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Training Integrate-and-Fire Neurons
With the Informax Principle Il

Jianfeng Feng, Yunlian Sun, Hilary Buxtolember, IEEEand Gang Wei

Abstract—We develop neuron learning rules using the Informax
principle together with the input-output relationship of the inte-
grate-and-fire (IF) model with Poisson inputs. The learning rule is
then tested with constant inputs, time-varying inputs and images.
For constant inputs, it is found that, under the Informax principle,

a network of IF models with initially all positive weights tends to
disconnect some connections between neurons. For time-varying
inputs and images, we perform signal separation tasks called inde-
pendent component analysis. Numerical simulations indicate that
some number of inhibitory inputs improves the performance of the
system in both biological and engineering senses.

spiking neuron, to solving engineering problems, where
the information contained in spike intervals is exploited.

We test the computational capacity of the IF neuron in
blind separation, using a rate coding assumption.

What is the optimal value of the ratio between inhibitory

and excitatory inputs? We all know there are inhibitory

inputs in the neural system, but the functional role of these
remains elusive.

Under the Informax principle, the learning rule developed for

the IF model is complicated and so a complete theoretical treat-

Index Terms—informax principle, integrate-and-fire (IF) model,
learning rules, spiking independent component analysis.

ment is impossible. For some ideal cases, we can understand its
underpinning mechanisms [12]. For general cases, we have to

resort to numerical simulations so that all the questions raised
I. INTRODUCTION above are answered.

minating publications on modeling single neurons, both
at abstract and biophysical levels [18]. Many intriguing phe-

nomena have been revealed such as how to ensure a single in-

tegrate-and-fire (IF) model to generate spike trains with a co-
efficient of variation between 0.5 and 1 [11], to carefully tune
the noise level to exhibit stochastic resonance [4], to synchro-
nize a network of spiking neurons with inhibitory inputs [17],
[29]. Nevertheless, the majority are devoted to a “dead” neuron
model: the model is not able to learn when it receives inputs.

In this paper, we study neuron models with a learning rule,
i.e., the neuron is capable of updating its weights of inputs. The
simplest and most general principle of learning rules is prob-
ably the Informax principle [21]. It has been demonstrated that
the Informax principle is theoretically promising [3], [21], bio-
logically plausible [12], and widely applicable in solving engi-
neering problems [2], [5], [20].

By a simple combination of the Informax principle and the IF
model, we want to address the following key issues.

some connections between neurons, i.e., a more sparse
representation of inputs is achieved. With fully, randomly
initialized connections, some weights will automatically
die out after learning.

We test the computational capacity of the IF model in
blind separation tasks. The incoming signal for each single
neuron is a Poisson process, implying a very low signal-to-
noise ratio signal. Nevertheless, very crude simulations
show that the computational capacity of the IF model is
promising. It can successfully separate incoming, mixed
signals.

For neurons with both constant inputs and time-varying
inputs, we find that the IF model behaves more reason-
ably when there are certain number of inhibitory inputs.
Biologically, it produces spike trains with a coefficient of
variation close to one, as in a Poisson process. In blind
separation tasks, it better recovers the signals.

In classical neuronal network theory [16], we usually take

« What are the implications of the Informax principle withinto account the first-order statistics, i.e., the mean firing rates,
a network of IF neurons? In other words, what is the ou@s the input and output of a neuron. Hence classical neuron net-
come of the Informax principle learning? After learningWorks are essentially learning machiresnputing mearHere,
do the weights tend to self-organize themselves, represEheur novellearning rules, the first-order statistics, as well as the
inputs, or accomplish something else? second-order statistics (see Section V), of the input and output

« What is the computational capacity of an IF neuron? C#He€ considered, resulting in a learning macluamputing mean
the IF neuron be applied to solving practical problems? Wid varianceEven when the mean input vanishes (with exactly

in the classical setup, our setup, and learning rule are still fully

functional.
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Il. INFORMAX PRINCIPLE

We very briefly review some results on maximizing mutual

Digital Object Identifier 10.1109/TNN.2003.809419 information between input and output of a system and refer the
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reader to [5] for details. For a given inpit and output’, its are high and signal magnitudes;, <, j = 1, ..., n are not
mutual informationM (Y, X) is defined by large.
The input now reads
M(Y, X) = H(Y) - H(Y|X)

