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Abstract

This paper proposes an iterative sparse representation-based detection algorithm for voxel selection

in fMRI data. In each iteration of this algorithm, we solve a linear programming problem and obtain

a sparse weight vector. The final weight vector is the mean of those obtained in all iterations. The

characteristics of our algorithm are: (i) The weight vector(output) is sparse; (ii) The magnitude of

each entry of the weight vector represents the significance of its corresponding variable or feature in

classification or regression problem; (iii) Due to the convergence of this algorithm, a stable weight vector

can be obtained. To demonstrate the validity of our algorithm and illustrate its application, we apply this

algorithm to the Pittsburgh Brain Activity InterpretationCompetition (PBAIC) 2007 functional magnetic

resonance imaging (fMRI) data set for selecting the voxels which are the most relevant to thetasks

of the subjects, computed during the experiment. The above mentioned characteristics of our algorithm

are analyzed for this data set. Furthermore, compared with the baseline method, general linear model

(GLM)-based statistical parametric mapping (SPM), our method shows significantly better performance

for voxel selection for this data set.

Keywords: Functional magnetic resonance imaging (fMRI), voxel selection, sparse represen-

tation, statistical parametric mapping (SPM), prediction.

I. INTRODUCTION

In functional magnetic resonance imaging (fMRI), an fMRI scanner measures the blood-

oxygenation-level dependent (BOLD) signal at all points ina three dimensional grid, or image

of the brain. The cells within this three-dimensional imageare known as voxels. A typical

fMRI data set is composed of the time series (BOLD signals) oftens of thousand voxels. High

dimensionality is a characteristic of fMRI data. Therefore, voxel selection plays an important

role in fMRI data analysis because of: (i) heavy computationburden; (ii) un-correlation (or

redundancy) of a large number of voxel time series with respect to the stimulus/task presented

to the subject. Much of current fMRI research such as identifying brain regions activated in

response to some task or stimulus is related to voxel selection.

Voxel selection can be performed according to the characteristics of the stimulus and the

brain functional areas. For example, if image stimulus is presented, then voxels can be selected

from the areas in visual cortex [1]. One class of voxel selection methods are based on statistical

test/statistics that find brain regions with statisticallysignificant response. A typical example is

statistical parametric mapping (SPM) based on general linear model (GLM). SPM is a powerful
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tool for the analysis of fMRI data including voxel selection[2]-[4]. The second class of voxel

selection methods are based on the correlation between the voxel time series and the time series

of the task or stimulus [5]. Correlation method, classifier-based method [6], multiple regressor

model [7], as well as least square regression withL2 (ridge) andL1 (Lasso) regularization [8] can

be categorized in the second class. In [31], an elastic net regression technique, which achieves

both sparsity and the grouping effect by using a weighted combination of1−norm and2−norm

penalties on top of the least-squares problem, was applied to the analysis of the fMRI data set

of Pittsburgh Brain Activity Interpretation Competitions(PBAIC) 2007. Through simultaneously

considering sparsity and the grouping effect, the authors demonstrated the distributed nature of

neural function and the importance of localized clusters ofactivity.

In this paper, we present a sparse representation based method for voxel selection in fMRI

data.

The sparse representation of signals can be modeled by

y = Aw, (1)

wherey ∈ RN is a given signal vector,A ∈ RN×M (N < M) is a basis matrix. When the

model (1) is used for fMRI data analysis,A is a data matrix of which each column is a time

series of a voxel, andy is a transformed stimulus/task function which is obtained by convolving

a stimulus/task function with a hemodynamical response function.

The task of sparse representation is to find a solutionw ∈ RM of (1) such that this solution

is as sparse as possible. In many references such as [10], a basis pursuit (BP) algorithm was

presented, in which a sparse solution (i.e.1-norm solution) can be found by solving the following

optimization problem.

min ||w||1, s. t. Aw = y, (2)

where 1-norm||w||1 is defined as
M∑
i=1

|wi|.

Settingw = u− v, whereu, v ∈ RM are nonnegative, (2) can be converted to the following

equivalent linear programming problem,

min
M∑

i=1

(ui + vi), subject to [A,−A][uT ,vT ]T = y, u ≥ 0, v ≥ 0. (3)

The solution of a linear programming problem is generally unique [18], which can be obtained

by standard softwares. In this paper, all linear programming problems are solved using Matlab

function “linprog”.
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Sparse representation of signals has received a great deal of attention in recent years (e.g.

[10]-[15]). For instance, Donoho& Elad discussed optimal sparse representation in general (non-

orthogonal) dictionaries vial1 minimization [16]. In practical applications, sparse representation

can be used in underdetermined blind source separation (BSS), which is difficult to deal with

using a standard independent component analysis (ICA) method [17]-[22]. Basis pursuit is also

an important application of sparse representation [10], [16]. Recently, it has been found that

Model (2) has applications in feature selection and detection. In [21], (2) was successfully used

for cross-modal localization of sound-related region in the video whereA was constructed from

the video andy was constructed from the accompanying audio.

A related method is1-norm support vector machine (SVM). Similar to the BP algorithm,

1-norm SVM solves a linear programming problem to obtain a sparse solution. Thus it is

also called sparse SVM [23]-[28]. 1-norm SVM has potential applications in feature selection

including dimension reduction [23], detection of region ofinterest of images [24], detection of

machine damage or highlighting abnormal features (localization) in medical data [28]. There

exist differences between the models (2) and1-norm SVM. For instance, when 1-norm SVM

and model (2) are used for the same data set, there are more variables and constraints for 1-

norm SVM than for (2); this implies a heavier computational burden. Another related method

is Lasso regularization, which also appears in potential SVM [30], [29]. Compared with Lasso

method or potential SVM with quadratic objective functions, (2) can be converted into a standard

linear programming problem and has computational advantage especially when the number of

the variables is extremely large.

