
INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 34 (2001) 7475–7492 PII: S0305-4470(01)22231-8

Optimally decoding the input rate from an observation
of the interspike intervals

Jianfeng Feng

COGS, University of Sussex at Brighton, BN1 9QH, UK
and
Computational Neuroscience Laboratory, The Babraham Institute, Cambridge CB2 4AT, UK

E-mail: jf218@cam.ac.uk

Received 22 February 2001, in final form 30 May 2001
Published 7 September 2001
Online at stacks.iop.org/JPhysA/34/7475

Abstract
A neuron extensively receives both inhibitory and excitatory inputs. What
is the ratio r between these two types of input so that the neuron can most
accurately read out input information (rate)? We explore the issue in this paper
provided that the neuron is an ideal observer—decoding the input information
with the attainment of the Cramer–Rao inequality bound. It is found that, in
general, adding certain amounts of inhibitory inputs to a neuron improves its
capability of accurately decoding the input information. By calculating the
Fisher information of an integrate-and-fire neuron, we determine the optimal
ratio r for decoding the input information from an observation of the efferent
interspike intervals. Surprisingly, the Fisher information can be zero for certain
values of the ratio, seemingly implying that it is impossible to read out the
encoded information at these values. By analysing the maximum likelihood
estimate of the input information, it is concluded that the input information is
in fact most easily estimated at the points where the Fisher information vanishes.

PACS number: 87.19.La

1. Introduction

The brain is intricately wired in such a way that a single neuron extensively receives both
excitatory and inhibitory inputs. Traditionally it is believed that all information is encoded in
excitatory inputs and that inhibitory inputs only play a passive role [5]. The functional role of
the inhibitory input is much less well known than its counterpart, although in recent years there
has been a large body of literature devoted to the issue, both theoretically and experimentally
(see, for example, [12, 17, 36]).
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Assume that neurons are ideal observers in the sense that they are able to optimally decode
information: they are capable of reading out the input information with the attainment of the
Cramer–Rao inequality bound (see, for example, [23], chapter 2). Suppose that λ̂(r) is an
estimate of the input rate λ. We know, from the Cramer–Rao inequality that

〈(λ̂(r) − 〈λ̂(r)〉)2〉 � (1 + (〈λ̂(r)〉 − λ)′)2

I (λ, r)

where ( )′ is the derivative with respect toλ and I (λ, r) is the Fisher information aboutλ. Hence
for any estimate λ̂(r) of λ, its accuracy (variance) is limited by the Cramer–Rao inequality
bound

(1 + (〈λ̂(r)〉 − λ)′)2

I (λ, r)
.

For an unbiased estimate of the stimulus, i.e. 〈λ̂(r)〉 − λ = 0, according to the Cramer–Rao
inequality, we know that the decoding accuracy (variance) is simply limited by the inverse of
the Fisher information. Hence when the estimate of the stimulus is unbiased and attains the
Cramer–Rao inequality bound which is proportional to the inverse of the Fisher information
(ideal observer), we know that the larger the Fisher information is, the lower the variance of
the estimate, i.e. the more accurate the estimate.

In this paper we wish to answer the following question. What is the ratio between the
inhibitory input and the excitatory input so that the neuron can optimally decode the input
information? By optimization, we mean those points of the ratio where the Fisher information
attains its global maximum. Recall that the ratio r between inhibitory inputs and excitatory
inputs can range from zero (purely excitatory inputs) to one (exactly balanced inhibitory and
excitatory inputs) [1, 31, 33].

Using the Fisher information, we theoretically explore the issue of at which ratio r a
neuron optimally reads out the input information. Although information theory has been
successfully and extensively applied to neuroscience [26, 30, 35], it is generally accepted that
to rigorously calculate this is still very difficult and many approximated methods have been
proposed (see, for example, [21, 25] and references therein. (For the relationship between
the Shannon information and the Fisher information see, for example, [23] p. 261 and also
section 8.) Here we develop a method to approximate the distribution density of the efferent
interspike intervals of the integrate-and-fire (IF) model, which then enables us to rigorously
calculate the Fisher information of the IF model [16,27,34]. We find that the Fisher information
reaches its global maximum when there are certain amounts of inhibitory inputs, as in realistic
neuron systems where certain amounts of inhibitory inputs are always present.