E E pE
where H(Y) is the entropy of the output” and H(Y|X) is Bilt) ~ ATt + AT BE(Y)
the conditional entropy. Under the assumption that the mappiagd similarly
betweenX andY is deterministic, then maximizing the mu-
tual information is reduced to maximizing the entragyY’) as L(t) ~ Mt + \/;{B{(t)
pointed out in [5]. Note that maximizing entropy is, in general,
not equivalent to maximizing mutual information. If we simplyvhereBf (t) and B/ (t) are standard Brownian motions (a nor-
assume that’ = G(X) + N, whereG is an invertible transfor- mally distributed random variable with mean zero and variance
mation and)V is additive noise on the outputs. In this case, w8 The mean off;(t) is AFt and the variance of it i8f¢; so
seethat [22F (Y |X) = H(N). Hence, maximizing the mutual is the diffusion processFt + \/AFBE(t). Therefore the IF
information is equivalent to maximizing the entropy (we will remodel can be approximated by
turn to this point in Section IV). i i iy

Suppose that the output firing frequency or interspike inter- do) =~ (vt( - Vrest) dt + di §) (1)

vals (ISls)y (realization ofY’) of a neuron is a function of \ynere
input ratezx (realization ofX'), with synaptic weightsv. Then n m "
the learning rule under the Informax principle is to maximizg() () = N" EAE: = Nl A ¢ J(wE2NEBE(¢
—(log f(y)) wheref(y) is the distribution density of. Equiv- sim() J; v g it Tt ; (w27 B ()
alently we have [5, (6)]

m

I I Rl
Do (2 QosF @) _ (w9 [0y =2 WA B0, (4)
o | === =0 ) gwlas) @ o
Jw ox ow \ Ox

Since the summation of Brownian motions (normal random

which is the starting point of our development below. For ariables) is again a Brownian motion we can rewrite the
high-dimensional case we could simply repldakg 0z by the equation above as follows:

determinant of the Jacobian matrix, thati$ = |(0y;/Jx;)s;].

0§, (1) = pit + 03 By(t) (5)
lil. 1IF M opEL whereB;(t) is a standard Brownian motion

Suppose that a neuron receives excitatory postsynaptic po- n m
tentials (EPSPs) at synapses and inhibitory postsynaptic po- i = Z ,\JEwlb; — Z )\fw{j
tentials (IPSPs) at: inhibitory synapses. When the membrane i=1 i=1
potentiaIVtm of sth neuron is between the resting potentigl; n m : (6)
and the threshold; .., it is given by o2 = Z )\]E(wg.)2 + Z )\f»(w{j)Q

=1 7j=1

B _ _ (@ _ 7 (i)
v =-1 (Vt Vre“) dt+dl (1) ) In the sequel, for simplicity of notation, we assume that

- E __ I I __ E __
whereL is the decay rate and synaptic inputs m, wij = wi = w; andAj = rAF = riforr € [0, 1].
Therefore the neuron has the same number of active excitatory
iy n o and inhibitory synapses, with the same weights, but input rates
(4) - Ep . (4) — I7. . ) ’ . ' .
Iign(t) = Z wi; Ej(t) Z wi; (1) 3) might be different. Whem = 0, the cell receives purely excita-
=t =t tory input and whem = 1, its inputs are exactly balanced. The

with E;(t), I;(t) as Poisson processes with rafé and !, re-  ISI of efferent spikes is
spectively,wZ > 0, w!, > 0 being magnitude of each EPSP . G
alr31d IPSI%/. Nf)te that trjle magnitu?je ofgeach EPSP and IPSP is Ti(r) = inf {t' Vt( = V““e} ’
solely determined by weights,” andw;; since the increment W only consider the case of rate coding since then a rig-
of E;(t) and;(¢) is unity (Poisson process). orous input-output relationship of firing rates is known for the
ane‘/}(l) crossed; .. from below a spike is generated andF model. By rate coding, we mean that the information is car-
Vt“) is reset toV,.st. This model is termed the IF model [7],ried by the firing rate of a neuron. As shown in Fig. 1, filled cir-
[10], [28]. cles or rectangles are the units of our network. Each represents
Here we use the usual approximation to approximate the dFgroup of IF neurons. It is well known in the literature that the
models, or more exactly the synaptic inputs of the models. Theut-output relationship of a neuron takes a sigmoidal form and
basic idea of the usual approximation is to replace the Poisgbis is the basis of neural computations developed over the past
process of (3) by a diffusion process with the identical mean afelv decades. The input-output relationship of an IF model (see
variance. We do not check the approximation accuracy since thig. 2) takes a sigmoidal function as well (not surprising at all),
has been done by many authors [11], [24], [28]. Essentially thet it depends not only on the mean of inputs, but also on the
approximation is accurate whenthe inputrates = 1, ..., n variance of inputs. The latter feature enables us to derive novel
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Output where

and (6)
( n
7j=1
Input ;= Z wiz]./\j L(l + 1”).
j=1

[T oot )