In the following, we compare the model (1) with the GLM model,and analyze the difference

between the two models. GLM model is represented by

xi = Gβi + ei, (4)

wherexi ∈ RN is a time series of thei-th voxel,G ∈ RN×K is called a design matrix,βi ∈ RK

is an unknown parameter vector to be estimated for each voxel, ei ∈ RN is an error (noise)

vector, i = 1, · · · , M . Each column ofG corresponds to an explanatory variable related to the

specific experimental conditions under which the data were collected,βi represents the weights

of the explanatory variables (columns) ofG.

DRAFT



5

Considering all the voxels, the matrix form of (4) becomes

X = Gβ + E, (5)

whereX ∈ RN×M is the data matrix, which is the same asA in (1), β ∈ RK×M , E ∈ RN×M .

Multiplying both sides of (5) by the Moor-Penrose inverseβ+ of β, we have

G = Xβ+ − Eβ+. (6)

Furthermore, considering each columngj of G and letting the noise vector be included implicitly

in the coefficient vector, (6) can be rewritten as

gj = X(β+
j + ēj), (7)

whereēj = −X+Eβ+
j .

Sincegj representing a specific experimental condition is the convolution of a stimulus/task

function and a hemodynamic response function (HRF), it is the same asy in (1). Furthermore, in

view of X in (7) andA in (1) representing the same data matrix, (7) is equivalent to the model

in (1). The above analysis shows the connection of the model in (1) and the GLM model in (4).

Now we point out the main differences between the two models:(i) In model (1), a transformed

stimulus/task function is linearly represented by the timeseries of a set of voxels. The assumption

of sparse representation implies that the number of voxels used in this representation is small.

Note that although only small number of voxels are needed in sparse representation, they are

generally representative voxels distributed in differentactivated brain areas. Conversely, in (7),

the time series of each voxel is linearly represented by the columns of a design matrix, of which

each column is a transformed stimulus/task function, or a function related to noise etc. (ii) A

lot of voxels are considered simultaneously in model (1), i.e. the connection of different voxels

instead of the connection of different stimulus/task functions is emphasized in (1). Conversely,

all the stimulus/task functions are considered simultaneously in the GLM model (4). Thus it is

the connection of different stimulus/task functions otherthan the connection of different voxels

that is emphasized in (4). The connection of different voxels is generally considered ((e.g. by

random field method)) in later analysis of SPM.

In this paper, we design a sparse representation algorithm based on the linear programming

problem (2) for voxel selection in fMRI data analysis. The task of sparse representation is to

find a coefficient vectorw of model (1) such thatw is as sparse as possible. The motivations
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that we use sparse representation here are: (i) Consideringa huge number of voxels of the brain,

only a small number of voxels are useful for representing a stimulus/task functiony in (1). This

is reflected by the sparsity ofw; (ii) Through sparse representation, we obtain a combination of

voxels. This combination of voxels can represent the stimulus/task functiony with high efficiency

since it contains a small number of voxels (w is sparse). Thus the connections between those

voxels in the combination are emphasized through a effective/sparse representation toy; (iii)

The combination mainly contains two classes of voxels. The fMRI time series of the first class of

voxels are significantly correlated toy, while the fMRI time series of the second class of voxels

are not significantly correlated toy but important for representingy. The first class of voxels can

be identified using statistic parametric methods e.g. GLM-SPM, correlation method, however the

second class of voxels are difficult to be identified using statistic parametric methods (see Fig.

7). (iv) From the latter discussion, the effectiveness of the combination of voxels selected by

sparse representation can be evaluated using decoding approach. Furthermore, considering the

similarity between the model (1) and decoding model [6], thevoxel selection based on model

(1) could be more suitable for decoding tasks than GLM model,as shown in this paper.

To demonstrate the effectiveness of our method, it was applied to the fMRI data set of

PBAIC 2007. The data set of PBAIC 2007 was collected for a prediction task. The stimuli

in the experiments performed to obtain these data sets are rich and non-repetitive. Therefore,

it is difficult to perform voxel selection satisfactorily using typical methods such as Pearson

correlation based methods. After voxel selection with our method, we perform the prediction

of experience based cognitive tasks from the fMRI data set ofPBAIC 2007 as in [8], [9]. The

prediction results will be used in evaluation of our method.In our data analysis, we also compare

our method with the baseline GLM-SPM method.

The remaining part of this paper is organized as follows. Ourdetection algorithm is presented

in Section II. The analysis of convergence and effectiveness of this algorithm are also included. In

Section III, we use our algorithm for voxel selection in fMRIdata analysis. Additional discussions

related to fMRI data analysis are included in Appendices 1 and 2. Finally, conclusions are

presented in Section IV to review our method.
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II. M ATERIALS AND METHODS

A. Algorithm

In this section, we present our algorithm for voxel selection. We do not directly use (2)

considering the following three aspects: (i) The number of nonzero entries ofw generally equals

to N [18]. This means that sparsity ofw decreases with increasingN . This leads to a situation

where increase in the amount of training data may not lead to any improvement in feature

selection by (2). (ii) (2) is not suitable for the overdetermined case in whichN > M ; (iii) When

N is not sufficiently large,w obtained by single optimization may not reflect the important

features well. Even ifN is sufficiently large, this problem still exists because of noise. In order

to address these three problems, we will extend (2) and present an iterative detection algorithm

in this paper.

Suppose that each row ofA in (2) represents a data sample,y can be speech signal, stimulus,

labels etc. In this paper,A is an fMRI data matrix of which each column is a time series of a

voxel and each row contains the data of one volume (or part of one volume),y is the convolution

of a stimulus/task function and a hemodynamical response function. The following algorithm is

designed to detect the parts in the rows ofA (e.g. pixels or voxels) relevant toy.

Algorithm 1:

Step 1: Fork = 1, · · ·, do the following Steps 1.1 to 1.4.

Step 1.1: Randomly chooseL rows from{a1, · · · , aN} to construct aL by M matrix denoted

asAk, the correspondingL entries ofy form a column vector denoted asyk ∈ RL.

