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Abstract—We develop neuron learning rules using the Informax
principle together with the input-output relationship of the inte-
grate-and-fire (IF) model with Poisson inputs. The learning rule is
then tested with constant inputs, time-varying inputs and images.
For constant inputs, it is found that, under the Informax principle,
a network of IF models with initially all positive weights tends to
disconnect some connections between neurons. For time-varying
inputs and images, we perform signal separation tasks called inde-
pendent component analysis. Numerical simulations indicate that
some number of inhibitory inputs improves the performance of the
system in both biological and engineering senses.

Index Terms—Informax principle, integrate-and-fire (IF) model,
learning rules, spiking independent component analysis.

I. INTRODUCTION

DURING the past few decades, we have seen many illu-
minating publications on modeling single neurons, both

at abstract and biophysical levels [18]. Many intriguing phe-
nomena have been revealed such as how to ensure a single in-
tegrate-and-fire (IF) model to generate spike trains with a co-
efficient of variation between 0.5 and 1 [11], to carefully tune
the noise level to exhibit stochastic resonance [4], to synchro-
nize a network of spiking neurons with inhibitory inputs [17],
[29]. Nevertheless, the majority are devoted to a “dead” neuron
model: the model is not able to learn when it receives inputs.

In this paper, we study neuron models with a learning rule,
i.e., the neuron is capable of updating its weights of inputs. The
simplest and most general principle of learning rules is prob-
ably the Informax principle [21]. It has been demonstrated that
the Informax principle is theoretically promising [3], [21], bio-
logically plausible [12], and widely applicable in solving engi-
neering problems [2], [5], [20].

By a simple combination of the Informax principle and the IF
model, we want to address the following key issues.

• What are the implications of the Informax principle with
a network of IF neurons? In other words, what is the out-
come of the Informax principle learning? After learning,
do the weights tend to self-organize themselves, represent
inputs, or accomplish something else?

• What is the computational capacity of an IF neuron? Can
the IF neuron be applied to solving practical problems? We
have seen applications of the IF model, or more general
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spiking neuron, to solving engineering problems, where
the information contained in spike intervals is exploited.
We test the computational capacity of the IF neuron in
blind separation, using a rate coding assumption.

• What is the optimal value of the ratio between inhibitory
and excitatory inputs? We all know there are inhibitory
inputs in the neural system, but the functional role of these
remains elusive.

Under the Informax principle, the learning rule developed for
the IF model is complicated and so a complete theoretical treat-
ment is impossible. For some ideal cases, we can understand its
underpinning mechanisms [12]. For general cases, we have to
resort to numerical simulations so that all the questions raised
above are answered.

• The implication of the Informax principle is to disconnect
some connections between neurons, i.e., a more sparse
representation of inputs is achieved. With fully, randomly
initialized connections, some weights will automatically
die out after learning.

• We test the computational capacity of the IF model in
blind separation tasks. The incoming signal for each single
neuron is a Poisson process, implying a very low signal-to-
noise ratio signal. Nevertheless, very crude simulations
show that the computational capacity of the IF model is
promising. It can successfully separate incoming, mixed
signals.

• For neurons with both constant inputs and time-varying
inputs, we find that the IF model behaves more reason-
ably when there are certain number of inhibitory inputs.
Biologically, it produces spike trains with a coefficient of
variation close to one, as in a Poisson process. In blind
separation tasks, it better recovers the signals.

In classical neuronal network theory [16], we usually take
into account the first-order statistics, i.e., the mean firing rates,
as the input and output of a neuron. Hence classical neuron net-
works are essentially learning machinescomputing mean. Here,
in our novel learning rules, the first-order statistics, as well as the
second-order statistics (see Section IV), of the input and output
are considered, resulting in a learning machinecomputing mean
and variance. Even when the mean input vanishes (with exactly
balanced excitatory and inhibitory inputs), a meaningless case
in the classical setup, our setup, and learning rule are still fully
functional.

II. I NFORMAX PRINCIPLE

We very briefly review some results on maximizing mutual
information between input and output of a system and refer the
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reader to [5] for details. For a given input and output , its
mutual information is defined by

where is the entropy of the output and is
the conditional entropy. Under the assumption that the mapping
between and is deterministic, then maximizing the mu-
tual information is reduced to maximizing the entropy as
pointed out in [5]. Note that maximizing entropy is, in general,
not equivalent to maximizing mutual information. If we simply
assume that , where is an invertible transfor-
mation and is additive noise on the outputs. In this case, we
see that [22] . Hence, maximizing the mutual
information is equivalent to maximizing the entropy (we will re-
turn to this point in Section IV).