A detailed derivation of (7) is quite mathematically involved and

/ ||
| | L || IF ol we simply refer the reader to our review paper [11] for more
.\ details. In Fig. 2, we plot the input-output relationship, i-g.,

' versus\ = A\; = --- = \,, described by
e [
SN ®
. — . o YT L)) + oot

Fig. 1. Schematic input-output relationship. Each unit (circle) represents a

group of IF neurons. The average of spikes over the group of neuron gives tj ; ; ; ;

to the mean firing rate as defined in by (7). The activity of each IF neuron ?gﬁere Tret is the refracf[qry perlod_. The rela_'tlonShlp between

described in Section IIL. mean ISIs and output firing rates is determined by (8). There-
fore, for given input firing rates;, j = 1, ..., n, weightsw;,
j =1, ..., n and various parameters in the IF model, we can

analytically calculate the mean ISls via (7). From (8), we can
determine output firing rates providédd.: is given. In Fig. 2,
we have scaled down the number of input neurons- 3) and
correspondingly scaled up the input rate of each synapses (in
kHz), in comparison with typical parameters used in simulating
biological systems [11]; see Section V for further explanation.
Whenr = 0, from Fig. 2, we see that the output firing rate is
rapidly saturated. When= 1, exactly balanced input case, we
note that the mean input to each neuggnis zero. However,
as long as the variance = 0y = 09 = --- = o, IS not
zero (o = 0 is trivial), we have(T;(r)) < oo, namely the
neuron will fire. In Fig. 2, we see that the neuron fires with a
B frequency between 0 and 40 Hz. In most, if not all, classical
o] e neuron network theory [16], only the mean of input is taken into
Input (Hz) account. Therefore the caserof 1 is not discussed in neural-
network literature. It has been recently pointed out that 1
Fig. 2. Outputy; (Hz) versus inputh, = A = As (kHz) of the IF model might be the most interesting case in a biological system [25],
\év;lt:t"::o ?ﬁsyéngLOjll’/go,:T,l.;f”:' ’13}?1;: Az = Ag, Vinee = 20V 1191 \Wheny i§ close to zero, the.output spi.ke traips of_a sir!gle
neuron are simply too regular, in comparison with biological
data.
learning rules which, to the best of our knowledge, have not beerFrom the activity of a single IF neuron, we can obtain spike
reported in the literature and exhibit some intriguing phenomegtains. From the spike trains, the mean ISls are calculated in two
[see discussion after (7)]. The importance that a neuron mighiys: averaging over a time window for a single spike train, the
use higher order statistics in computation has been recognizedcalled temporal-average; averaging over a group of neurons
early in the literature (see, for example, [3]). within a short time window, the so-called spatio-average. The
problem with temporal-average is its speed. To reliably obtain
the mean ISIs we have to take a long time window. The short-
IV. LEARNING RULE coming with spatio-average lies in the fact that neuron activi-

) _ties are usually inhomogeneous and so a simple average will not
Remember that the mean ISI of the IF model with PoissQfye us a correct mean ISI. Nevertheless, we prefer the second

Output (Hz)

inputs is given by [11] choice, i.e., the spatio-average. To get rid of the inhomogeneity
Vire L—pis) /o in neuronal populations, we can average the ISis using different

(Ti(r)) = 2 / thre RO o(x) dr ) weights for different neurons. To fully address the issue is out-

’ L Jvwr—p)jo: side the scope of the paper; we refer the reader to [15] for details.
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Hence, in Fig. 1 we use a filled circle or rectangle to represdetting V;est = 0

the spatio-average over a group of neurons. 2wy (1 - 1)S2 + W L(1 4 r)(aL - ©))