Step 1.2: Solve the following optimization problem. Similar to (2), this optimization problem

can be converted to a standard linear programming problem.

min ||w||1, s.t., Akw = yk. (8)

The optimal solution of (8) is denoted bȳw(k).

Step 1.3: Let

w(k) =
1

k

k∑

i=1

w̄(i). (9)

Step 1.4: If d(k) = ||w(k) − w(k−1)||2 < α or k < K0 , where α is a predefined small

positive constant andK0 is a predefined limiting upper bound for the number of iterations (e.g.

K0 = 400), setw = w(k) and go to Step 2. Otherwise go to Step 1.1.
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Step 2: For a given positiveθ, defineR = {j| |wj| > θ, j = 1, · · · , M}. Then R is our

detected part of interest in all rows ofA.

Note that noise is not explicitly reflected in (8). However, the weight vectorw generally is

affected by noise (please see (7)). Through the average operation in (25), the effect of noise

can be reduced (see Appendix 3: Robustness analysis). Furthermore, through randomly takingL

rows fromA, w̄(k) obtained in (8) can be seen as a random sample ofw, while w(k) in (25) can

be seen as an approximation to the mean ofw. Suppose that Algorithm 1 terminates afterK

iterations. This implies that we obtainK random samples ofw and then calculate their mean.

The number of iterations (i.e. the number of random samples)can be easily determined because

of the convergence of Algorithm 1 as shown later.

In the following, we discuss the setting of three parametersL, α and θ in Algorithm 1.

Note that eachw̄(k) is obtained through solving a standard linear programming problem, thus

Algorithm 1 is not involved in the setting of initial vectorw(0).

When the parameterL is set, two aspects need to be considered: (1)L is not very small such

that the columns ofAk andyk in (8) contain temporal evolution information; (2)L is not very

large such that the computational burden for solving the optimization problem (8) is not heavy.

It will be explained in Appendix 1 that the data analysis results are not sensitive to the value

of L provided thatL is not very small. In this paper, we generally setL = 0.1N . The other

choices e.g.L = 0.05N , 0.15N and0.2N are also acceptable.

As will be seen, Algorithm 1 is convergent, we can easily set asmall α (e.g. α < 0.01) to

obtain a stablew.

The parameterθ can be chosen in different ways depending on the applications. One way

is cross-validation method, which can be seen in Appendix 2.Here we present a probability

method. Considering the entries ofw are sparse, we assume that the probability distribution

of the entries ofw is Laplacian. Using all entries ofw as samples, we estimate the mean,

the variance and the inverse cumulative distribution function F−1 of this Lapcian distribution.

We then defineR = {i| |wi| > θ, i = 1, · · · , M}, whereθ is chosen asF−1(p0), p0 is a given

probability (e.g.0.975 in this paper). As will be shown in section III, this method for determining

θ is acceptable. The values of the parameterθ determined by the cross-validation method and

the probability method are generally different. If sufficient training data are available and the

effect of decoding is emphasized, we can use the cross-validation method to determineθ. If we
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emphasize the effect of localization, then we can use the probability method.

We now analyze the convergence and effectiveness of Algorithm 1.

Convergence: Suppose that in thekth iteration of Algorithm 1, we have output

w(k) =
1

k

k∑

i=1

w̄(i). (10)

Let
d(k + 1) = ||w(k+1) − w(k)||2. (11)

From (10),

w(k+1) −w(k) =
1

k + 1

k+1∑

i=1

w̄(i) −
1

k

k∑

i=1

w̄(i)

=
k

k+1∑
i=1

w̄(i) − (k + 1)
k∑

i=1
w̄(i)

k(k + 1)

=
kw̄(k+1) −

k∑
i=1

w̄(i)

k(k + 1)
. (12)

In Algorithm 1, for given data matrixA and parameterL, there are totallyCL
N(= N(N−1)···(N−L+1)

L!
)

choices of the pairs (Ak, yk) in (8). For each pair (Ak, yk), there is a weight vector̄w(k) which

is the solution of (8). Letγ0 = max{||w̄(k)||2, k = 1, · · · , CL
N}, then ||w̄(k)||2 < γ0. From (12),

we have

||w(k+1) − w(k)||2 ≤
(2k)γ0

k(k + 1)
=

2γ0

k + 1
. (13)

Therefore, lim
k→∞

d(k) = 0, i.e. Algorithm 1 is convergent.

In fact, the convergence of Algorithm 1 originates from the facts: (1) there are finite number

of weight vectorsw̄(k) of which each corresponds to a pair (Ak, yk); (2) then they are bounded.

Although the number of̄w(k) is huge generally (CL
N ), Algorithm 1 converges in several hundred

of iterations (see Fig. 1 in our data analysis section).

Although w(k) in (10) is generally not so sparse asw̄(i), our simulations and data analysis

results show that a large fraction of entries ofw(k) are close to zero. Thus we say thatw(k) is

still sparse.

Effectiveness: Regarding the effectiveness of Algorithm 1, we have the following explanation.

Here, we only consider the underdetermined case whereN < M . First we define a set ofM

dimensional vectorsU such that∀w(Ã, ỹ) ∈ U , w(Ã, ỹ) is the 1-norm solution of the equations
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Ãw = ỹ, whereÃ is composed byL rows randomly taken fromA, ỹ is a vector composed

by L corresponding entries ofy. Note that there areCL
N vectors inU . Next, we define aM

dimensional random vectorv = [v1, · · · , vM ]T , wherev randomly takes values inU .

For a samplew(Ã, ỹ) of v in U , it is sparse since it has at mostL nonzeros. Generally, the

magnitude of theith entry ofw(Ã, ỹ) reflects the significance of theith column ofÃ for the

constraintÃw = ỹ. Obviously, the output of Algorithm 1 satisfiesw = 1
k

k∑
i=1

w̄(i) ≈ E(v), i.e.

the expected value ofv. Now we show thatE(vi) can reflect the significance of theith column

of A for the regression betweenA andy.

