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Abstract

This paper proposes an iterative sparse representatgedlagetection algorithm for voxel selection
in fMRI data. In each iteration of this algorithm, we solveiaelr programming problem and obtain
a sparse weight vector. The final weight vector is the mearho$e obtained in all iterations. The
characteristics of our algorithm are: (i) The weight vectoutput) is sparse; (ii) The magnitude of
each entry of the weight vector represents the significafides @orresponding variable or feature in
classification or regression problem; (iii) Due to the cageace of this algorithm, a stable weight vector
can be obtained. To demonstrate the validity of our algorigimd illustrate its application, we apply this
algorithm to the Pittsburgh Brain Activity Interpretati@ompetition (PBAIC) 2007 functional magnetic
resonance imaging (fMRI) data set for selecting the voxdtéckv are the most relevant to thasks
of the subjects, computed during the experiment. The abamioned characteristics of our algorithm
are analyzed for this data set. Furthermore, compared Wéhbtaseline method, general linear model
(GLM)-based statistical parametric mapping (SPM), ourhmdtshows significantly better performance

for voxel selection for this data set.

Keywords: Functional magnetic resonance imaging (fMRI), voxel s@b@c sparse represen-

tation, statistical parametric mapping (SPM), prediction

I. INTRODUCTION

In functional magnetic resonance imaging (fMRI), an fMRlsner measures the blood-
oxygenation-level dependent (BOLD) signal at all pointsithree dimensional grid, or image
of the brain. The cells within this three-dimensional imagye known as voxels. A typical
fMRI data set is composed of the time series (BOLD signalden$ of thousand voxels. High
dimensionality is a characteristic of fMRI data. Therefovexel selection plays an important
role in fMRI data analysis because of: (i) heavy computatbomden; (ii) un-correlation (or
redundancy) of a large number of voxel time series with relspethe stimulus/task presented
to the subject. Much of current fMRI research such as idg@ntf brain regions activated in
response to some task or stimulus is related to voxel sefecti

Voxel selection can be performed according to the charattey of the stimulus and the
brain functional areas. For example, if image stimulus &spnted, then voxels can be selected
from the areas in visual cortex [1]. One class of voxel sedecatnethods are based on statistical
test/statistics that find brain regions with statisticalignificant response. A typical example is

statistical parametric mapping (SPM) based on generalineodel (GLM). SPM is a powerful

DRAFT



tool for the analysis of fMRI data including voxel selectifit]-[4]. The second class of voxel
selection methods are based on the correlation betweeroke me series and the time series
of the task or stimulus [5]. Correlation method, classibased method [6], multiple regressor
model [7], as well as least square regression Witlfridge) andL, (Lasso) regularization [8] can
be categorized in the second class. In [31], an elastic meession technique, which achieves
both sparsity and the grouping effect by using a weightedlionation of 1—norm and2—norm
penalties on top of the least-squares problem, was appi¢det analysis of the fMRI data set
of Pittsburgh Brain Activity Interpretation Competitio(BBAIC) 2007. Through simultaneously
considering sparsity and the grouping effect, the authersahstrated the distributed nature of
neural function and the importance of localized clusteradaiivity.

In this paper, we present a sparse representation baseddnfethvoxel selection in fMRI
data.

The sparse representation of signals can be modeled by
y =Aw, 1)

wherey € RY is a given signal vectorA € RY*M (N < M) is a basis matrix. When the
model (1) is used for fMRI data analysia, is a data matrix of which each column is a time
series of a voxel, angt is a transformed stimulus/task function which is obtaingatbnvolving

a stimulus/task function with a hemodynamical responsetian.

The task of sparse representation is to find a solutioa RM of (1) such that this solution
is as sparse as possible. In many references such as [10§isafasuit (BP) algorithm was
presented, in which a sparse solution (i.-enorm solution) can be found by solving the following
optimization problem.

min ||w||, s.t. Aw =Yy, (2)

M
where 1-norml||w||; is defined asy_ |w;|.
=1
Settingw = u — v, whereu, v € R are nonnegative, (2) can be converted to the following

equivalent linear programming problem,
M
min Y (u; 4+ v;), subject to [A, —A][u”,v']" =y, u>0, v>0. (3)
=1
The solution of a linear programming problem is generallyqua [18], which can be obtained

by standard softwares. In this paper, all linear prograngnpiroblems are solved using Matlab

function “linprog”.
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Sparse representation of signals has received a great tlestleation in recent years (e.qg.
[10]-[15]). For instance, Donoh& Elad discussed optimal sparse representation in genena (n
orthogonal) dictionaries via minimization [16]. In practical applications, sparse esg@ntation
can be used in underdetermined blind source separation)(B8&fch is difficult to deal with
using a standard independent component analysis (ICA)addtti]-[22]. Basis pursuit is also
an important application of sparse representation [13].[Recently, it has been found that
Model (2) has applications in feature selection and deiacin [21], (2) was successfully used
for cross-modal localization of sound-related region ia ¥ideo whereA was constructed from
the video andy was constructed from the accompanying audio.