When the Fisher information is positive, our results tell us that adding inhibitory inputs can
improve the neuronal capability of decoding the input information and so our aforementioned
question is answered. However, the other illuminating and surprising result found here is that
the Fisher information can be zero at some values of the ratio r > 0 of the model. At these values
of r where the Fisher information vanishes (we call them singular points [24]), it is theoretically
impossible to estimate or decode the input information since the variance of any estimate is
infinity. In statistical theory, it is conventionally assumed that the Fisher information is always
greater than zero [23]. Our results in this paper provide us with a concrete example which
clearly shows that the Fisher information can be zero in physiologically plausible parameter
regions. The result seems counter-intuitive.

To gain a better understanding of the results above, we employ the maximum likelihood
estimate to decode the input rate. When the maximum likelihood estimate exists and is unique,
it is asymptotically unbiased and attains the Cramer–Rao inequality bound [23, p 444]. The
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maximum likelihood estimate usually gives two solutions of the input rate in the model we
consider. But when the Fisher information vanishes, there can be a unique solution. This
scenario enables us to propose a method to unambiguously read out the input information at
singular points. This conclusion differs from the traditional view that the larger the Fisher
information is, the easier it is to estimate the input information.

Despite a century of research activity, we are still not clear how a neural system efficiently
encodes and then decodes the input information [5]. One of the essential difficulties lies in
the fact that neuronal responses, even to a single repeated stimulus, are typically described
by stochastic models due to their inherent variability. In addition, the stimuli themselves are
often described stochastically. An ideal observer, optimally decoding the input information
as we discuss here, can allow us to determine limits on the accuracy and reliability of neural
encoding, and possibly provide us with a ‘template’ of real biological neuron systems. It is
obvious that reading out the input information in the neuronal system is limited by the optimal
estimation. These conclusions may also be useful for the design of artificial (spiking) neuron
networks, which are thought of as the new generation of neural networks. Our results tell us at
which ratio r a neuron can optimally decode the input information. Furthermore, the maximum
likelihood estimate provides us with a practical way to decode the input information.

The paper is organized as follows. In section 2, the IF model is introduced. In section 3,
some results on the Fisher information are given and the results also give us a general idea on
when and why the Fisher information can be zero. The Fisher information for the IF model is
then calculated in section 4. Numerical results for calculating the Fisher information are then
carried out in section 5. In section 6 the maximum likelihood estimate is developed for the
model discussed in the previous two sections. Although the results discussed in sections 4–6
are based on the model with some parameter values outside physiologically reasonable regions,
these results are of physical (statistical) interest. In section 7 we turn to the model with more
physiologically reasonable parameters.

2. Models

For two given quantities Vthre > Vrest and when vt < Vthre, the membrane potential vt satisfies
the following dynamics:

dvt = −vt − Vrest

γ
dt + dIsyn(t)

v0 = Vrest

. (2.1)

Isyn(t) is the synaptic input given by

Isyn(t) = µt + σBt (2.2)

with constants µ � 0, σ � 0 and the standard Brownian motion Bt . Once vt is greater than
Vthre, it is reset to Vrest. More specifically we define

µ = aλ(1 − r) σ 2 = a2λ(1 + r) (2.3)

where a is the magnitude of EPSPs (excitatory postsynaptic potentials) and IPSPs (inhibitory
postsynaptic potentials), λ = λENE is the input rate with NE the number of active synapses and
λE the firing rate of each synapse, and r is the ratio between inhibitory inputs and excitatory
inputs. Equation (2.3) implies that synaptic inputs take the form of Poisson processes [34].
In particular, when r = 0 the neuron exclusively receives excitatory inputs; when r = 1 the
inhibitory and excitatory input is exactly balanced. Here, for simplicity of notation, we assume
that the EPSP and IPSP size are equal. We refer the reader to [22] for a more complete and
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Figure 1. A schematic representation of
equation (3.1). The minimum x0 of H is the
attractor of the dynamics xt , i.e attractor = x0
(see section 3 for a concrete example).

biologically oriented formulation of synaptic inputs. The model defined by equation (2.1) is
called the IF model [11, 22].