For w̄(i) obtained in theith iteration Algorithm 1, we have

Aw̄(i) = y + n(i), (14)

wheren(i) = [n
(i)
1 , · · · , n(i)

N ]T , n
(i)
j = 0 if j ∈ Indi (Indi is the set of indices of theL rows of

Ai in A), otherwisen(i)
j = yj − aj · w̄(i).

Furthermore, we have

Aw = A(
1

k

k∑

i=1

w̄(i)) = y +
1

k

k∑

i=1

n(i). (15)

Note thatn(i)
j can be positive, negative or zero. In many cases especially when the parameter

L in Algorithm 1 is not small, the expectation ofn
(i)
j can be assumed to be close to zero. That

is, 1
k

k∑
i=1

n(i) ≈ 0 for sufficiently largek. Thus

Aw ≈ AE(v) ≈ y. (16)

Therefore, the correlation betweenAw and y is close to1 and w is close to a regression

coefficient vector between training data matrixA andy.

From the above analysis and the definition ofw in Algorithm 1, we can see: (i) The magnitude

of w (i.e. E(vi)) reflects the significance of theith column ofA to the satisfaction of (16). (ii)

If L in Algorithm 1 is fixed, we can obtain a consistentw. This is due to the convergence of

Algorithm 1. (iii) More importantly,w is still sparse. This will be demonstrated in our data

analysis examples. Based on the sparsity ofw, the voxels which are the most correlated to the

stimulus/task function can be selected.
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B. Voxel selection in functional MRI data

In this section, we apply Algorithm 1 to the fMRI data of PBAIC2007 [34] for voxel selection.

The fMRI data was collected by Siemens 3T Allegra scanner with imaging parameters TR and

TE being1.75s and25ms respectively. Three subjects’ data were available in thecompetition.

Each subject’s data consists of threeruns. Each run consists of500 volumes of fMRI data

of which each volume contain64 × 64 × 34 voxels. The size of a voxel is3.2 × 3.2 × 3.5

mm3. The preprocessed data provided by the competition are usedin this paper. The data

preprocessing attempted to remove some standard artifactsthat occur in fMRI data that may

hinder data analysis. The functional and structural data were preprocessed with AFNI and NIS

in the following steps: slice time correction, motion correction and detrending. The feature data

was preprocessed by convolving the raw feature vectors withthe double gamma hemodynamic

response filter (HRF) produced by the SPM (see http://www.fil.ion.ucl.ac.uk/spm/). Through a

mask preprocessing, the total number of voxels in the brain is≈ 32000. Thus the fMRI data for

each run is represented by a matrix consisting of around32000 columns (voxels) and500 rows

(time points). Each column of the matrix is the time series ofa voxel. When the scans were

obtained, the subject was performing several tasks (e.g. listen to instructions, pick up fruits)

in a virtual reality (VR) world. Theratings for these tasks were computed by considering the

delay of hemodynamic responses and form the task functions.13 tasks were considered in the

competition. Only the tasks for the first two runs were distributed at www.braincompetition.org.

Therefore, here we use only data from the first two runs for analysis. We present detailed results

mainly for four tasks: (i) TheHits task, times when subject correctly picked up fruit or weaponor

took picture of a pierced person; (ii) theInstructionstask, which represents the task of listening

to instructions from a cell phone in the virtual world; (iii)the Facestask, times when subject

looked at faces of a pierced or unpierced person; (iv) theVelocity task, times when subject was

moving but not interacting with an object. For more detaileddescription of the data, refer to

[34]. The goal of the competition was to predict the task functions of the third run using the

fMRI data. Our final submission based on Algorithm 1 to this competition was ranked 10th

based on the average score of the features. As pointed out in [31], a fair comparison with other

methods cannot be made, as post-processing had decisive effect on performance.

Since the number of voxels is huge, voxel selection plays an important role in fMRI data
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analysis. Using the Instructions task as an example, we now describe our data analysis method.

The preprocessed fMRI data obtained from the competition website (www.braincompetition.org)

is first filtered temporally and spatially. The temporal filter is 1
4
[1, 2, 1], while the spatial filter is

a cube with[1, 2, 1; 2, 4, 2; 1, 2, 1], [2, 4, 2; 4, 8, 4; 1, 2, 1], [1, 2, 1; 2, 4, 2; 1, 2, 1]. We then perform

2-fold cross-validation as follows. In the first fold, we useRun 1 data to calculate the Pearson

correlation between the time series of each voxel and the transformed Instructions task function.

The voxels with high absolute value of this correlation are chosen to form a set of voxels,N .

Then, our algorithm is used for a second selection of voxels to obtainR ⊂ N . In Algorithm 1,

A ∈ R500×|N |, of which each column is a time series of a voxel inN , y ∈ R500 is a transformed

task function. The parameters in Algorithm 1 are set as follows. The number of iterations is

fixed to 600 to see the details of algorithm convergence,L is set to25 andθ can be chosen as

described in section II-A (or using a cross-validation method presented in Appendix 2). Ridge

regression is used on the time series of voxels∈ R to predict the transformed Instructions task

function of Run 2. Prediction accuracy is measured as the Pearson correlation between the actual

transformed task and the predicted task. In the second fold,we use Run 2 data for training and

predict the transformed Instructions task function for Run1.

For the purpose of comparison, we use GLM-SPM method to replace our method for selection

of voxels and perform the 2-fold cross-validation as described above. Note that when GLM-SPM

method is used for voxel selection, all13 transformed/convolved task functions provided by

PBAIC 2007 are used to construct the design matrix. For each voxel and a task, a t-statistics is

calculated as in [4]. For a task, those voxels with high absolute values of t-statistics are selected.

III. RESULTS AND DISCUSSIONS

In this section, we present our data analysis results to illustrate the convergence of Algorithm

1 and the sparsity of the weight vectorw. By comparing our method with GLM-SPM method,

we demonstrate the validity of our algorithm for voxel selection.