Suppose that the output firing frequency or interspike inter-
vals (ISIs) (realization of of a neuron is a function of
input rate (realization of , with synaptic weights . Then
the learning rule under the Informax principle is to maximize

where is the distribution density of. Equiv-
alently we have [5, (6)]

(1)

which is the starting point of our development below. For a
high-dimensional case we could simply replace by the
determinant of the Jacobian matrix, that is .

III. IF M ODEL

Suppose that a neuron receives excitatory postsynaptic po-
tentials (EPSPs) at synapses and inhibitory postsynaptic po-
tentials (IPSPs) at inhibitory synapses. When the membrane
potential of th neuron is between the resting potential
and the threshold , it is given by

(2)

where is the decay rate and synaptic inputs

(3)

with as Poisson processes with rate and , re-
spectively, , being magnitude of each EPSP
and IPSP. Note that the magnitude of each EPSP and IPSP is
solely determined by weights and since the increment
of and is unity (Poisson process).

Once crosses from below a spike is generated and
is reset to . This model is termed the IF model [7],

[10], [28].
Here we use the usual approximation to approximate the IF

models, or more exactly the synaptic inputs of the models. The
basic idea of the usual approximation is to replace the Poisson
process of (3) by a diffusion process with the identical mean and
variance. We do not check the approximation accuracy since this
has been done by many authors [11], [24], [28]. Essentially the
approximation is accurate when the input rates

are high and signal magnitudes are not
large.

The input now reads

and similarly

where and are standard Brownian motions (a nor-
mally distributed random variable with mean zero and variance

. The mean of is and the variance of it is ; so
is the diffusion process . Therefore the IF
model can be approximated by

where

(4)

Since the summation of Brownian motions (normal random
variables) is again a Brownian motion we can rewrite the
equation above as follows:

(5)

where is a standard Brownian motion

(6)

In the sequel, for simplicity of notation, we assume that
, and for .

Therefore the neuron has the same number of active excitatory
and inhibitory synapses, with the same weights, but input rates
might be different. When , the cell receives purely excita-
tory input and when , its inputs are exactly balanced. The
ISI of efferent spikes is

We only consider the case of rate coding since then a rig-
orous input-output relationship of firing rates is known for the
IF model. By rate coding, we mean that the information is car-
ried by the firing rate of a neuron. As shown in Fig. 1, filled cir-
cles or rectangles are the units of our network. Each represents
a group of IF neurons. It is well known in the literature that the
input-output relationship of a neuron takes a sigmoidal form and
this is the basis of neural computations developed over the past
few decades. The input-output relationship of an IF model (see
Fig. 2) takes a sigmoidal function as well (not surprising at all),
but it depends not only on the mean of inputs, but also on the
variance of inputs. The latter feature enables us to derive novel
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Fig. 1. Schematic input-output relationship. Each unit (circle) represents a
group of IF neurons. The average of spikes over the group of neuron gives rise
to the mean firing rate as defined in by (7). The activity of each IF neuron is
described in Section III.

Fig. 2. Output
 (Hz) versus input� = � = � (kHz) of the IF model
with n = 3, w = 0:5, i; j = 1; . . . ; 3, � = � = � , V = 20 mV,
V = 0 mV andL = 1=20, T = 10 ms.

learning rules which, to the best of our knowledge, have not been
reported in the literature and exhibit some intriguing phenomena
[see discussion after (7)]. The importance that a neuron might
use higher order statistics in computation has been recognized
early in the literature (see, for example, [3]).

IV. L EARNING RULE

Remember that the mean ISI of the IF model with Poisson
inputs is given by [11]

(7)

where

and (6)

A detailed derivation of (7) is quite mathematically involved and
we simply refer the reader to our review paper [11] for more
details. In Fig. 2, we plot the input-output relationship, i.e.,
versus , described by

(8)

where is the refractory period. The relationship between
mean ISIs and output firing rates is determined by (8). There-
fore, for given input firing rates , , weights ,

and various parameters in the IF model, we can
analytically calculate the mean ISIs via (7). From (8), we can
determine output firing rates provided is given. In Fig. 2,
we have scaled down the number of input neurons and
correspondingly scaled up the input rate of each synapses (in
kHz), in comparison with typical parameters used in simulating
biological systems [11]; see Section V for further explanation.

