap-
proximation to actual current inputs. We refer the reader to [13] for a discussion
on the choice of this function. In contrast to Poisson inputs now the inputs take
time to rise and then decay.

The rising time is 1/α, which is the characteristic time of α-wave synapse.
Here we emphasise that for the same neurone the time course of input EPSPs
might be very different: for example, the rising time for an increased-conductance
EPSP due to the opening of a channel could be a few milliseconds; but the
rising time for a decreased-conductance EPSP is a few hundreds milliseconds
(see [10] at page 184). When α is small, α-wave inputs can be thought of as an
approximation to continuous current inputs; when α is large they approximate
Poisson inputs.

Example 3 When

f(t− TEk ) =
1
δ
I{TE

k
<t<TE

K
+δ}

we have square wave inputs and its duration time is δ.

A slightly more general model than the integrate-and-fire model defined
above is the integrate-and-fire model with reversal potentials [11,15] defined by

dZt = − 1
γ

(Zt − Vrest)dt + Īsyn(t)dt (2)

where Vrest is the resting potential. Synaptic inputs are given by

Īsyn(t) = ā(VE − Zt)
∞∑
k=1

f(t− TEk )I{t≥TE
k
} + b̄(VI − Zt)

∞∑
k=1

f(t− T Ik )I{t≥T I
k
}
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ā, b̄ are the magnitude of a single EPSP and IPSP respectively, VE and VI are the
reversal potentials. Zt (membrane potential) is now a birth-and-death process
with boundaries VE and VI . Once Zt is below Vrest the decay term Zt − Vrest
will push the membrane potential Zt up; whereas when Zt is above Vrest the
decay term will hyperpolarise it. By choosing different reversal potentials and
characteristic times of f , Īsyn(t) corresponds to different kind of synapses such
as NMDA, AMPA GABAA and GABAB .

3 A Novel Approach

The method presented in the previous subsection, i.e. the usual approximation,
are well known in the literature. But as we have shown before, it fails to approx-
imate the true behaviour of the model with current inputs when either the ratio
between inhibitory and excitatory inputs approaches one or the rising time is
slow. It is then a natural question to ask that what we have missed in the usual
approximation.

Look at the variance σ(t, λ) given by

σ(t, λ)2 = λ[t− 11
4α

+
4
α
e−αt + 2te−αt − 5

4α
e−2αt − 3t

2
e−2αt − αt2

2
e−2αt] (3)

we see that the leading term we omit in the usual approximation is 11/4α. Since
in the usual approximation only the derivative of σ(t, λ) is used, the constant
term disappears. We therefore want to find a process ηα(t) satisfying the property
that

〈(Bt − ηα(t))2〉 = t− 11
4α

+ O(t exp(−αt))

We choose an Ornstein-Uhlenbeck process given by

{
dξα(t) = −α

2
ξα(t)dt + dBt

ξα(0) = 0
(4)

Let ηα(t) = cξα(t), where c is a constant satisfying

〈(Bt − ηα(t))2〉 = t + c2
∫ t

0
exp(−α(t− s))ds− c

∫ t

0
exp(−α

2
(t− s))ds (5)

We find a new scheme ĩsyn(t) to approximate Isyn(t) defined by

dĩsyn(t) = (apλE − bqλI)dt +
√

a2pλE + b2qλIdBt

−
√

a2pλE + b2qλI
4−√5

2
dξα(t) (6)
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For specification we write down the full integrate-and-fire model again here


dvt = − 1
γ

(vt − Vrest)dt + (apλE − bqλI)dt

+
√

a2pλE + b2qλI [dBt − 4−√5
2

dξα(t)]

dξα(t) = −α

2
ξα(t)dt + dBt

ξα(0) = 0

(7)

In [8] numerical simulations are shown with α = 1 and α = 0.01. We see that
a substantial improvement is achieved with the new scheme defined by Eq. (7).