Convergence of Algorithm 1. As an example, we show our convergence analysis result for

Instructions task in run 1 of Subject 1. In the initial selection of voxels, we set|N | to 500. Three

cases are considered, in which the parameterL (the number of constraints in (8)) of Algorithm 1

is set to be25, 50 and75 respectively. The three subplots in Fig. 1 show three iterative curves of

the convergence indexd(k) = ||w(k) −w(k−1)||2 of Algorithm 1, which correspond to the three
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cases respectively. From Fig. 1, we can see that Algorithm 1 converges after≈ 300 iterations in

the three cases. However, the execution time in our PC computer (2.3GHz CPU, 3G RAM) for

the three cases are147s, 426s and768s respectively. Thus whenL increases, the computational

burden increases rapidly.

Sparsity of weights. Fig. 2 shows two weight vectorsw obtained by Algorithm 1 (top) and

correlation coefficients (bottom) for the voxels inN obtained in the two-fold cross-validation

for subject 1 and Instructions task. From this figure, we can see the sparsity in weights when

compared to correlation coefficients. Therefore, we can saythat the weight vector is more suitable

for localization of voxels than Pearson correlation.

Effectiveness. First, we check the correlation betweenAw andy, whereA andy are fMRI

data matrix and a transformed task vector respectively. As mentioned in Section II-A, the weight

vectorw can be seen as regression coefficients betweenA andy. This means that the correlation

betweenAw andy is big. Fig. 3 shows the iterative curves of this correlationfor the Instructions

task of three subjects for fold 1 (run 1 used for training). Asthe number of iterations increases,

the three curves of correlation increase and tend to three limits which are larger than 0.9. This

demonstrates our analysis. When sparse representation approach is used for voxel selection, a

voxel whose fMRI time series is highly correlated toy can generally be selected. However, if

there are a set of voxels e. g. belonging to the same brain areaof which the fMRI time series

are quite correlated to each other, then only small part of representative voxels are selected. The

iterative Algorithm 1 of which each iteration uses different time points may alleviate the loss of

these voxels which are highly correlated toy.

Next, we analyze the prediction accuracy. We compare Algorithm 1 with GLM-SPM method

for voxel selection. First, we compare the ability of each method in choosing themost relevant

voxel. In the table I, we present the prediction accuracies (averaged over two folds) forNR = 1

for three subjects, four transformed tasks. Hereafter,NR denotes the number of voxels ofR, the

set of selected voxels. From table I, we can see that the voxels selected by Algorithm 1 is more

correlated to the transformed task functions in most of cases than those selected by GLM-SPM

method.

Furthermore, we test if Algorithm 1 is consistently better than GLM-SPM method for voxel

selection. Letb = [1, 2, 4, · · · , 300]. For eachi (i = 1, · · · , 151), we setNR = bi, and predict the

four transformed task functions for all subjects and average the results over two folds of cross
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validation. Fig. 4 shows the plots of average prediction accuracy with respect tob for the four

methods and three subjects and four tasks. In several cases e.g. shown in the subplot in the first

row and the second column of Fig. 4, the performance of Algorithm 1 is comparative to that of

GLM-SPM method; while in the other cases e.g. shown in the subplot in the second row and

the third column, the performance of Algorithm 1 is significantly better than that of GLM-SPM

method.

We also analyze the effectiveness of choosing R usingθ as described in Section II-A. Example,

for instruction task, the number of voxels inR obtained using Algorithm 1,Nth are: Subject

1, 12 (fold 1), 29 (fold 2); Subject 2, 24 (fold 1), 21 (fold 2); Subject 3, 28 (fold 1), 20 (fold

2). The corresponding prediction accuracy (averaged over two folds) for the three subjects are

0.8151, 0.7469 and 0.8591 respectively. The prediction accuracy (averaged over two folds) for

the four tasks are marked with a ‘*’ in Fig. 4. Even thoughNth does not correspond to the best

prediction accuracy, it can lead to a satisfactory result. From this analysis, we conclude that the

method described in Section II-A for selectingθ is acceptable (Except for task 3 of subject 1.

The correlation between fMRI data and this task is always low).

Until now, we have presented our analysis results for4 tasks. Considering13 tasks are available

for the 3 subjects in the data set, we have39 cases (one case corresponds to one task and one

subject). We analyzed each case as described above for the four tasks. After obtaining the

prediction accuracy averaged over two folds of cross validation by Algorithm 1, we count the

number of times,ri that Algorithm 1 shows the best prediction accuracy among the four methods

for eachNR = bi, b = [1, 2, 4, · · · , 300]. Performing the similar counting for GLM-SPM method,

we obtainr
(spm)
i . Next, we calculate two ratios (percentages) for the two methods: ri

39
· 100%,

r
(spm)
i

39
· 100%. Fig. 5 shows the two ratio curves, from which we can see Algorithm 1 has higher

ratios.

Localization. Now we analyze the effectiveness of Algorithm 1 in selectingvoxels from a

biological perspective. Each of the four tasks evaluated here (hits, instructions, faces, velocity),

can be related to activity in specific region(s) of the brain.For example, the hits and velocity

events are expected to be correlated with activity in the motor cortex, especially the part for

planning actions, which is the supplementary motor cortex.Instructions task is expected to be

correlated with activity in the auditory cortex. Face events are expected to be correlated with

activity in the fusiform face area (FFA), which is special part for face processing, located on
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the ventral surface of the temporal lobe.

Now we choose two representative cases to show our results oflocalization. The first case is

for task 2 (Instructions), run 1 and Subject 3, while the second case is for task 3 (Faces), run 1

and Subject 2. In this two cases, Algorithm 1 has better performance of prediction than GLM-

SPM method. For the other cases in which our algorithm has better performance of prediction,

we have similar conclusion presented in the following.

For Instructions task, Fig. 6 show100 voxels, of which50 voxels are selected by Algorithm 1,

while the other50 voxels are selected by GLM-SPM method. The brain slices are in neurological

(L=L) space. We can see that most of these voxels selected by the two methods are in the

appropriateareas of the brain. For instance, Voxels from the auditory cortex are shown in Slices

13-18 etc. It follows from this figure that there are several voxels which can be selected by both

Algorithm 1 and GLM-SPM method. Furthermore, many voxels selected by the two methods are

close in locations although they are not overlapped. However, the voxels selected by GLM-SPM

method are mainly located in Slices 14 and 15, which form two clusters. The voxels selected

by Algorithm 1, which do not form clusters, are distributed in more slices than those selected

by GLM- SPM method.