In the model, there are two driving forces—the deterministic one, γµ, and the stochastic
one, σγ—that depolarize the cell to fire. When Vthre < γµ, the deterministic force alone is
strong enough to ensure that the cell fires and the stochastic force is only a perturbation of the
system. In this case, as we discussed in [13], the interspike intervals are usually very regular.
The other case is Vthre > γµ. Now the stochastic force plays a major role to push the cell
to cross the threshold. As a consequence, the cell fires with very irregular spike trains. We
concentrate exclusively on the case of Vthre > γµ, i.e. the stimulus is subthreshold and efferent
spike trains are irregular. As discussed in the previous section, this is the most biologically
relevant case [16].

In what follows, we define

T (λ, r, γ ) = inf{t : vt � Vthre} (2.4)

as the firing time (interspike intervals) for r ∈ [0, 1].

3. Fisher information and interspike interval distributions

Suppose that a function H has a unique minimum at x0 and a stochastic differential equation is
defined by dxt = −H ′(xt ) dt + σ dBt . The function H is called the potential of the dynamics
xt . Then the mean of the first hitting time T of the process xt from Vthre > x0 is approximately
given by (see figure 1)

〈T 〉 =
√
πσ

[H ′(Vthre)]
√
(H ′′(x0))δ

exp

(
2[H(Vthre) − H(x0)]

σ 2

)
(3.1)

and furthermore

T ∼ p(t) = 1

〈T 〉 exp

(
− t

〈T 〉
)

(3.2)

where δ > 0 is a parameter. See [6] for a detailed proof of (3.1) and (3.2). Equations (3.1)
and (3.2) tell us that T is exponentially distributed, i.e. the efferent spike trains of the IF model
are a Poisson process with a rate 1/〈T 〉. The dependence of 1/〈T 〉 on the function H and
model parameters Vthre, σ , etc is described by equation (3.1). In the next section, we apply
equations (3.1) and (3.2) to the IF model.
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Note that equation (3.1) (see figure 1) is different from the well known Kramer formula
(see, for example, [4, 15, 28]): the pre-factor

√
πσ

[H ′(Vthre)]
√
(H ′′(x0))δ

on the right-hand side of equation (3.1) depends not only on H ′′, which is the case in Kramer’s
formula, but also on H ′.

Suppose that 〈T 〉 depends on a parameter λ. The Fisher information with respect to λ [23]
is defined by

I (λ) = 1

〈T 〉
∫ ∞

0

(
∂ logp

∂λ

)2

exp

(
− t

〈T 〉
)

dt

= 1

〈T 〉
∫ (

(〈T 〉)′
〈T 〉 − (〈T 〉)′t

(〈T 〉)2

)2

exp

(
− t

〈T 〉
)

dt

= [(〈T 〉)′]2

[〈T 〉]2
(3.3)

where (〈T 〉)′ is the derivative with respect to the parameter λ.
Equation (3.3) is the starting point for our further analysis. For Poisson process we have

〈T 〉 = 1/λ and therefore I (λ) = 1/λ2 = (〈T 〉)2. The larger the 〈T 〉 is, the larger the Fisher
information. Instead of estimating the input firing rate, if we are interested in estimating the
input interspike intervals 〈T 〉, we then have I (〈T 〉) = 1/(〈T 〉)2 (see table 5.1 in [23]).

In fact, from equation (3.3) it is readily seen that the Fisher information is zero whenever
(〈T 〉)′ is zero. In other words, when 〈T 〉 reaches its maximum or minimum points, the Fisher
information vanishes. This also suggests that singular points are very common when we
consider a nonlinear model.

4. IF model with subthreshold stimuli

As an application of the results in the previous section, we consider the IF model with
subthreshold stimuli, i.e. Vthre > γµ. Let T (λ, r, γ ) be the interspike intervals of the IF
model, defined in section 2. We can thus apply the results on T in section 3 to T (λ, r, γ ) and

I (λ, r, γ ) = [(〈T (λ, r, γ )〉)′]2

[〈T (λ, r, γ )〉]2
. (4.1)

The derivative in equation (4.1) is with respect to λ, the input information (rate). For the IF
model its potential of vt is given by (see figure 1)

H(x) = x2

2γ
− µx.

Therefore we have the following quantities (x0 = γµ):

H(x0) = − 1
2γµ2

H(Vthre) = V 2
thre

2γ
− µVthre

H ′(Vthre) = Vthre

γ
− µ

H ′′(x0) = 1

γ
.