The learning rule under the Informax principle is () = o5
a1 ‘
. dwy; )\'1—7"212—1— oL — ©;)wi; \;L(1 + 7
iy o 20 © | ey = MO AL OJushiL (14
where and
om om ((2(1 —7)37 4 3w} A L(1 —1?)
O\ On 2%3
J = ’ ’ wi; L(1+7)(zL — O;
o O it er =
oA O ’
! 3w\ L(1 + r)w% L(1 + r)(«L — ©;)
The matrix.J could be rewritten as - 2y5
1 K2
- - ... 0 3w;; \; L 1+rwi~1—r212 . .
(L)) + Toer 2 Ganlo) = § PO ALAA D=
0 1 wik)\jL(l — r2)(4wij — wik)
(T(r)) + Trer)? 223
where _BwigA L(1 4+ r)w; 2L(1+r)(zL —6;)
259
HTu(r))  ATi(r)) ,
I\ O\, _BwijAjL(1+r2w,ik(l —’I“)Ei . if I #J
A= . . . ) L 3 '
ITn(r))  OTn(r)) we arrive at
o O NTA(r) __ 2 (Viel =03,
Therefore oy, o\ T x )V
1= (=" 2 (9,
j+1 ( )) |A | a(T,(T» 2 Vi L —0;
H Z _ N ij i __Z thre i .
i=1 ((T( ) + Tref |:j=1 87111] L < Ei > U’LJ(Vthre)
whereA;; is the(n — 1) x (n — 1) matrix obtained by deleting +24 (_%) 1i5(0) (11)
the ith row andjth column of the matrix4 and L )
—20(T; (1)) n and
ol o,
= Y | J] 4 (=1)" H e o (Ti(r))
a’lUi ] (TL(T)> + Tref + Tref) ( : >
! i=1 dwi; \ O
- O*(Ti(r)) 2 (Vimel — ©;
k+1i thre i
! [kZI (_1> a/\ka wij |AZk| = _Eg <tT> Cijk(‘/thre)
which y|e|ds z 9 VvthreL - ®L VvthreL - ®L 1
§ 1 [ I > s
olJ| ~20(Ti(r)) > (~L)HH 2 GABl) | Ay 2 (-0
Owij _ Owi; k=1 “&ik(Vinee)Nij(Vinee) + — 9 | —=— ) Gijix(0)
|J| (Ti(’l“»-i—Tref Z ( l)k'H ‘i |A | t
=1 2 -0;\ -0,
N —7 129\ = ) = T &k(0)ni(0)- (12)
Defining ¢ ¢
Combining (11) and (12) with (10), we obtain a novel learning
~ rule based upon the IF model. The first term in (10) represents
Z wiiA L+7) how the weight should be updated according to its input-output

relationship; the second term relies on the derivative, of).
n To fully understand the learning rule presented here is a tough
(Z Wij ) ) issue, nevertheless for a special case we can grasp a complete
picture. Let us consider the ideal caseugf = w, A; = A and
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n = 1, i.e., the neuron only has one input and one output or i
inputs are uniform. Now (10) is reduced to ‘
% —236<T(r)> BZ&Ta(r))

Ow w AW 13
I~ @) + Toer + 2200 (13)

and we have)(0) = n;;(0) = 0. After taking some further
calculations, we obtained the learning rule developed in [12] |

2171 [(2Ug(U) + 1)V + g(U)] A1+r)

17~ Ay B
I o g (28 ) S !

4

VALQA+r) ) /AQ+r)L
V:chre 4’79([]))

+w/(1 +7L w2/
with

_ ‘/threL - A(1 - T)w V= ‘/threL + /\(1 — r)w

w LT wy AL+ 1)

For the ideal case, we know that there is a unique stable pc:
for the learning rule, and the weight is automatically restricte .
in the regions of 0, co). The derived learning rule is similarto ‘f = &

the BCM learning rule [12], [18]. - .

For the general case, the learning rule presented here is AUV U '
comp!ex to be_ explored theoretlcaj"y’ nevertheles_s we can SIE’i]g'. 3.  Weights of the network we considered. The color level of right square
ulate it numerically, as presented in the next section. of each grid, say:, j) represents the value af; ;. For example, the color level

Now, we make a comment on the relationship between thighe most left bottom square is, ;. Upper left is the initial states of weight.
maximizing entropy and maximizing mutual information for thé’ﬁgﬁr\/\;ggﬁt’; fv#gna{;%tl’ggﬁ]ﬂg?:fei:]rsrﬁgj 'fs%?iﬁggois?.” andr =1)

IF model. Using the notation in Section Il, for the IF model, if

we haveY = G(X) + N andG = 1/(Trer + (T(r))), Where 7500 4, The input is equivalent to each neuron receiving 100
.T(_T) is the IS. Inthis case, we see Fh_at [22]Y|X) = H(N) active synaptic inputs, each with 75 Hz, which are physiolog-
is independent ofv. Hence, maximizing the mutual informa-jca1y plausible parameters [11]. Note that for the purpose of
tion is equivalent to maximizing the entropy. Nevertheless, (sualizing results, here we scale ownand scale up\ cor-

general, changing weights and the ratio between inhibitory iF]a'spondingly. The initial weights are random variables from

puts and excitatory inputs, will both lead to a change of trp 0, 9), the uniform distribution ovefo, 9], and step size of

outputdistribution of the ISIs (see, for example, [11]) and, thergsa ning is 0.05. After 800 time steps of learning, the synaptic
fore, 1 (Y'|.X) depends om. To develop an exact learning rule,oignts are stable, for all cases we considered here.