A related method isl-norm support vector machine (SVM). Similar to the BP altjon,
1-norm SVM solves a linear programming problem to obtain arsp solution. Thus it is
also called sparse SVM [23]-[28]. 1-norm SVM has potentgplacations in feature selection
including dimension reduction [23], detection of regioniferest of images [24], detection of
machine damage or highlighting abnormal features (loaabn) in medical data [28]. There
exist differences between the models (2) dadorm SVM. For instance, when 1-norm SVM
and model (2) are used for the same data set, there are maablgarand constraints for 1-
norm SVM than for (2); this implies a heavier computationatden. Another related method
is Lasso regularization, which also appears in potentiaA980], [29]. Compared with Lasso
method or potential SVM with quadratic objective functip(®) can be converted into a standard
linear programming problem and has computational advanespecially when the number of
the variables is extremely large.

In the following, we compare the model (1) with the GLM modahd analyze the difference

between the two models. GLM model is represented by
x; = Gf; + e, (4)

wherex; € R” is a time series of théth voxel, G ¢ RV*X is called a design matrixg; € RX

is an unknown parameter vector to be estimated for each vexet RY is an error (noise)
vector,i = 1,---, M. Each column ofG corresponds to an explanatory variable related to the
specific experimental conditions under which the data wetleaed,5; represents the weights

of the explanatory variables (columns) Gf.
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Considering all the voxels, the matrix form of (4) becomes
X =Gpf+E, (5)

whereX € RV*M is the data matrix, which is the same Asin (1), 3 € RE*XM E ¢ RV*M,

Multiplying both sides of (5) by the Moor-Penrose inverse of 3, we have
G = Xp" - Ejt. (6)

Furthermore, considering each colugynof G and letting the noise vector be included implicitly

in the coefficient vector, (6) can be rewritten as

g =X (5 +¢), (7)

wheree; = -X*ES].

Sinceg, representing a specific experimental condition is the cloam of a stimulus/task
function and a hemodynamic response function (HRF), itessdime ag in (1). Furthermore, in
view of X in (7) andA in (1) representing the same data matrix, (7) is equivaletihé model
in (1). The above analysis shows the connection of the maod@)iand the GLM model in (4).
Now we point out the main differences between the two modglén model (1), a transformed
stimulus/task function is linearly represented by the tgages of a set of voxels. The assumption
of sparse representation implies that the number of voxatsl in this representation is small.
Note that although only small number of voxels are neededoarse representation, they are
generally representative voxels distributed in differaativated brain areas. Conversely, in (7),
the time series of each voxel is linearly represented by thenens of a design matrix, of which
each column is a transformed stimulus/task function, orrection related to noise etc. (i) A
lot of voxels are considered simultaneously in model (¥), he connection of different voxels
instead of the connection of different stimulus/task fiortg is emphasized in (1). Conversely,
all the stimulus/task functions are considered simultasboin the GLM model (4). Thus it is
the connection of different stimulus/task functions ottiean the connection of different voxels
that is emphasized in (4). The connection of different vexslgenerally considered ((e.g. by
random field method)) in later analysis of SPM.

In this paper, we design a sparse representation algorittsadoon the linear programming
problem (2) for voxel selection in fMRI data analysis. Thekiaf sparse representation is to

find a coefficient vectow of model (1) such thatv is as sparse as possible. The motivations
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that we use sparse representation here are: (i) Consideiiige number of voxels of the brain,
only a small number of voxels are useful for representingraudtis/task functiory in (1). This

is reflected by the sparsity &f; (ii) Through sparse representation, we obtain a comlmnatf
voxels. This combination of voxels can represent the stisitdisk functiory with high efficiency
since it contains a small number of voxeis (s sparse). Thus the connections between those
voxels in the combination are emphasized through a efifsiparse representation 0 (iii)
The combination mainly contains two classes of voxels. TWRIftime series of the first class of
voxels are significantly correlated g while the fMRI time series of the second class of voxels
are not significantly correlated g but important for representing. The first class of voxels can
be identified using statistic parametric methods e.g. GLRMScorrelation method, however the
second class of voxels are difficult to be identified usindgistta parametric methods (see Fig.
7). (iv) From the latter discussion, the effectiveness @& tdombination of voxels selected by
sparse representation can be evaluated using decodingaappr-urthermore, considering the
similarity between the model (1) and decoding model [6], Yb&el selection based on model
(1) could be more suitable for decoding tasks than GLM moakelshown in this paper.