(4.2)
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The mean firing time is thus given by

〈T (λ, r, γ )〉 = γ 1+δ/2σ
√
π

Vthre − γµ
exp

(
(Vthre − γµ)2

σ 2γ

)
. (4.3)

Equation (4.3) is the reason why we use the approximation estimate, i.e. equation (3.1), rather
than the rigorous one (equation (7.1)) to calculate the Fisher information. The simple form of
equation (4.3) enables us to have a transparent expression of its derivative with respect to λ as
follows:

γ 1+δ/2√πσ ′(Vthre − γµ) +
√
πγ 2+δ/2σµ′

(Vthre − γµ)2
exp

(
(Vthre − γµ)2

σ 2γ

)

+
γ 1+δ/2σ

√
π

(Vthre − γµ)
· −2(Vthre − γµ)γµ′σ 2γ − 2σσ ′γ (Vthre − γµ)2

(σ 2γ )2

× exp

(
(Vthre − γµ)2

σ 2γ

)
.

Hence

(〈T (λ, r, γ )〉)′
〈T (λ, r, γ )〉 = σ ′(Vthre − γµ) + σγµ′

(Vthre − γµ)σ
− 2(Vthre − γµ)γµ′σ 2γ + 2σσ ′γ (Vthre − γµ)2

(σ 2γ )2
.

The first term in the equation above turns out to be

a(1 + r)(Vthre − γµ) + 2aλ(1 + r)γ a(1 − r)

2(Vthre − γµ)aλ(1 + r)
= Vthre + γµ

2λ[Vthre − γµ]

and the second term is

2(Vthre − γµ)γ 2(1 − r)a3λ(1 + r) + a2(1 + r)γ (Vthre − γµ)2

a4(1 + r)2λ2γ 2
= V 2

thre − γ 2µ2

a2λ2γ (1 + r)
.

After taking some basic algebra we obtain that

J = (〈T (λ, r, γ )〉)′
〈T (λ, r, γ )〉 = − 1

2λ
− 4γ − V 2

thre

a2λ2γ (1 + r)

+
4γ

1 + r
+ (1 + r)γ +

Vthre

λ(Vthre − γµ)
= −J− + J +

where

J− = 1

2λ
+ 4γ +

V 2
thre

a2λ2γ (1 + r)
> 0

J + = 4γ

1 + r
+ (1 + r)γ +

Vthre

λ(Vthre − γµ)
> 0.

We call J− negative Fisher information and J + positive Fisher information.
Note that both the positive and the negative Fisher information are decreasing functions

of r . To facilitate further analysis let us define

Vth = Vthre/(aλ).

Then we have

J− = 1

2λ
+ 4γ +

V 2
th

γ (1 + r)

J + = 4γ

1 + r
+ (1 + r)γ +

Vth

(Vth − γ (1 − r))
.
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At r = 0 we obtain

J− = 1

2λ
+ 4γ +

V 2
th

γ
J + = 5γ +

Vth

(Vth − γ )

and

J + − J− = γ +
Vth

Vth − γ
− 1

2λ
− V 2

th

γ
. (4.4)

Analogously, at r = 1 we arrive at

J + − J− = 1

2λ
− V 2

th

2γ
.

Since we are considering the case that V 2
thre > aVthre > a2γ λ with γ λ > 1 (see section 5), we

have

J + − J− < 0

at r = 1.
The analysis above allows us to concentrate on the behaviour of J + − J− at r = 0. We

have the following two cases.

• J + − J− � 0, r = 0. Hence there is a r0, 0 � r0 < 1, at which J + − J− = 0. The
ideal observer will try to avoid the point r = r0 at which I (λ, r0, γ ) = ∞. According to
the property of the Fisher information and the conventional theory in statistics, we know
that at r = r0, any estimate is unreliable in the sense that its variance is infinity (however,
see section 6). From equation (4.4) we know that this happens when γ ∼ Vth or, in other
words, when the deterministic part of the input closes to its threshold (see next section).

• J + − J− < 0, r = 0. This happens when γ � Vth. In this case the neuron fires slowly
since the input is very weak. It is illuminating to see that there is a global minimum for
the Fisher information for r ∈ [0, 1] (see next section).

Now we present numerical results for the two cases discussed above.

5. Numerical results

We use the following set of parameters in simulations: γ ∈ [0.15, 0.22] ms, λ = 400×0.1 kHz,
vthre = 15 mV, δ = 0.8, a = 1.4 mV and vrest = 0 mV. The choice of γ here is for the purpose
of the application of results in the previous section and is of physical interest. See section 7
for results on γ within physiologically reasonable regions. For the choice of other parameters,
see [8, 9, 11, 13, 14, 16] and references therein.