There exist several voxels which can be selected by Algorithm 1 other than GLM-SPM method

and useful for prediction/decoding. The two subplots in thefirst row of Fig. 7 show two voxels,

in which the first one with the highestt value in SPM detection is selected by both Algorithm 1

and GLM-SPM method, the second one is selected only by Algorithm 1 other than GLM-SPM

method. The second row show the corresponding fMRI signals of the two voxels. obviously, the

fMRI signals of the two voxels contain useful information related to the task.

For Faces task, Fig. 8 shows the distribution of the100 voxels, of which50 voxels are selected

by Algorithm 1, while the other50 voxels are selected by GLM-SPM method. Similarly as in

Fig. 6, we can see that several voxels (highlighted in yellow) selected by both Algorithm 1 and

GLM-SPM method are common. Furthermore, most of these voxels selected by the two methods

are in theappropriateareas of the brain. For instance, some selected voxels are inthe occipital

cortex (e.g. Slices 10-15). Furthermore, only these voxelsselected by GLM-SPM method form

several clusters (slices 11, 14 and 17).

Algorithm 1 based on sparse representation selects a combination of voxels which are generally

distributed in wider brain areas than those selected by GLM-SPM method. Since this combination
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of voxels is used to represent the corresponding task function, Algorithm 1 is more suitable for

prediction/decoding of tasks in many cases than GLM-SPM method. Conversely, since it is easily

for GLM-SPM method to show cluster/group effect, this method is suitable for localization of

active brain areas.

Parameters setting. In the following, we present our parameter settings of Algorithm 1 in

this data analysis section. (i) From our analysis, the number of initially selected voxels does

not make any significant difference to the results. This parameter is set to 500 voxels in this

paper. We have tested our methods with 1000 and 2000 voxels for initial selection and confirmed

the insensitivity of the results to this parameter. (ii) Thenumber of iterations corresponding to

the parameterα in Algorithm 1 is fixed to 600. From the fact that Algorithm 1 isconvergent

(section II-A) and that the changes is weights after 300 iterations is not significant (see figure

3), the results will be consistent as long as the number of iterations is sufficiently large. (iii)

The number of constraintsL in (8) is set to50 except that it is especially pointed out. The

results of Algorithm 1 are not very sensitive toL provided thatL is not too small. In Appendix

1, we analyze the sensitivity of the results toL and provide support for the above statement.

Another approach towards selecting L would be to choose its value randomly in each iteration.

Although this is valid, we concluded from our analysis that the results are not significantly better.

Therefore the value of L is chosen to be small, but big enough for Algorithm 1 to be valid so

that the computational burden is minimized. (iv) The parameter θ in Algorithm 1 (corresponding

to NR) determines the number of voxels selected by Algorithm 1. Ifthe objective is to localize

important voxels, it can be set as in Section II-A. If the objective is to predict tasks as above,

this number can be chosen from a wide range (see Fig. 4). Typically, it can be set to a number

around100. Another method for settingθ is cross-validation, which is described in Appendix 2.

IV. CONCLUSIONS

In this paper, we presented an iterative detection algorithm based on sparse representation.

Then, we analyzed its convergence and effectiveness. This algorithm may be used for feature

selection, localization, novelty detection, etc as 1-normSVM. Here, we presented one application

for voxel (feature) selection in fMRI data analysis. The results demonstrate that this method can

be used for voxel selection in the cases of both repeated stimulus/tasks (e.g. Instructions task)

and non-repeated stimulus/tasks (e.g. Faces task). The sparse representation model used in our
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algorithm can be seen as the opposite of the GLM Model widely used for fMRI analysis, however

there exists significant difference between the two models.In the sparse representation model,

a lot of voxels are considered simultaneously, but the task/stimulus conditions are considered

separately. Using our algorithm, a combination of voxels are selected. This combination of voxels

plays an important role in effective/sparse representation of a task/stimulus function. Conversely,

voxels are considered separately, but the task/stimulus conditions are considered simultaneously

in GLM model. The validity of our method was shown through thecomparison with GLM-SPM

method in our data analysis.

In addition to voxel selection as shown in this paper, the sparse representation approach also

can be used for decoding a task based on fMRI activity. A simple implementation strategy can

be: First, a sparse regression model is trained using model (2), whereA is a known fMRI data

matrix constructed from selected voxels andy is a known task function. Second, an unknown task

function can be decoded using model (1), whereA is a new fMRI data matrix of selected voxels,

w is a sparse coefficient vector obtained in the training phase. Our initially analysis results, which

are not included in this paper, has shown the effectiveness of this decoding method in several

cases. However, further study is needed in our future work for improving the performance of

this decoding method since the constraint equation in model(2) is underdetermined and noise

is neglected.
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Appendix 1: On setting the number of constraints in Algorithm 1

In this appendix, we first show our results obtained by Algorithm 1 with the numbersL of

constraints in (8) set to beL1 = 25, L2 = 50 andL3 = 75 respectively.

Let b = [1, 2, 4, · · · , 300] as in Section III. For each pair ofi (i = 1, · · · , 151) and L (L =

25, 50, 75), we setNR = bi and obtain average prediction accuracies by Algorithm 1 with

parameterL (averaged over two folds of cross validation) for the4 tasks, and3 subjects. Each

subplot of Fig. 9 shows three prediction accuracy curves (with respect tobi) for L = 25, 50 and

75 respectively. Note that the prediction accuracy curves forL = 50 (black solid lines) are the

same as those in Fig. 4. By comparing these curves in each subplot of Fig. 9, we can see that

the prediction results are not sensitive to the parameterL.