To demonstrate the effectiveness of our method, it was egpid the fMRI data set of
PBAIC 2007. The data set of PBAIC 2007 was collected for a iptexh task. The stimuli
in the experiments performed to obtain these data sets @nearid non-repetitive. Therefore,
it is difficult to perform voxel selection satisfactorily ing typical methods such as Pearson
correlation based methods. After voxel selection with owthod, we perform the prediction
of experience based cognitive tasks from the fMRI data séBAIC 2007 as in [8], [9]. The
prediction results will be used in evaluation of our methodour data analysis, we also compare
our method with the baseline GLM-SPM method.

The remaining part of this paper is organized as follows. @aiection algorithm is presented
in Section Il. The analysis of convergence and effectiveréshis algorithm are also included. In
Section I, we use our algorithm for voxel selection in fM&dta analysis. Additional discussions
related to fMRI data analysis are included in Appendices d an Finally, conclusions are

presented in Section IV to review our method.
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[I. MATERIALS AND METHODS
A. Algorithm

In this section, we present our algorithm for voxel selettitve do not directly use (2)
considering the following three aspects: (i) The numberafzero entries ofv generally equals
to N [18]. This means that sparsity & decreases with increasing. This leads to a situation
where increase in the amount of training data may not leadntoiprovement in feature
selection by (2). (ii) (2) is not suitable for the overdetered case in whichV > M; (iii) When
N is not sufficiently large,w obtained by single optimization may not reflect the impdrtan
features well. Even ifV is sufficiently large, this problem still exists because ofse. In order
to address these three problems, we will extend (2) and preseiterative detection algorithm
in this paper.

Suppose that each row @f in (2) represents a data sampyecan be speech signal, stimulus,
labels etc. In this paped is an fMRI data matrix of which each column is a time series of a
voxel and each row contains the data of one volume (or pamefvolume)y is the convolution
of a stimulus/task function and a hemodynamical responsetifin. The following algorithm is
designed to detect the parts in the rowsfof(e.g. pixels or voxels) relevant tp.

Algorithm 1:

Step 1. Fork =1, - - -, do the following Steps 1.1 to 1.4.

Step 1.1: Randomly chooderows from{ay, - - -, ay} to construct a, by M matrix denoted
as A, the corresponding. entries ofy form a column vector denoted as € R”.
Step 1.2: Solve the following optimization problem. Simita (2), this optimization problem

can be converted to a standard linear programming problem.
min ||w||y, s.t., Ayw =yy. (8)

The optimal solution of (8) is denoted by*),
Step 1.3: Let
1&E
wi = 23w, 9)

Step 1.4: Ifd(k) = |[|[w® — w V||, < a or k < K, , wherea is a predefined small
positive constant and, is a predefined limiting upper bound for the number of itenasi (e.g.

K,y = 400), setw = w*) and go to Step 2. Otherwise go to Step 1.1.
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Step 2: For a given positivé, define R = {j| |w;| > 6,5 = 1,---,M}. ThenR is our
detected part of interest in all rows @f.

Note that noise is not explicitly reflected in (8). Howevdre tweight vectow generally is
affected by noise (please see (7)). Through the averageatopenn (25), the effect of noise
can be reduced (see Appendix 3: Robustness analysis) efudhe, through randomly taking
rows fromA, w*) obtained in (8) can be seen as a random sampte, afhile w*) in (25) can
be seen as an approximation to the mearwofSuppose that Algorithm 1 terminates aft&r
iterations. This implies that we obtaili random samples o& and then calculate their mean.
The number of iterations (i.e. the number of random samias)be easily determined because
of the convergence of Algorithm 1 as shown later.

In the following, we discuss the setting of three parametersy and ¢ in Algorithm 1.
Note that eachu® is obtained through solving a standard linear programmiradplpm, thus
Algorithm 1 is not involved in the setting of initial vecter©).