For all calculations below, we use a step size of 0.01 to solve equation (2.1) andN = 10 000
interspike intervals, denoted as Ti, i = 1, . . . , N , are generated for estimating mean, variance,
etc.

Figure 2 shows a comparison between equation (4.3) and numerical simulations for
γ = 0.15, 0.20, 0.22. It is clearly seen that equation (4.3) gives a reasonably good
approximation for all the parameters we considered. Furthermore, the mean of interspike
intervals equals its standard deviation, inside the parameter regions we consider, which implies
that the spike trains of the IF model are approximately Poisson processes. The reason we
confine ourselves to γ ∈ [0.15, 0.22] is that when γ > 0.26 the requirement of Vthre > γaλ

is violated; when γ < 0.10 the model neuron fires so slowly that it is completely outside the
physiologically interesting region of neuron firing rates.
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Figure 2. Mean firing time versus ratio (a) for γ = 0.15, 0.20, 0.22. Points are numerical
simulations and curves are obtained in terms of equation (4.3). Meaning firing time versus standard
deviation (b) for γ = 0.15, 0.20, 0.22. We see that meaning firing time ∼ standard deviation.

Figure 3 depicts the Fisher information versus ratio r for γ = 0.20. We can see that there
is a global maximum for the Fisher information. Increasing or decreasing the inhibitory input
will result in a reduction of the Fisher information. In other words, for the given parameters
of the model, when r is around 0.6, the input information can be most accurately read out.

Figure 4 shows more plots of the Fisher information versus r . A comparison of figures 3
and 4 tells us that when γ decreases, the peak of the Fisher information moves to the left
(small r).

When γ = 0.22, 0.23, as indicated in our theoretical results in the previous section, there
is a point r0, depending on γ , at which the Fisher information is zero. We call the point a
singular point since at the point the variance of any estimate is infinity. At first glance, it
is very puzzling to have such a singular point r0. To the best of our knowledge, all existing
statistical theories avoid discussing singular points [23, 24]. What is the actual implication of
the singular point for practical estimation of the input frequency? We explore this issue in the
next section.

Although the Fisher information has been extensively applied to neuroscience, as we
mentioned earlier, it seems that the novel phenomena reported here have not been noted in the
literature.

6. Maximum likelihood estimate

In this section we use the maximum likelihood estimate approach to estimate the input
frequency λ. The approach also helps us to understand the curious phenomenon that the
Fisher information calculated in the previous section attains zero and to develop a method to
estimate input rate at the singular points.

After some basic calculations we see that the maximum likelihood estimate of λ is the
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Figure 3. The Fisher information and J +, J− versus ratio r for γ = 0.20. It is readily seen
that when r is around 0.6, the Fisher information reaches its global maximum. Both J +, J− are
decreasing functions of r .

intersection of the function

f (λ) = (Vthre − γµ)2

σ 2γ
− log(Vthre − γµ) + log[γ 1+δ/2σ

√
π ] (6.1)

with log((
∑

i Ti)/N), where Ti is the first hitting time (interspike intervals) obtained from
numerical simulations. Note that f (λ) is only defined for Vthre > γµ. The maximum
likelihood estimator of λ is given by

λ̂ ∈



A = f −1

(
log

( ∑
i

Ti/N

))
if A �= �

{+∞} otherwise.
(6.2)
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Figure 4. The Fisher information versus ratio r for γ = 0.23, 0.22, 0.15 ms. For all cases there are
global maxima for the Fisher information. It is very interesting to note that when γ = 0.22, 0.23,
there is a r0, depending on γ and close to r = 0, at which the Fisher information is zero.

Since in general we would expect that f is not a monotonic function of λ, for a given constant
a, f −1(a) is defined as the set of λ satisfying f (λ) = a. From equation (3.3) we see that the
Fisher information vanishes if and only if f (λ) attains its local minima or maxima, provided
that 〈T (λ, r, γ )〉 < ∞.