When , from Fig. 2, we see that the output firing rate is
rapidly saturated. When , exactly balanced input case, we
note that the mean input to each neuronis zero. However,
as long as the variance is not
zero is trivial), we have , namely the
neuron will fire. In Fig. 2, we see that the neuron fires with a
frequency between 0 and 40 Hz. In most, if not all, classical
neuron network theory [16], only the mean of input is taken into
account. Therefore the case of is not discussed in neural-
network literature. It has been recently pointed out that
might be the most interesting case in a biological system [25],
[11]. When is close to zero, the output spike trains of a single
neuron are simply too regular, in comparison with biological
data.

From the activity of a single IF neuron, we can obtain spike
trains. From the spike trains, the mean ISIs are calculated in two
ways: averaging over a time window for a single spike train, the
so-called temporal-average; averaging over a group of neurons
within a short time window, the so-called spatio-average. The
problem with temporal-average is its speed. To reliably obtain
the mean ISIs we have to take a long time window. The short-
coming with spatio-average lies in the fact that neuron activi-
ties are usually inhomogeneous and so a simple average will not
give us a correct mean ISI. Nevertheless, we prefer the second
choice, i.e., the spatio-average. To get rid of the inhomogeneity
in neuronal populations, we can average the ISis using different
weights for different neurons. To fully address the issue is out-
side the scope of the paper; we refer the reader to [15] for details.
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Hence, in Fig. 1 we use a filled circle or rectangle to represent
the spatio-average over a group of neurons.

The learning rule under the Informax principle is

(9)

where

The matrix could be rewritten as

where

Therefore

where is the matrix obtained by deleting
the th row and th column of the matrix and

which yields

(10)

Defining

letting

and

if

if

we arrive at

(11)

and

(12)

Combining (11) and (12) with (10), we obtain a novel learning
rule based upon the IF model. The first term in (10) represents
how the weight should be updated according to its input-output
relationship; the second term relies on the derivatives of .

To fully understand the learning rule presented here is a tough
issue, nevertheless for a special case we can grasp a complete
picture. Let us consider the ideal case of , and
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, i.e., the neuron only has one input and one output or all
inputs are uniform. Now (10) is reduced to

(13)

and we have . After taking some further
calculations, we obtained the learning rule developed in [12]

with

For the ideal case, we know that there is a unique stable point
for the learning rule, and the weight is automatically restricted
in the regions of . The derived learning rule is similar to
the BCM learning rule [12], [18].

For the general case, the learning rule presented here is too
complex to be explored theoretically, nevertheless we can sim-
ulate it numerically, as presented in the next section.

Now, we make a comment on the relationship between the
maximizing entropy and maximizing mutual information for the
IF model. Using the notation in Section II, for the IF model, if
we have and , where

is the ISI. In this case, we see that [22]
is independent of . Hence, maximizing the mutual informa-
tion is equivalent to maximizing the entropy. Nevertheless, in
general, changing weights and the ratio between inhibitory in-
puts and excitatory inputs, will both lead to a change of the
output distribution of the ISIs (see, for example, [11]) and, there-
fore, depends on . To develop an exact learning rule
based upon the information maximization then requires an exact
expression of the distribution of the ISIs, which is lacking at
moment [11].

V. NUMERICAL RESULTS

A. Supervised Learning

Recall that in (10), we have

(14)

where is the efferent firing rate (in unit of 1/ms) of theth
neuron. Therefore, if we fix (clamp) the efferent firing rate, we
have a version of supervised learning. The desired output firing
rate is , . We train the network according to (14)
and investigate whether the actual output satisfies (14) or not.

We simulate the learning rule with the following parame-
ters: , Hz, Hz for ,

Hz for ,
and , using Matlab. The total excitatory input is of

Fig. 3. Weights of the network we considered. The color level of right square
of each grid, say(i; j) represents the value ofw . For example, the color level
of the most left bottom square isw . Upper left is the initial states of weight.
Upper right(r = 0) and bottom panel From left to right,(r = 0:5 andr = 1)
show weights when the learning is finished (800 iterations).

7500 Hz. The input is equivalent to each neuron receiving 100
active synaptic inputs, each with 75 Hz, which are physiolog-
ically plausible parameters [11]. Note that for the purpose of
visualizing results, here we scale ownand scale up cor-
respondingly. The initial weights are random variables from

, the uniform distribution over , and step size of
learning is 0.05. After 800 time steps of learning, the synaptic
weights are stable, for all cases we considered here.