Next, we compare the sets of voxels selected by Algorithm 1 with its parameterL set as

L1 = 25 andL2 = 50 respectively. For theith task (i = 1, · · · , 13), the jth subject (j = 1, 2, 3),

the kth run (k = 1, 2), we calculate weight vectorswL1,i,j,k and wL2,i,j,k using Algorithm 1.

For a given numberbl (bl = 1, 2, 4, · · · , 400), we choose two sets of voxelsRL1,bl
(i, j, k) and

RL2,bl
(i, j, k) from N (the initially selected500 voxels) usingwL1,i,j,k andwL2,i,j,k respectively.

Furthermore, we calculate the numberq(i, j, k, bl) of voxels∈ RL1,bl
(i, j, k)∩RL2,bl

(i, j, k) and

the ratioratio(i, j, k, bl) = q(i,j,k,bl)
bl

. Averagingratio(i, j, k, bl) acrossi, j, k, we obtain the mean

of ratio(i, j, k, bl) denoted asr(bl). Fig. 10 shows the curve ofr(bl) with bl (solid line).

For eachbl (bl = 1, 2, 4, · · · , 400), we also randomly take two subsets ofN . Denote the two

subsets as̄R1,bl
and R̄2,bl

, each of which containsbl voxels. We also calculate the ratiōr(bl)

with which R̄1,bl
and R̄2,bl

are overlapped. The curve of̄r(bl) is shown as the dashed line in

Fig. 10.

From Fig. 10, we can see that ifbl >≈ 75, r(bl) > 70%. Furthermore, the ratior(bl) ≫ r̄(bl).

Therefore, the two voxel setsRL1,bl
(i, j, k) and RL2,bl

(i, j, k) determined by Algorithm 1 with

two constraint parametersL1 andL2 respectively are overlapped to a high degree, i.e., most of

the voxels selected by Algorithm 1 with different parameters L are the same. This is possibly

why the results obtained by Algorithm 1 are not sensitive toL.
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Appendix 2: Cross-validation method for setting the number of voxels for prediction of

tasks in fMRI data

In this section, we show a cross-validation method for setting θ in Algorithm 1, which

determines the number of voxels used to predict the tasks. First, for each subject and task,

the data set (including fMRI data and task data) of run 1 and run 2 is equally divided into four

parts, each consisting of 250 time points. The first three parts are used for 3-fold cross-validation,

while the fourth part is used as an independent test data set.In one of the 3-fold cross-validation,

we use two parts for training, and predict the task of the leftpart. For each value ofNR (1 to

500, the number of selected voxels), a prediction accuracy of the validation feature is obtained.

After the 3-fold cross-validation is performed, three the prediction accuracy curves (with respect

to NR) are obtained. An average prediction accuracy curve is thenobtained by taking the mean

of the three ones. Suppose that this average prediction accuracy curve has maximum atN0, i.e.

if N0 voxels are selected, the average prediction accuracy is themaximum.

Next, we use any two of the first three parts for training, and obtain a weight vectorw. If

we rearrange the vector|w| (the absolute value vector) in descending order, and denoteit as

[|wi1|, · · · , |wi500 |], thenθ = |wiN0
|. We now predict the task of the independent test set using the

N0 voxels with weights{wi1, · · · , wiN0
}. Three prediction accuracies are obtained using different

combinations of two parts for training, i.e. the three foldsof cross validation. Similarly as above,

we also obtain an average prediction accuracy curve with respect toNR (1 to 500) for the task

of this independent test set. Note that the value ofN0 is the point at which the average of

the prediction curves of the three folds is maximum. In each subplot of Fig. 11, an average

prediction accuracy curve for the independent test set is presented for one task of one subject

and the “*” represents the average prediction accuracy determined byθ. From this figure, we

can see that this cross-validation method for determining the parameterθ is acceptable.
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Appendix 3: Robustness analysis

In this appendix, we analyze the robustness of Algorithm 1 tonoise. Consider the following

noisy model corresponding to (2),

min ||w||1, s.t., (A + V)w = y, (17)

whereV ∈ RN×M is a noise matrix. The optimal solution of (17) is denoted bywv. In this

paper,A andy are a data matrix and a transformed task function, thus we addnoise toA other

thany.

Denote allN ×N dimensional submatrices ofA andV asA(j) andV(j) respectively, where

j = 1, · · · , CN
M . SinceA is a real data matrix, we can assume that all submatricesA(j) are full

of rank. In this case, it follows from linear programming theory [18] that there is a submatrix

sayA(j0), such that the 1-norm solutionw1 of (2) satisfies

w1 = (A(j0))−1y. (18)

That is,

||(A(j0))−1y||1 = min{||(A(j))−1y||1, j = 1, · · · , CN
M}. (19)

Note that

lim
||V||→0

||(A(j) + V(j))−1y||1 = ||(A(j))−1y||1, j = 1, · · · , CN
M . (20)

It follows from (19) and (20) that when||V|| is sufficiently small,

||(A(j0) + V(j0))−1y||1 = min{||(A(j) + V(j))−1y||1, j = 1, · · · , CN
M}. (21)

That is, (A(j0) + V(j0))−1y is the 1-norm solutionwv of (17) with sufficiently small noise.

Furthermore, sincewv is close tow1 in (18), wv can be represented by

wv = w1 + △wv, (22)

where△wv is a disturbance vector resulted by the noise matrixV. It follows from (20) that

△wv is small if ||V|| is sufficiently small.

In the following, we consider the following noisy model corresponding to the model (8) in

Algorithm 1,

min ||w||1, s.t., (Ak + Vk)w = yk, (23)
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whereVk ∈ RL×M is a noise matrix. The optimal solution of (23) is denoted byw̄(k)
v . From

the above analysis,̄w(k)
v can be represented by

w̄(k)
v = w̄(k) + △w̄(k), (24)

wherew̄(k) is the solution of (8).