Equation (6.2) now gives us a very clear picture of the behaviour of the maximum
likelihood estimate at the points where the Fisher information vanishes. Suppose that f (λ)

takes the form as in figure 5 and therefore at λ = λ0 the Fisher information is zero. According
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Figure 5. A schematic representation of the maximum
likelihood estimate. When λ �= λ0, the maximum likelihood
estimate will give us two solutions (λ1, λ2), indicated by thin
vertical lines. When λ = λ0 (indicated by thick vertical lines),
by equation (6.4), the unique estimate ofλ0 is obtained, although
now the Fisher information is zero and the mean of λ̂ is infinity.

to equation (6.2) we have

λ̂ ∈




A = f −1

(
log

( ∑
i

Ti/N

))
if log

( ∑
i Ti/N

)
� f (λ0)

{+∞} if log

( ∑
i Ti/N

)
< f (λ0).

(6.3)

When λ = λ0, we see that due to the fluctuation of
∑

i Ti/N , λ̂ will be finite, i.e. in set A, with
a positive probability and be infinity with a positive probability as well. Hence the expectation
of λ̂ is infinity already. For the general case of f with multi-local minima or maxima, the
conclusions above are also true.

Suppose that we only have a unique minimum point of f (λ) which is true for all cases
considered in this paper. In other words, the singular point of the Fisher information is unique
(the following idea could be easily generalized to multi-minima (maxima) cases). At the
singular point, an efficient way to estimate the input frequency is then

λ̂ = λ0 =




f −1

(
log

( ∑
i

Ti/N

)
− ε1

)
if log

( ∑
i Ti/N

)
� f (λ0)

f −1

(
log

( ∑
i

Ti/N

)
+ ε2

)
if log

( ∑
i Ti/N

)
< f (λ0)

(6.4)

where ε1 = log(
∑

i Ti/N) − f (λ0) and ε2 = − log(
∑

i Ti/N) + f (λ0). Note that, different
from equations (6.2) and (6.3), in (6.4) the equality holds true. In practical applications, we
could use small perturbations to find ε1 and ε2 (we shall report this in a statistical journal).

Therefore, at the singular point the maximum likelihood estimate gives us a unique solution
(equation (6.4)) and at all other points the maximum likelihood estimate gives two solutions
(see figure 5). Usually, it is difficult to choose one of the two solutions (see below). In this
sense the input rate can be most easily and accurately read out when the Fisher information is
zero.

We now turn to our neuronal models. We use all parameters as in the previous section and
therefore the true value of the input frequency is 40 kHz.

In figure 7 (γ = 0.22) we plot f (λ) against λ and therefore the intersections of f (λ)

with log((
∑

i Ti)/N) give us maximum likelihood estimates. For example, when r = 0.04 we
have the unique solution which is the true value. Note that in figure 4, the Fisher information
is zero when r = 0.04. Hence in terms of the maximum likelihood estimate, the singular
point means that there is a unique solution for the maximum likelihood estimate. We naturally
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Figure 6. A schematic explanation of equation (6.4). The thick horizontal line is log(
∑

i Ti )/N .
When N is large, log(

∑
i Ti )/N is within an ε > max(ε1, ε2) distance from f (λ0). If

log(
∑

i Ti )/N > f (λ0) (left), the maximum likelihood estimate gives us two solutions. However,
we can move log(

∑
i Ti )/N downward by a distance of ε1 and the maximum likelihood yields

the unique, true solution λ0. If log(
∑

i Ti )/N < f (λ0) (right), the maximum likelihood estimate
gives us no solution. However, we can move log(

∑
i Ti )/N upward by a distance of ε2 and the

maximum likelihood yields the unique, true solution λ0.

envisage that at a singular point, we can most easily and accurately estimate the input rate,
as discussed before. The traditional view that the larger the Fisher information is, the more
accurately or easily we can estimate the parameter holds true for the parameter regions in
which the Fisher information does not vanish. If the Fisher information reaches zero, then the
conclusion is totally different, at least for the model we consider in this paper. Suppose that
there is only one point in the whole parameter space at which the Fisher information vanishes,
then we can estimate the parameter at the singular point most easily and accurately, in terms
of the maximum likelihood estimate (see equation (6.4)). When r > 0.04, there are always
two solutions, although one of them might be closer to the true value.