based upon the information maximization then requires an exaciyq carry out simulations for = 0, 0.5 and one. Fig. 3 shows

expression of the distribution of the ISIs, which is lacking g}t \weights become more specific after learning. For example
moment [11]. whenr = 0 we have

V. NUMERICAL RESULTS (w11(0), w12(0), w13(0), w14(0), w15(0), w16(0))
A. Supervised Learning =(7.8,29,2.2,55,9.1,5.2)
Recall that in (10), we have and
n 9T (’11)11(800), ’U}12(800), w13(800), w14(800), w15(800)
o171 > (D G | Aud
buy _ Z2(T(r) i Pudes TH 1) w16(800))
= Yi —
7 Bwy; D o(Ti(r =(9.5,0,0,0,5.3, 1.4)
7] J 3 (=1)k+ g}\i ) | A -
k=1 namely the connections

where~; is the efferent firing rate (in unit of 1/ms) of thih
neuron. Therefore, if we fix (clamp) the efferent firing rate, we
have a version of supervised learning. The desired output firidge out. More precisely, before learning the number of weights
rateisy;, 7 = 1, ..., n. We train the network according to (14)near to zero is three, and after learning it is 13, 14, and 15 for
and investigate whether the actual output satisfies (14) or not. = 0, 0.5, andr = 1, respectively. Hence, in this case (also see
We simulate the learning rule with the following parameSection V-B), some connections of an IF model network, under
tersin = 6, v, = 50 Hz, A; = 500 Hz fori = 1, 2,3, the Informax learning, become disconnected.
i = 2000Hzfori =4, 5, 6,7 € [0, 1], Vitre = 20, Viest = 0 To achieve successful learning, the ISI of output of each
and L = 1/20, using Matlab. The total excitatory input is ofneuron should be 20 ms, the desired output. Nevertheless, in

w12(800), w13(800), w14(800)
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Fig. 4. Mean and CV of output ISls. Left are initial values and right are valudgg. 5. Weights of the network we considered. The color level of right square
after learning. of each grid, say:, j) represents the value af; ;. For example, the color level
of the most left bottom squareis, ;. Upper left is the initial states of weight.
Upper right(r = 0) and bottom panel, from left to right, = 0.5 andr = 1,

the learning rule, we still have one parametes; which is show weights when the learning is finished (800 iterations).
free. Hence, for an ISI smaller than 20 ms, we could always
add an appropriate refractory period so that the output I9R (8), ratherthan fixed asin the previous section. W fix =
is 20 ms. The appropriate refractory period could be choséh ms in all simulations.
via a learning rule, say the gradient descent method. In otheMVe carry out simulations for = 0, 0.5 and 1. Fig. 5 shows
words, the learning rule ipotentially successful if output ISI Weights after learning with initial states identical to these in the
is less than 20 ms. Fig. 4 tells us that in all cases ef 0 and Previous subsection. After learning with the Informax principle,
r = 0.5, the learning rule is potentially successful, i.e. all meagPme connections become disconnected. Note that both in Fig. 3
ISI values are less than 20 ms. The conclusion is not true ®td Fig. 5, weights for = 0 andr = 0.5 are very similar from
r = 1 where too big an ISi is obtained. Fig. 4 also shows tHene experiment to the other. This can be easily understood. As
coefficient of variation (CV= Standard deviation of ISI/meanpointed out in [13,, p. 1656 and Fig. 2], the output firing rate
of ISI) of ISI. It is interesting to see that the coefficient oPf the IF neuron is not sensitive to its input when the input is
variation of the model withr = 0 is generally smaller than superthreshold. In fact this can also be observed from Fig. 2
0.5. For a recent discussion on the CV of ISI of the IF modekhere the output firing rates ef= 0 andr = 0.5 are close to
we refer the reader to [11]. Briefly speaking, it is found irgach other.
experiments that the output of a single neuron is very irregular.Furthermore, Fig. 6 depicts the efferent ISIs and the coeffi-
The CV of the output ISIs is between 0.5 and 1, similar teient of variation. Again as in the case of supervised learning,
that of the Poisson process with CV being one. These resuig note that whem = 0.5, the most reasonable behavior is
are very interesting, since it is obvious that a neuronal systéfserved: the output CV of ISls is roughly close to one, as ob-
is required to encode and then decode information as relials§fved in experiments [25].
as possible. A large CV, i.e., a very noisy system, simply Note that the input and output relationship of a neuron de-
contradicts the requirement. pends not only on its input weights and inputs, but alse'on