When the parametel is set, two aspects need to be consideredi(ig not very small such
that the columns ofA, andy, in (8) contain temporal evolution information; (2)is not very
large such that the computational burden for solving théenapation problem (8) is not heavy.
It will be explained in Appendix 1 that the data analysis tesare not sensitive to the value
of L provided thatL is not very small. In this paper, we generally det= 0.1N. The other
choices e.gL = 0.05N, 0.15N and(0.2N are also acceptable.

As will be seen, Algorithm 1 is convergent, we can easily sstrall o (e.g.« < 0.01) to
obtain a stablew.

The parametef can be chosen in different ways depending on the applicatiGme way
is cross-validation method, which can be seen in Appendiké&e we present a probability
method. Considering the entries of are sparse, we assume that the probability distribution
of the entries ofw is Laplacian. Using all entries o as samples, we estimate the mean,
the variance and the inverse cumulative distribution fiomct"~! of this Lapcian distribution.
We then defineR = {i| |w;| > 0,i = 1,---, M}, wheref is chosen as"~!(py), po is a given
probability (e.g.0.975 in this paper). As will be shown in section lll, this method tetermining
0 is acceptable. The values of the paramétetetermined by the cross-validation method and
the probability method are generally different. If suffitidraining data are available and the

effect of decoding is emphasized, we can use the crossatiaidmethod to determing If we
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emphasize the effect of localization, then we can use thbamibty method.
We now analyze the convergence and effectiveness of Algorit.

Convergence: Suppose that in théth iteration of Algorithm 1, we have output

1&E
wk) — - Z w® (10)
i=1
Let (kD) (k)
d(k+1) = [[w™ — w5, (11)
From (10),
(k1) _ ) LR o Iy~
A\% — W = k‘—~|»1 2 W — E Zzzl A\%
k+1 k
EY wid —(k+1) > wt
- =1 =1
- k(k+1)
D) — 3 w0
i=1
= . 12
MET 1) (12)
In Algorithm 1, for given data matri and parametek, there are totally’§ (= YN -D-N-L+1))

choices of the pairsA;, y.) in (8). For each pair4;, yi), there is a weight vectox® which

is the solution of (8). Lety, = max{||w®)||o,k = 1,---,Ck}, then||w®||; < 4. From (12),
we have
2k)~ 2y
(1) _ gy, < R0 2% 13
Il ol S D TR (13)

Therefore,]}i_{& d(k) =0, i.e. Algorithm 1 is convergent.

In fact, the convergence of Algorithm 1 originates from thet§: (1) there are finite number
of weight vectorsw*) of which each corresponds to a pak,( y:); (2) then they are bounded.
Although the number ofv(*) is huge generally(%), Algorithm 1 converges in several hundred
of iterations (see Fig. 1 in our data analysis section).

Although w*) in (10) is generally not so sparse @$”, our simulations and data analysis
results show that a large fraction of entrieswof) are close to zero. Thus we say that®) is
still sparse.

Effectiveness. Regarding the effectiveness of Algorithm 1, we have theofwihg explanation.
Here, we only consider the underdetermined case where M. First we define a set af/

dimensional vectorg’ such thatyw(A,y) € U, w(A,¥) is the 1-norm solution of the equations
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Aw =y, where A is composed byl rows randomly taken fromA, ¥ is a vector composed
by L corresponding entries qf. Note that there ar€'% vectors inU. Next, we define a\f
dimensional random vector = [vy, - - -, vps]7, wherev randomly takes values if.
For a sample;v(A, y) of v in U, it is sparse since it has at mastnonzeros. Generally, the

magnitude of theth entry ofw(A y) reflects the significance of thigh column ofA for the

constraintAw = y. Obviously, the output of Algorithm 1 satisfies = E Z wl) ~ E(v), i.e.
the expected value of. Now we show that(v;) can reflect the S|gn|f|cance of thith column
of A for the regression betweeA andy.

For w( obtained in theith iteration Algorithm 1, we have

Aw) =y + 0@ (14)
wheren® = [n{",--- 2|7, 0\ = 0/if j € Ind; (Ind; is the set of indices of thé& rows of

(%)

A;in A), otherwisen,” = y; — a; - w(®.

Furthermore, we have
10 15
AW:AEZW y—i—EZn(l). (15)
i=1 =1

Note thatny) can be positive, negative or zero. In many cases especialynwhe parameter
Lin Algorithm 1 is not small, the expectation nﬁi) can be assumed to be close to zero. That

is, 1 Z n(® ~ 0 for sufficiently largek. Thus
Aw~ AE(v)~rYy. (16)

Therefore, the correlation betweekw andy is close tol and w is close to a regression
coefficient vector between training data matAxandy.