It is illuminating to compare figure 8 (γ = 0.20) with figure 7. For γ = 0.20 from
figure 3 we see that the Fisher information is positive for all r ∈ [0, 1] and hence there is no
singular point. Figure 8 clearly shows that although there are two solutions, sometimes we can
easily discard one which is further away from the true value and outside the physiologically
reasonable parameter regions. For example, in both figures 7 and 8, when r = 1, we can confine
ourselves to inputs smaller than 200 kHz and there is a unique solution of the maximum
likelihood estimate. However, when both solutions are inside physiologically reasonable
regions, it is difficult to choose between the two solutions: see, for example, when r = 0.04
in figure 8.

7. More realistic inputs

In the previous sections, we have considered the case that the inhibitory input is fixed, i.e. it
is independent of the excitatory input. However, in general it is believed that the strength of
the inhibitory input exhibits a ‘push–pull’ effect [7]: the stronger the excitatory input is, the
stronger the inhibitory input. For simplicity of notation, as in [3] (figure 4), we assume that in
equation (2.3) r = λENE/(λmaxNE) where λmax is the maximum excitatory input rate of each
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Figure 7. F(λ) versus λ. The intersection of f (λ) with log((
∑

i Ti )/N) gives the maximum
likelihood estimate, where N = 10 000 and Ti is the interspike interval. Compare with figure 4.

synapse.
We use the following rigorous results to calculate the mean firing time [19]:

〈T (λ, r, γ )〉 = 2
∫ Vthre

Vrest

1

a2λ(1 + r)
exp

(
γ−1x2 − 2aλx(1 − r)

a2λ(1 + r)

)

×
( ∫ x

−∞
exp

(
− γ−1u2 − 2aλu(1 − r)

a2λ(1 + r)

)
du

)
dx

= 2

a2λ(1 + r)

∫ Vthre

Vrest

exp

(
γ−1(x − aλ(1 − r)/γ−1)2

a2λ(1 + r)

)
exp

(
− (aλ(1 − r))2

a2γ−1λ(1 + r)

)
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Figure 8. F(λ) versus λ. The intersection of f (λ) with log((
∑

i Ti )/N) gives the maximum
likelihood estimate, where N = 10 000 and Ti is the interspike interval. Compare with figures 4
and 7.

×
[ ∫ x

−∞
exp

(
− γ−1(u − aλ/γ−1)2

a2λ(1 + r)

)
du

]
exp

(
(aλ(1 − r))2

a2γ−1λ(1 + r)

)
dx

= 2

a2λ(1 + r)

∫ Vthre

Vrest

exp

(
γ−1(x − aλ(1 − r)/γ−1)2

a2λ(1 + r)

)

×
[ ∫ x

−∞
exp

(
− γ−1(u − aλ/γ−1)2

a2λ(1 + r)

)
du

]
dx

= 2

γ−1

∫ Vthre

√
γ−1

a
√
λ(1+r)

−
√
λ(1−r)√

γ−1(1+r)

Vrest
√

γ−1

a
√
λ(1+r)

−
√
λ(1−r)√

γ−1(1+r)

[
exp(x2)

∫ x

−∞
exp(−u2) du

]
dx. (7.1)
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Figure 9. (a) Output firing rate versus input firing rate (λE). Points are obtained in terms of
numerical simulations. (b) The mean firing time against standard deviation. Parameters are
γ = 1 ms, a = b = 1 mV, Vthre = 20 mV, Vrest = 0 mV, NE = 400, λmax = 100 Hz. Parameters
are chosen so that all stimuli are subthreshold and input, output firing rates are in physiologically
plausible regions, between 0 and 100 Hz.

In figure 9(a) we plot the output firing rate versus input firing rate of the IF model with
its inhibitory input rate proportional to its excitatory input rate. Note that when λE = λmax/2,
the mean input µ attains its global maximum. In our case, it is 50 Hz. However, there is a
shift to the right for the output firing rate to attain its maximum, i.e. it reaches its maximum
firing rate at λE = 65 Hz, r = 0.65. This is simply due to the fact that both the mean and
variance of inputs contribute to push the neuron to fire. Figure 9(b) depicts the mean firing
time against standard deviation, which indicates that the efferent spike train is approximately
a Poisson process.