We mention a few words on the novel approach presented here. Instead of the
widely used Brownian motion approximation to the α-wave, we have to used a
superposition of ‘white’ and ’color’ noise approximation, i.e. the term Bt−ηα(t).
The fact that this calibration improves the usual approximation is, however, not
surprising at all. Due to the current input, we naturally expect that there are
temporal correlations in inputs. We have tried different ways to approximate the
auto-correlation of Isyn(t) which is

〈(Isyn(t)− 〈Isyn(t)〉)(Isyn(s)− 〈Isyn(s)〉)〉
= −2λg2

α
+ λg2s +

2λg2

α
exp(−αs) + λg2s exp(−αs) + λg2 exp(−α(t− s))[

− 3
4α
− 1

4
(t− s) +

2
α

exp(−αs) + s exp(−αs) + (t− s) exp(−αs)

− 5
4α

exp(−2αs)− 3s
2

exp(−2αs)− 3
4

(t− s) exp(−2αs)

−αs

2
(t− s) exp(−2αs)− αs2

2
exp(−2αs)]

(8)
for t ≥ s. When t = s Eq. (8) is Eq. (3). Nevertheless, it is a hard problem
due to terms taking the form of t exp(−t) in the auto-correlation of Isyn(t). We
then simply approximate the first order term t − 11/(4α) and omit all terms
containing exp(−t) (see Eq. (3)). Numerical simulations show that the approx-
imation scheme presented here improves considerably the usual approximation.
Furthermore it is valid for 0 < α ≤ ∞, i.e. when α = ∞ Eq. (7) gives exactly
the usual approximation.

The first exit time of a linear dynamic system with a ‘color’ noise perturbation
has been widely discussed in the literature and different analytical approaches to
estimate it have been put forward. We will discuss it in a subsequent publication.

Finally we point out that much as we confine ourselves to the α-wave inputs,
the approach presented here is readily generalized to any form of current inputs
by calculating the constant c in Eq. (5).

4 Biophysical Models

We apply results in the previous section to biophysical models. In fact the gener-
alisation is almost straightforward since essentially we have approximated synap-
tic inputs in the previous section.
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We consider the following Hodgkin-Huxley model with parameters given in
the literature[2].

CdV = −gNam3h(V −VNa)dt−gkn
4(V −Vk)dt−gL(V −VL)dt+ Isyn(t)dt (9)

where
dn

dt
=

n∞ − n

τn
,

dm

dt
=

m∞ −m

τm
,

dh

dt
=

h∞ − h

τh

and
n∞ =

αn
αn + βn

, m∞ =
αm

αm + βm
, h∞ =

αh
αh + βh

τn =
1

αn + βn
, τm =

1
αm + βm

, τh =
1

αh + βh

with

αn =
0.01(V + 55)

exp(−V + 55
10

)− 1
βn = 0.125 exp(−V + 65

80
)

αm =
0.1(V + 40)

1− exp(−V + 40
10

)
βm = 4 exp(−V + 65

18
)

αh = 0.07 exp(−V + 65
20

) βh =
1

− exp(
V + 35

10
) + 1

The parameters used in Eq. (9) are C = 1, gNa = 120, gK = 36, gL = 0.3, Vk =
−77, VNa = 50, VL = −54.4. All parameters in synaptic inputs are the same as
in the previous sections except that a = b = 1., since when a = b = 0.5 the
firing time is too long (cf. Fig. 1 in [2]). The initial values for m,n, h and the
membrane potential are 0.0529, 0.317, 0.5961 and −65 respectively.

Figures in [8] plot a comparison with different inputs with α = 1. Again it is
evident to see that the novel approach of the previous section gives a much better
approximation than the usual approximation. Comparing to the results obtained
from the integrate-and-fire model, we see that both the usual approximation and
the novel approach gives worse results. In other words, the noninstantaneous
input has more impact on the biophysical model than that on the integrate-and-
fire model, which is basically a linear model.

From figures in [8] we might conclude that with current inputs, the efferent
spike trains of the Hodgkin-Huxley model is quite regular with a CV less than
.5. However, when standard deviation, s, of output interspike interval is plotted
against mean firing time, m, we obtain approximately straight lines

s = km− r (10)

This suggests an effective refractory period of about m = r/k. We note that for
inputs of the usual approximation, it is about 10.46msec and for α-wave inputs is
11.25 msec. This implies that, once the effective refractory period is subtracted
from each interspike interval, CV is about 0.65 for Poisson inputs, and 0.8 for
α-wave inputs. The CV and refractory period of the usual approximation are
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both smaller than that of α-wave. The conclusions above agrees with our basic
belief that: all neurons fire irregularly when subjected to sufficient low intensity
random input, and almost all neurons fire regularly if driven very hard.