We carry out simulations for and one. Fig. 3 shows
that weights become more specific after learning. For example
when we have

and

namely the connections

die out. More precisely, before learning the number of weights
near to zero is three, and after learning it is 13, 14, and 15 for

and , respectively. Hence, in this case (also see
Section V-B), some connections of an IF model network, under
the Informax learning, become disconnected.

To achieve successful learning, the ISI of output of each
neuron should be 20 ms, the desired output. Nevertheless, in
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Fig. 4. Mean and CV of output ISIs. Left are initial values and right are values
after learning.

the learning rule, we still have one parameter which is
free. Hence, for an ISI smaller than 20 ms, we could always
add an appropriate refractory period so that the output ISI
is 20 ms. The appropriate refractory period could be chosen
via a learning rule, say the gradient descent method. In other
words, the learning rule ispotentiallysuccessful if output ISI
is less than 20 ms. Fig. 4 tells us that in all cases of and

, the learning rule is potentially successful, i.e. all mean
ISI values are less than 20 ms. The conclusion is not true for

where too big an ISi is obtained. Fig. 4 also shows the
coefficient of variation (CV Standard deviation of ISI/mean
of ISI) of ISI. It is interesting to see that the coefficient of
variation of the model with is generally smaller than
0.5. For a recent discussion on the CV of ISI of the IF model,
we refer the reader to [11]. Briefly speaking, it is found in
experiments that the output of a single neuron is very irregular.
The CV of the output ISIs is between 0.5 and 1, similar to
that of the Poisson process with CV being one. These results
are very interesting, since it is obvious that a neuronal system
is required to encode and then decode information as reliably
as possible. A large CV, i.e., a very noisy system, simply
contradicts the requirement.

In summary, only when the IF model learns poten-
tially successfully and generate spikes trains with a coefficient
of variation inside [25], “optimally behaving” in the bi-
ological sense.

B. Unsupervised Learning

Now we turn our attention to unsupervised learning which
means that the output firing rate is determined by the input rate

Fig. 5. Weights of the network we considered. The color level of right square
of each grid, say(i; j) represents the value ofw . For example, the color level
of the most left bottom square isw . Upper left is the initial states of weight.
Upper right(r = 0) and bottom panel, from left to right,r = 0:5 andr = 1,
show weights when the learning is finished (800 iterations).

via (8), rather than fixed as in the previous section. We fix
ms in all simulations.

We carry out simulations for and 1. Fig. 5 shows
weights after learning with initial states identical to these in the
previous subsection. After learning with the Informax principle,
some connections become disconnected. Note that both in Fig. 3
and Fig. 5, weights for and are very similar from
one experiment to the other. This can be easily understood. As
pointed out in [13,, p. 1656 and Fig. 2], the output firing rate
of the IF neuron is not sensitive to its input when the input is
superthreshold. In fact this can also be observed from Fig. 2
where the output firing rates of and are close to
each other.

Furthermore, Fig. 6 depicts the efferent ISIs and the coeffi-
cient of variation. Again as in the case of supervised learning,
we note that when , the most reasonable behavior is
observed: the output CV of ISIs is roughly close to one, as ob-
served in experiments [25].

Note that the input and output relationship of a neuron de-
pends not only on its input weights and inputs, but also on,
the ratio between inhibitory and excitatory inputs. With iden-
tical weights and inputs but different, the output of a neuron
could be very different [see, for example, (7) and Fig. 2].

C. Signal Separation

To test the computational capacity of the IF model, we take
into account a toy model of time-varying (sources) inputs, as in
[16]. For general background on blind separations, we refer the
reader to [2], [5], [20].
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Fig. 6. Mean and CV of output ISIs after unsupervised learning. The initial
mean and CV are as shown in Fig. 4, left column.