Thus the output of Algorithm 1 afterK iterations in noise case is

w(K)
v =

1

K

K∑

i=1

w̄(i) +
1

K

K∑

i=1

△w̄(i)
v . (25)

When||Vk|| (k = 1, · · · , K) are sufficiently small,1
K

K∑
i=1

△w̄(i)
v is close to zero. This is because:

(i) ||△w̄(i)
v || is small, their mean is still small; (ii) the mean of each entry of △w̄(i)

v is generally

zero. Thus we have

w(K)
v ≈ w(K), (26)

w(K) is the output of Algorithm 1 afterK iterations in noiseless case. That is, the weight vector

obtained by Algorithm 1 is robust to noise at least to some degree.

Fig. 12 shows three pairs ofw (black) andwv obtained by Algorithm 1 in noiseless case and

40dB noise case respectively. When the noise is sufficiently small, we can see thatwv is close

to w.

Now we enlarge the additive noise in model (23) to25dB, data analysis results (see Figs. 13

and 14) show that the weight vector obtained by Algorithm 1 isstill effective for voxel selection.
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Fig. 1. Three iterative curves demonstrating the convergence of Algorithm 1 with parameterL set to be25, 50 and 75

respectively, whered(k) is the convergence index of Algorithm 1. The execution time for the three cases are147s, 426s and

768s respectively.
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Fig. 2. First row: Weights of voxels inN obtained by Algorithm 1 for subject 1 and Instructions task;Second row: Correlation

coefficients for the same subject and task, each is calculated using the time series of a voxel inN and the transformed task

function. The two columns correspond to two runs (i.e. two folds in cross-validation) respectively.
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Fig. 3. The iterative curves of correlation betweenAw and y (Instructions task) for three subjects and run 1, each subplot

corresponds to one subject.
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Fig. 4. Prediction accuracy curves obtained by two methods.In each subplot, red solid line: Alg. 1; black dotted line: GLM-SPM

method. The four rows correspond to four tasks (Hits, Instructions, Faces, Velocity) respectively. In each subplot, the average

prediction accuracy marked by “*” is determined byθ as in Section II-A.
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Fig. 5. Two percentage curves (%) showing the performance of two methods in39 cases (3 subjects and 13 tasks). Red solid

line with stars (top): Algorithm 1; dash-dotted line with x-marks: GLM-SPM.
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TABLE I

AVERAGE PREDICTION ACCURACY RATES OVER TWO FOLDS OBTAINED WITH ONE VOXEL FOR THREE SUBJECTS, FOUR

TASKS AND TWO METHODS. THE ACCURACY RATES OBTAINED BYGLM-SPM METHOD ARE IN BRACKETS

Sub 1 Sub 2 Sub 3

Hits 0.2656 (0.1308) 0.1819 (0.2143) 0.2595 (0.1451)

Instructions 0.3227 (0.2233) 0.5518 (0.3620) 0.5337 (0.1417 )

Faces -0.0064 (-0.3193) 0.0989 (0.1466) 0.4368 (0.1033)

Velocity 0.2711 (0.0300) 0.1975 (0.0517) 0.1489 (0.1432)
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Fig. 6. Distribution of100 selected Voxels, of which50 voxels (highlighted in red) correspond to the first50 highest weights

calculated by Algorithm 1, while the other50 voxels (highlighted in green) correspond to the first highest values oft-statistics

calculated by GLM-SPM method for task 2 (Instructions), Run1 and Subject 3. If two voxels obtained by two methods are the

same, then it is highlighted in yellow. Slices are numbered from inferior to the superior parts of the brain.
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Fig. 7. The first row: Two voxels of which the first one is selected by both Algorithm 1 and GLM-SPM method and the

second one is selected only by Algorithm 1. The t values in thebrackets are obtained in the SPM detection. The second row:

fMRI signals corresponding to the two voxels respectively.
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Fig. 8. Distribution of100 selected Voxels, of which50 voxels (highlighted in red) correspond to the first50 highest weights

calculated by Algorithm 1, while the other50 voxels (highlighted in green) correspond to the first highest values oft-statistics

calculated by GLM-SPM method for task 3 (Faces), Run 1 and Subject 2. If two voxels obtained by two methods are the same,

then it is highlighted in yellow. Slices are numbered from inferior to the superior parts of the brain.
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Fig. 9. Three prediction accuracy curves obtained by Algorithm 1 with the numbers of constraints in (8) set to be25 (red

solid line),50 (black solid line) and75 (black dashed line) respectively in Appendix 1. The four rows correspond to four tasks

(Hits, Instructions, Faces, Velocity) respectively.
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Fig. 10. Ratio curves showing the degree that the two selected voxel sets are overlapped in Appendix 1. The sold line:r(bl)

obtained by Alg. 1; the dash-dotted line:r̄(bl) obtained by randomly taking two sets of voxels.
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Fig. 11. Average prediction accuracy curves for independent test set for three subjects and four tasks in Appendix 2, where the

four rows correspond to the four tasks (Hits, Instructions,Faces, Velocity) respectively. In each subplot, “*”: average prediction

accuracy determined byθ.
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Fig. 12. Each of the three subplots of the first row shows the weight vectorsw (black) andwv (red) obtained by Algorithm 1

after600 iterations in noiseless case and noise case respectively inAppendix 3, whereA andy are the same fMRI data matrix

and transformed task function as in Fig. 1,wv corresponds to40dB simulated zero mean Gaussian noise. Each of the three

subplots of the second row shows the errorw−wv. The three columns of this figure correspond to three parameter settings of

Algorithm 1: L = 25, 50, 75 respectively.
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Fig. 13. Each subplot shows two iterative curves of Algorithm 1 obtained in noiseless case (black curve) and25 dB nose case

(red curve) in Appendix 3, whereA andy are the same fMRI data matrix and transformed task function as in Fig. 1. The three

subplots correspond to the three settings25, 50 and75 of the parameterL in Algorithm 1 respectively.
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Fig. 14. Each subplot shows two prediction accuracy curves obtained by Algorithm 1 in noiseless case (red curve) and25dB

noise case (black curve) respectively in Appendix 3. The four rows correspond to four tasks (Hits, Instructions, Faces,Velocity)

respectively.
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