The Hodgkin-Huxley model is numerically solved using an algorithm for stiff
equations from NAG library (D02NBF) with step size of 0.01. Further small
step sizes are used and we conclude no significant improvements are observed.
The spike detecting threshould used in the simulations for the Hodgkin-Huxley
model is 0 mV, as we employed before[2].

5 Discussion

We have presented a theoretical and numerical approach for studying the impact
of noninstantaneous inputs on the output of neuronal models. For α-wave and
square-wave, and any noninstantaneous inputs, analytical and numerical results
are obtained for the usual approximation which essentially reveals the difference
between the instantaneous and noninstantaneous inputs. When the ratio between
inhibitory and excitatory inputs is low and the rising time is short, the usual
approximation produces satisfying results for the integrate-and-fire model; but
not for the Hodgkin-Huxley model. We then proposed a new approximate scheme
based upon a superposition of ‘white’ and ‘color’ noise to approximate neuronal
models with current inputs. Numerical simulations show that the new scheme
considerably improves the approximation. Since α-wave inputs are much more
close to actually biological reality than instantaneous inputs and are widely
applied in modeling neural activities, we conclude that in studying neuronal
activities subjected to synaptic inputs it is reasonable to replace the classical
Ornstein-Uhlenbeck process by the following process



ĩsyn(t) = [apλE − bqλI ]t

+
√

a2pλE + b2qλI [Bt − 4−√5
2

ξα(t)]

dξα(t) = −α

2
ξα(t)dt + dBt

ξα(0) = 0

(11)

This also opens up new theoretical problems such as to estimate the first exit
time of neuronal models subjected to a superposition of ‘white’ and ‘color’ noise
inputs as defined by Eq. (11). A few issues we are going to further explore are

– It worths further studying the effect of more biologically realistic inputs such
as AMPA, NMDA, GABAA and GABAB on the output of neuronal models.
AMPA and GABAA are fast and equivalent to the case of a large α, while
NMDA and BABAB are slow and a small α.

– We have observed in the present paper that α plays a more important role
in the nonlinear model (the Hodgkin-Huxley model) than the ‘linear’ model
(the integrate-and-fire model). The usual diffusion approximation gives poor
results in estimating the mean first exit time and CV for some parameter
values in the case of the intergrate-and-fire neuron, but for most parameter
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values in the case of the Hodgkin-Huxley neuron. In fact, how the correlation
in inputs (the color noise term) affects the output of a nonlinear system is
extensively studied in the past few years, see for example [9]. We expect that
α could play a role of a ‘time switcher’ in neuronal models: the input could
be subthreshold or superthreshold, by controlling α alone.

Acknowledgement. We are grateful to D. Brown, S. Feerick, and anonymous
referees for their comments on the manuscript. The work was partially supported
by BBSRC and a grant of the Royal Society.

References

1. Brown D., and Feng J. (1999) Is there a problem matching model and real CV(ISI)?
Neurocomputing 26-27 117-122.

2. Brown D., Feng J., and Feerick, S. (1999) Variability of firing of Hodgkin-Huxley
and FitzHugh-nagumo neurones with stochatic synaptic input. Phys. Rev. Lett. 82
4731-4734.

3. Feng, J.(1997), Behaviours of spike output jitter in the integrate-and-fire model.
Phys. Rev. Lett. 79 4505-4508.

4. Feng J., and Brown D.(1998). Spike output jitter, mean firing time and coefficient
of variation, J. of Phys. A: Math. Gend., 31 1239-1252.

5. Feng J, and Brown D. (1998). Impact of temporal variation and the balance
between excitation and inhibition on the output of the perfect integrate-and-fire
model Biol. Cybern. 78 369-376.

6. Feng J., and Brown D.(2000). Impact of correlated inputs onthe output of the
integrate-and-fire mdoels Neural Computation 12 711-732.

7. Feng J., and Brown D.(1999). Integrate-and-fire model and Hodgkin-Huxley model
with correlated inputs Phys. Rev. Lett. (submitted).

8. Feng J., Li, G.B. (2001) Integrate-and-fire and Hodgkin-Huxley models with cur-
rent inputs J. Phys. A. 34 1649-1664.

9. Garcia-Ojalvao J., and, Sancho J.M. (1999) Noise in Spatially Extended Systems
Springer-Verlag: New York.

10. Kandel E.R., Schwartz J.H., and Jessell T.M.(1991) Principles Of Neural Science,
3ed edition, Prentice-Hall International Inc.
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