The input signals are

(15)

for and is the uniform random numbers from .
The input signals are mixed with the matrix

and a constant vector is added (to ensure that input
signals are positive) i.e., the received signals are

and inverse matrix of is

The weights are updated with a learning rate of ,
with an initial state of randomly generated number from

, the uniform distribution over . It is well
known from stochastic approximation theory [31] that a
learning rate of will ensure that the algorithm converges

Fig. 7. Input signals (bottom trace of each figure) and output signals (upper
trace) after blind separations withr = 0:5. Right column is the blow up of left
column in time interval [200, 300].

to the local minima of its cost function. After 800 times of
iterations we obtain

which gives us the results as shown in Fig. 7. The output signals
are obtained via

output

We also run the same simulations with and . It
is interesting to find that when , i.e., with exactly bal-
anced excitatory and inhibitory input, input signals are diffi-
cult to recover. In all simulations we carried out, the weights
quickly diverge to large numbers. In contrast, whenis small

, input signals are reasonably recovered.
Comparing Fig. 7 with Fig. 8, we find that a better blind sep-

aration of input signal is achieved when [see ]. For
signal the quality of recovered signals are very similar, at
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Fig. 8. Input signals (bottom trace of each figure) and output signals (upper
trace) after blind separations withr = 0. Right column is the blow up of left
column in time interval [200, 300].

least to a visual inspection. Since is noise, we pay less at-
tention to it. For , we perform a more detailed comparison
of recovered signals between and in Fig. 10. Re-
covered signals are plotted using identical scales. Note that
input signals are flat when they reach the maximum i.e., two or
minimum i.e., 2. Hence for recovered signals we could use the
flatness of maximum and minimum as a criterion to assess the
quality of separations. Two horizontal, thick lines are added in
Fig. 10 to help us visually assess the flatness of separated sig-
nals. It is easily seen from Fig. 10 that obtained with
is better than that with . We thus conclude that, at least in
the numerical example we considered here, the IF model has a
better performance when certain number of inhibitory inputs are
added in the inputs. Finally, in Fig. 9, the output firing rates of
three neurons during learning period are shown with .

We can have a comparison of the approach presented here
with the conventional one [5] where only the mean of input is
taken into account. Going to the extremal case when , we

Fig. 9. Efferent ISis versus iteration times withr = 0, see Fig. 8.

Fig. 10. Detailed comparison between recovered signals withr = 0:5 (left),
which is the same as in Fig. 7, middle panel, andr = 0 (right), which is the
same as in Fig. 8, middle panel. Note that for comparison, we have rescaled
two figures. Two horizontal, thick lines are added to help us assess the quality
of separated signals. It is easily seen that withr = 0:5, a more flat signal is
obtained.

see that the mean input signal is zero and so it is impossible to
discuss the issue of recovering signals in the classical setup. As
we mentioned before, we have difficulties in separating signals
as well. However, we can simply modify the learning algorithm
by setting an upper bound for the weights, which is biologi-
cally plausible and widely employed in neural networks. Fig. 11
shows the actual outcome after 200 iterations, with all param-
eters as before. Fig. 12 is the ISis of all three cells during the
learning period. Note that data are truncated at 50 ms. Finally
we emphasize that it is not easy to have a quantitative compar-
ison between the ICA carried out here and the conventional ICA
[16]. The signals employed in the ICA here is a mixture of con-
ventional signals (i.e., the mean term in Section III) and conven-
tional noise (i.e., the variance term in Section III). The learning
updates the weights, implying simultaneous change to the mean
and variance. Furthermore the input signal in the mean term is
the original signal , but in the standard deviation termit
is [see (6)], i.e., the input signal is distorted.

From Figs. 7, 8, and 11, we see that the recovered signals are
shifted in positions and rescaled in magnitude. This is a well
known feature of blind separation, i.e., the recovered signals are
not unique [2], [5].
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Fig. 11. Input signals (bottom trace of each figure) and output signals (upper
trace) after blind separations withr = 1. An upper bound of weights of ten is
introduced in the algorithm. Right column is the blow up of left column in time
interval [200, 300].

Next we test our algorithms on people faces. Each face in
Fig. 13 is a file of 287 384 pixels, denoting it as ,

with , . For
, we then transform the matrix into vectors

by defining

Using the mixed matrix as before, we have the mixed images
as shown in Fig. 13, bottom panel. Input signals from

are used and we recover the faces as
shown in Fig. 13.

VI. DISCUSSION

We have presented a theoretical and numerical approach
to derive novel learning rules based upon spiking neurons.

Fig. 12. Efferent ISIs (ms) versus iteration times withr = 1 (see Fig. 11).