In summary, only whem = 0.5 the IF model learns poten-the ratio between inhibitory and excitatory inputs. With iden-
tially successfully and generate spikes trains with a coefficiefigal weights and inputs but different the output of a neuron
of variation insid€0.5, 1] [25], “optimally behaving” in the bi- could be very different [see, for example, (7) and Fig. 2].
ological sense.
C. Signal Separation

To test the computational capacity of the IF model, we take
into account a toy model of time-varying (sources) inputs, as in

Now we turn our attention to unsupervised learning whicii6]. For general background on blind separations, we refer the
means that the output firing rate is determined by the input ratader to [2], [5], [20].

B. Unsupervised Learning
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Fig. 6. Mean and CV of output ISIs after unsupervised learning. The initi

mean and CV are as shown in Fig. 4, left column.

The input signals are

a(t) = 2sin(400t) cos(30¢)
b(t) = 2sign(sin(500t + 9 cos(40t))) (15)
¢(t) = 2(rand — 0.5)

for ¢ > 0 andrand is the uniform random numbers frojf 1].
The input signals are mixed with the matrix

0.3985 —0.1966 0.0021
M =] —0.0801 0.2436 —0.0072
0.0070 —0.0715 0.1134

and a constant vectde, 2, 2) is added (to ensure that input

signals are positive) i.e., the received signals are

(A1), Aa(t), As(t))

and inverse matrix ol is

M{(a(t), b(t), c(t)) + (2, 2, 2)

3.0000 2.4500 0.1000
1.0000 5.0000 0.3000
0.4450 3.0000 9.0000

The weights are updated with a learning raté &f + 100),
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Fig. 7. Input signals (bottom trace of each figure) and output signals (upper
trace) after blind separations with= 0.5. Right column is the blow up of left
column in time interval [200, 300].

to the local minima of its cost function. After 800 times of
iterations we obtain

0.3679 0.0052 5.6465
0.1533 1.2619 0.1755
6.3680 4.4491 0.0023

which gives us the results as shown in Fig. 7. The output signals
are obtained via

w(800) =

output= w(800)(A1(t), A2(t), As(t))".

We also run the same simulations with= 0 andr = 1. It
is interesting to find that when = 1, i.e., with exactly bal-
anced excitatory and inhibitory input, input signals are diffi-
cult to recover. In all simulations we carried out, the weights
quickly diverge to large numbers. In contrast, wheis small

with an initial state of randomly generated number frorr = 0, » = 0.5), input signals are reasonably recovered.

U(0, 10), the uniform distribution over0, 10]. It is well
known from stochastic approximation theory [31] that

Comparing Fig. 7 with Fig. 8, we find that a better blind sep-
aration of input signal is achieved whenr= 0.5 [seeb(t)]. For

learning rate 0©(1/t) will ensure that the algorithm convergessignala(t) the quality of recovered signals are very similar, at
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Fig. 8. Input signals (bottom trace of each figure) and output signals (uppgge that the mean input signal is zero and so it is impossible to
trace) after blind separations with= 0. Right column is the blow up of e discuss the issue of recovering signals in the classical setup. As
column in time interval [200, 300].

we mentioned before, we have difficulties in separating signals

as well. However, we can simply modify the learning algorithm
least to a visual inspection. Sinegt) is noise, we pay less at- py setting an upper bound for the weights, which is biologi-
tention to it. Forb(t), we perform a more detailed comparisorg|ly plausible and widely employed in neural networks. Fig. 11
of recovered signals between= 0 andr = 0.5 in Fig. 10. Re-  ghows the actual outcome after 200 iterations, with all param-
covered signalé(t) are plotted using identical scales. Note thadters as before. Fig. 12 is the ISis of all three cells during the
input signals are flat when they reach the maximum i.e., two Rfarning period. Note that data are truncated at 50 ms. Finally
minimum i.e.,—2. Hence for recovered signals we could use thge emphasize that it is not easy to have a quantitative compar-
flatness of maximum and minimum as a criterion to assess {§8n between the ICA carried out here and the conventional ICA
quality of separations. Two horizontal, thick lines are added 6. The signals employed in the ICA here is a mixture of con-
Fig. 10 to help us visually assess the flatness of separated gigntional signals (i.e., the mean term in Section I1) and conven-
nals. Itis easily seen from Fig. 10 thgt) obtained with- = 0.5 tional noise (i.e., the variance term in Section IIl). The learning
is better than that with = 0. We thus conclude that, at least inypdates the weights, implying simultaneous change to the mean
the numerical example we considered here, the IF model hag@ variance. Furthermore the input signal in the mean term is
better performance when certain number of inhibitory inputs afige original signal\(¢), but in the standard deviation tersnit
added in the inputs. Finally, in Fig. 9, the output firing rates q§ V() [see (6)], i.e., the input signal is distorted.
three neurons during learning period are shown with 0. From Figs. 7, 8, and 11, we see that the recovered signals are