The drawback of the monotonic input–output relationship of a neuron, namely the well
known sigmoidal function, has been criticized in [3] and elsewhere. In fact, from the dynamical
system point of view, a monotonic input–output relationship implies that there are only
two stable attractors. Therefore, after transformation of a few layers, neuronal activities
either become totally silent or fire at a fixed rate—seeing either ‘black’ or ‘white’, but not
‘colour’. A non-monotonic relationship of input–output as in figure 9 considerably enriches
neuronal activities. Depending on its parameters, it can exhibit chaotic behaviour. Other
biophysical mechanisms to generate the non-monotonic input–output relationship include
synaptic depression [2], and low-threshold calcium current [37], etc.

According to the theory developed in the previous sections, we assert that for the input–
output relationship depicted in figure 9, when the input rate is at 65 Hz, the Fisher information is
zero and so we can most easily read out the input rate. More specifically, the Fisher information
is now

I (λ, r, γ ) = [(〈T (λ, r, γ )〉)′]2

[〈T (λ, r, γ )〉]2
(7.2)

and the maximum likelihood estimate is given by the solution of

〈T (λ, r, γ )〉 =
∑

Ti/N.
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Note that when the input is 65 Hz the neuron fires at its maximal firing rate. It is generally
accepted that the faster the neuron fires, the more information it carries. In other words,
λE = 65 Hz is the most important point for the neuron to read out.

It is also very interesting to note that neuronal response curves [18] exhibit a similar (bell)
shape of input–output relationship as in figure 9. Therefore our results developed here can
also be applied to population coding theory.

8. Discussion

With a fixed excitatory input to a neuron, we ask how strong the inhibitory input to the neuron
is required to be for optimal decoding of the input information based upon an observation of
the efferent spike trains. We find that usually certain amounts of inhibitory inputs are needed
to ensure that the Fisher information attains its global maximum. Although it is well known
that the inhibitory input is present in real neuron systems and a number of functional roles for
it have been put forward in recent years [10, 36], it seems that we are the first to address the
issue in terms of the Fisher information. The conclusions obtained here should also be useful
for the design of spiking neural networks for engineering applications.

A somewhat surprising result is that the Fisher information is zero at some points of the
ratio. Using the maximum likelihood estimate, we find that at singular points there is a unique
solution. We then articulate that at the singular point, we can most easily estimate the input
rate. In summary let us define

R0 = {r : I (λ, r, γ ) = 0, r �= 0, 1}
Rm = {r : I (λ, r, γ ) attains its local maximum , r �= 0, 1}.

Inhibitory inputs ensure that R0 ∪ Rm is not an empty set. Parameters inside R0 are more
easily estimated than those inside Rm.

Within a totally different context, a related issue has been addressed in the literature in
the past few years. It is articulated in [29] that if only excitatory inputs are presented, a model
neuron with integrate and fire mechanisms fires very regularly and therefore its behaviour
contradicts cortical neuron behaviour. Shadlen and Newsome [31] then showed that if an
exactly balanced inhibitory input and excitatory input is presented, the efferent spike trains
of a single neuron model are very irregular. It would seem that a neuron operates in an
environment of exactly balanced inputs. However, we [8, 9, 13, 14, 16] have shown that the
picture is much more complex than the aforementioned results. A neuron can easily generate
irregular firing patterns, no matter whether it receives a purely excitatory input or an exactly
balanced input. Hence the question of which regions of the ratio a neuron operates in remains
elusive. An answer would be informative and shed new light on the fundamental issue in
neuroscience: How do neural systems organize, at least locally, to process information? The
results presented in this paper provide some clues.

The IF model is the simplest model in theoretical neuroscience, which reflects certain
aspects of a real neuron and provides us with some clues on how a real neuron operates [2,11].
It would be interesting to apply our conclusions to more biologically realistic models, to the
framework of population coding theory [18,20] and to models with correlated inputs [16,32,38].

The most common quantity about information used in neuroscience is the Shannon
information. We cite the relationship between the Shannon information and the Fisher
information here [23].

Theorem 1. Let T1, . . . , TN be an iid sample from f (t |λ) with the priori π(λ), and let SN(π)
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denote the Shannon information of the sample. Then as N → ∞

SN(π) = k

2
log

N

2πe
+

∫
π(λ) log

|I (λ)|1/2

π(λ)
dλ + o(1) (8.1)

where k is the dimension of λ.

Equation (8.1) gives us a transparent and interesting relationship between the Shannon
information which has been intensively applied to neuroscience in recent years and the Fisher
information which we have explored here. However, it seems that no one has investigated
them according to equation (8.1), which might shed new light on some of the issues discussed
here.
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