Fig. 13. Upper panel is the original faces, each with 287� 384 pixels. Middle
panel is obtained after 10 000 iterations and bottom panel is mixed faces.r =

0:5

In particular, for the IF model and both supervised learning
and unsupervised learning, we show that the model under the
Informax principle tends to disconnect some of its connections
and some number of inhibitory inputs is required to optimize
its performance. Here optimization means both biological
and engineering senses. The conclusions are tested both with
constant rate inputs and time-varying inputs.

To find a learning rule which is biologically plausible and
is applicable to solving engineering problems has been a long
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endeavour in neural-network research [30], [27]. The typical
learning rule in biology is the Hebbian learning rule, which has
been widely used in past few decades, for rate coding-based
models [16]. In recent years, the Hebbian type learning rule in
the time domain has be found experimentally and applied to de-
veloping models mimicking the development of visual cortex
[32], [26], [6]. However, to the best of our knowledge, the ap-
plication of the Hebbian type learning rule in time domain to
engineering problems is less developed. The typical learning
rule in engineering applications is probably the gradient descent
method. To apply the gradient descent method to spiking neuron
networks is not an easy task due to the nonlinear dynamics of
a spiking neuron. Interestingly, the same idea, to apply the In-
formax principle to derive a learning rule for spiking neuron
network, has been reported in the literature [9]. Unfortunately
the spiking neuron used in [9] is not a genuine spiking neuron,
it is a linear unitper seand the author terms it “perfect leaky
integrator.” The obtained results are thus less interesting than a
learning rule based upon a truly spiking neuron such as the IF
model, as developed here.

We have only considered the IF model under the rate coding
assumption here. Is the learning rule developed here applicable
to time coding? The answer is affirmative. Remember the
learning rule developed in the previous sections

(16)

if we simply use and as instantaneous firing rate, i.e. the
inverse of ISi, a learning rule based upon the time is obtained
[6], [14], [19], [26], [32]. We will explore it in further publica-
tions. In the literature, there are increasing publications using
spiking time to deal with engineering problems. Typically, they
use synchronization of a group of neurons as a meaningful event
[8], [27].

To summarize, the differences between our approach here and
the approach used in, for example, [26], are the following.

1) The learning rule used here is derived from the Informax
principle, but the spike-timing-dependent plasticity used
in [26] is directly from experiments. Nevertheless, the
learning rules are applied to spiking neurons and spiking
neuronal networks.

2) As mentioned above, rate coding assumptions are used
here, but in [26] time coding assumptions are employed.
Again, as we emphasized above, we intend to carry out
our experiments using the time coding assumptions as
well.

3) Correlations between neurons are taken into account in
[26], but we have simply ignored correlations in our de-
velopments. However, it is quite straightforward to gen-
eralize our results to correlated inputs [11]. It is definitely
worth looking at the issue.

The approach presented here is quite general. In principle,
once we know the relationship of the input-output of a neuron,
we can obtain the learning rule of the neuron. As we have men-
tioned in the Introduction, we have accumulated many results

on the input-output relationship of a single neuron, for example
the IF-FHN model [11]. We expect our approach can also shed
more light onto the coding problem [14].

It is also very interesting to note that for all cases we consid-
ered, the best separation is achieved for, which is supposed
to be a more natural signal than the other two. Whether it is an
intrinsic property of the IF model, or more generally, a biologi-
cally realistic model, is not clear at moment.

As aforementioned, we consider a small network of neurons
due to the constraints of both visualizing results and computa-
tional considerations: it is very time-consuming to run a simu-
lation with 100 neurons. Nevertheless we are going to try simu-
lations of large networks in the near future. It is reported that
a neural system employs spatio-temporal patterns to process
information. To gain a better understanding on how a neural
system tackles incoming signals and then apply it to solving en-
gineering problems, we have to mimic a biological system at a
relatively detailed level.

Finally, we want to emphasize that although it is generally ac-
cepted that neurons in the cortex receive and send out Poisson
process (or more general, renewal process) spike trains [1], [23],
in the literature, to the best of our knowledge, it has not been
rigorously tested what is the functional role of Poisson process
input and output. On the contrary, it is widely accepted that the
stochastic part of input signal is simply noise and harmful. Our
approach here, as a first step toward exploring the truly compu-
tational function of Poisson process, reveals some primary and
interesting properties. Our approach is very different from the
well known stochastic resonance phenomena. In stochastic res-
onance, the noise level is finely tuned and kept small [4]. In our
setup, as we mentioned before, the noise level is proportional to
the square root of the signal and is not artificially modified.
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