We can have a comparison of the approach presented hehiited in positions and rescaled in magnitude. This is a well

with the conventional one [5] where only the mean of input isnown feature of blind separation, i.e., the recovered signals are
taken into account. Going to the extremal case when1, we not unique [2], [5].
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Fig. 11. Input signals (bottom trace of each figure) and output signals (upper
trace) after blind separations with= 1. An upper bound of weights of ten is
introduced in the algorithm. Right column is the blow up of left column in time
interval [200, 300].

Next we test our algorithms on people faces. Each face in
Fig. 13 is a file of 287x 384 pixels, denoting it agy (4, j),
E=1,23withi=1,...,287,j =1,...,384. Fort =
1, ..., 287+ 384, we then transform the matrix, into vectors
by defining

a(t) = (i +j), i=1,...,287, j=1,..., 384 _ _ - _ _ _
Fig. 13. Upper panel is the original faces, each with 28384 pixels. Middle

B(t) :X2(Z' +79), i=1,...,287, j=1,...,384 panel is obtained after 10000 iterations and bottom panel is mixed faces.
0.5

a(t) = Xs3(i + j), i=1,...,287,j=1,...,384.

. . . . . In particular, for the IF model and both supervised learnin
Using the r_nlxe_d matrid/ as before, we hav_e the mlxgd}mageang unsupervised learning, we show that thré model under t%e
as shown in Fig. 13, bottom panel. Input signals freimy) € Informax principle tends to disconnect some of its connections
[L00, 20.0] X [100, 200] are used and we recover the faces 3hd some number of inhibitory inputs is required to optimize
shown in Fig. 13. its performance. Here optimization means both biological
and engineering senses. The conclusions are tested both with
constant rate inputs and time-varying inputs.

We have presented a theoretical and numerical approaciio find a learning rule which is biologically plausible and
to derive novel learning rules based upon spiking neurons.applicable to solving engineering problems has been a long

VI. DISCUSSION
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endeavour in neural-network research [30], [27]. The typicah the input-output relationship of a single neuron, for example
learning rule in biology is the Hebbian learning rule, which hafe IF-FHN model [11]. We expect our approach can also shed
been widely used in past few decades, for rate coding-basadre light onto the coding problem [14].
models [16]. In recent years, the Hebbian type learning rule inlt is also very interesting to note that for all cases we consid-
the time domain has be found experimentally and applied to d=ed, the best separation is achievedifay, which is supposed
veloping models mimicking the development of visual corteto be a more natural signal than the other two. Whether it is an
[32], [26], [6]. However, to the best of our knowledge, the apntrinsic property of the IF model, or more generally, a biologi-
plication of the Hebbian type learning rule in time domain teally realistic model, is not clear at moment.
engineering problems is less developed. The typical learningAs aforementioned, we consider a small network of neurons
rule in engineering applications is probably the gradient descehite to the constraints of both visualizing results and computa-
method. To apply the gradient descent method to spiking neutional considerations: it is very time-consuming to run a simu-
networks is not an easy task due to the nonlinear dynamicslation with 100 neurons. Nevertheless we are going to try simu-
a spiking neuron. Interestingly, the same idea, to apply the llations of large networks in the near future. It is reported that
formax principle to derive a learning rule for spiking neurom neural system employs spatio-temporal patterns to process
network, has been reported in the literature [9]. Unfortunateigformation. To gain a better understanding on how a neural
the spiking neuron used in [9] is not a genuine spiking neurasystem tackles incoming signals and then apply it to solving en-
it is a linear unitper seand the author terms it “perfect leakygineering problems, we have to mimic a biological system at a
integrator.” The obtained results are thus less interesting tharetatively detailed level.
learning rule based upon a truly spiking neuron such as the IF-inally, we want to emphasize that although it is generally ac-
model, as developed here. cepted that neurons in the cortex receive and send out Poisson
We have only considered the IF model under the rate codipgpcess (or more general, renewal process) spike trains [1], [23],
assumption here. Is the learning rule developed here applicaibl¢he literature, to the best of our knowledge, it has not been
to time coding? The answer is affirmative. Remember thégorously tested what is the functional role of Poisson process

learning rule developed in the previous sections input and output. On the contrary, it is widely accepted that the
stochastic part of input signal is simply noise and harmful. Our
= ki T g approach here, as a first step toward exploring the truly compu-
8‘]‘ ‘ X Z ( ) OALOw; ; | Zk| . : : :
aw,, _ —20(Ti(r)) = i (16) tational function of Poisson process, reveals some primary and
lJ| Ow;j Vi i (—1yki (T, (r)) Aie| interesting properties. Our approach is very different from the
A Ok ik well known stochastic resonance phenomena. In stochastic res-

k

onance, the noise level is finely tuned and kept small [4]. In our
if we simply usey; and\; as instantaneous firing rate, i.e. thesetup, as we mentioned before, the noise level is proportional to
inverse of ISi, a learning rule based upon the time is obtainéte square root of the signal and is not artificially modified.
[6], [14], [19], [26], [32]. We will explore it in further publica-
tions. In the literature, there are increasing publications using ACKNOWLEDGMENT
spiking time to deal with engineering problems. Typically, they

use synchronization of a group of neurons as a meaningful even he authors are grateful to the referees for thelr. constructive
8], [27]. comments on this paper and one of them for bringing [9] to our

To summarize, the differences between our approach here Qﬂtgntion.
the approach used in, for example, [26], are the following.

1) The learning rule used here is derived from the Informax
principle, but the spike-timing-dependent pIasticity used [ T 'D. Albright, T. M. Jessell, E. R. Kandel, an_d M. I Posm_er, “Neural
. . . . science: A century of progress and the mysteries that rem@eil,"vol.
in [26] is directly from experiments. Nevertheless, the 100, pp. s1—s55, 2000.
learning rules are applied to spiking neurons and spiking[2] S.Amari, “Natural gradient learning for over- and under-complete bases
neuronal networks. in ICA,” Neural Comput.vol. 11, pp. 1875-1883, 1999.

2) A . d ab di . &3] H. Barlow, “Perception: What quantitative laws govern the acquisition
) As mentioned above, rate coding assumptions are use of knowledge from the senses?,” Functions of the BrainC. Coen,

here, but in [26] time coding assumptions are employed.  Ed. Oxford, U.K.: Clarendon, 1986.
Agaln, as we emphas|zed above, we Intend to Carry Out[4] A. R. BUISara, T. C. EIStOn, C. R. Doerlng, S. B. Lowen, and K.

. t . the ti di ti Lindenberg, “Cooperative behavior in periodically driven noisy inte-
our experiments using thé ume coding assumptions as grate-and-fire models of neuronal dynamiddliys. Rev. Evol. 53, pp.

well. 3958-3969, 1996. _ ‘ _ o
3) Correlations between neurons are taken into account in®l A.J._Bell and TJ Sejnow_skl, “An |nforma_1t|0n maximization approach
. . . . to blind separation and blind deconvolutiomNeural Comput.vol. 7,
[26], but we have simply ignored correlations in our de- pp. 1129-1159, 1995,
velopments. However, it is quite straightforward to gen- [6] G. Q. Bi and M. M. Poo, “Activity-induced synaptic modifications in
eralize our results to correlated inputs [11]_ Itis definitely hlppocarr’}pal cuIture:_Dependence on spike timing, synaptic strength and
th looking at the issue cell type,”J. Neurosci.vol. 18, pp. 10464-10472, 1998.
wortn looking - . __[7] D.Brown, J. Feng, and S. Feerick, “Variability of firing of Hodgkin-
The approach presented here is quite general. In principle, Huxley and FitzHugh-Nagumo neurons with stochastic synaptic input,”
once we know the relationship of the input-output of a neuron, _Phys. Rev. Leitvol. 82, pp. 4731-4734, 1999.
btain the | . le of th A h [8] S. R. Campbell, D. L. Wang, and C. Jayaprakash, “Synchronu and
we can obtain the learning rule of the neuron. As we have men- " jeqynchrony in integrate-and-fire neurorisgural Comput.vol. 7, pp.

tioned in the Introduction, we have accumulated many results  1595-1619, 1999.
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