From the above analysis and the definitionsofn Algorithm 1, we can see: (i) The magnitude
of w (i.e. E(v;)) reflects the significance of théh column of A to the satisfaction of (16). (ii)
If L in Algorithm 1 is fixed, we can obtain a consistemt This is due to the convergence of
Algorithm 1. (iii) More importantly,w is still sparse. This will be demonstrated in our data
analysis examples. Based on the sparsitwothe voxels which are the most correlated to the

stimulus/task function can be selected.
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B. Voxel selection in functional MRI data

In this section, we apply Algorithm 1 to the fMRI data of PBABRDO7 [34] for voxel selection.
The fMRI data was collected by Siemens 3T Allegra scannehn wiaging parameters TR and
TE being1.75s and25ms respectively. Three subjects’ data were available inctimapetition.
Each subject's data consists of threens Each run consists 0500 volumes of fMRI data
of which each volume contaifi4 x 64 x 34 voxels. The size of a voxel i8.2 x 3.2 x 3.5
mm3. The preprocessed data provided by the competition are ims¢his paper. The data
preprocessing attempted to remove some standard artifsetsoccur in fMRI data that may
hinder data analysis. The functional and structural datee vpeeprocessed with AFNI and NIS
in the following steps: slice time correction, motion catien and detrending. The feature data
was preprocessed by convolving the raw feature vectors tvéhdouble gamma hemodynamic
response filter (HRF) produced by the SPM (see http://wwiedilucl.ac.uk/spm/). Through a
mask preprocessing, the total number of voxels in the beag 32000. Thus the fMRI data for
each run is represented by a matrix consisting of ar@2td0 columns (voxels) and00 rows
(time points). Each column of the matrix is the time seriesaofoxel. When the scans were
obtained, the subject was performing several tasks (estgnlito instructions, pick up fruits)
in a virtual reality (VR) world. Theratings for these tasks were computed by considering the
delay of hemodynamic responses and form the task functichtasks were considered in the
competition. Only the tasks for the first two runs were distted at www.braincompetition.org.
Therefore, here we use only data from the first two runs folyaisa We present detailed results
mainly for four tasks: (i) Theédits task, times when subject correctly picked up fruit or weapon
took picture of a pierced person; (ii) thiestructionstask, which represents the task of listening
to instructions from a cell phone in the virtual world; (itfhe Facestask, times when subject
looked at faces of a pierced or unpierced person; (iv)Mblecitytask, times when subject was
moving but not interacting with an object. For more detaitkxscription of the data, refer to
[34]. The goal of the competition was to predict the task fiores of the third run using the
fMRI data. Our final submission based on Algorithm 1 to thisnpetition was ranked 10th
based on the average score of the features. As pointed o81]Jng fair comparison with other
methods cannot be made, as post-processing had deciseet eff performance.

Since the number of voxels is huge, voxel selection playsnamortant role in fMRI data
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analysis. Using the Instructions task as an example, we reseribe our data analysis method.
The preprocessed fMRI data obtained from the competitioosite (www.braincompetition.org)
is first filtered temporally and spatially. The temporal filig 11, 2, 1], while the spatial filter is
a cube with[1,2,1;2,4,2:1,2,1], [2,4,2;4,8,4;1,2,1], [1,2,1;2,4,2; 1,2, 1]. We then perform
2-fold cross-validation as follows. In the first fold, we uRen 1 data to calculate the Pearson
correlation between the time series of each voxel and tmsfsamed Instructions task function.
The voxels with high absolute value of this correlation dnesen to form a set of voxeldy'.
Then, our algorithm is used for a second selection of voxelshtain 2 ¢ A. In Algorithm 1,
A € R59%IVT of which each column is a time series of a voxelNn y € R is a transformed
task function. The parameters in Algorithm 1 are set as WfidloThe number of iterations is
fixed to 600 to see the details of algorithm convergenges set to25 and# can be chosen as
described in section II-A (or using a cross-validation noetlpresented in Appendix 2). Ridge
regression is used on the time series of voxelB to predict the transformed Instructions task
function of Run 2. Prediction accuracy is measured as thesBea&orrelation between the actual
transformed task and the predicted task. In the secondi@djse Run 2 data for training and
predict the transformed Instructions task function for Run

For the purpose of comparison, we use GLM-SPM method to cepar method for selection
of voxels and perform the 2-fold cross-validation as désatiabove. Note that when GLM-SPM
method is used for voxel selection, dl8 transformed/convolved task functions provided by
PBAIC 2007 are used to construct the design matrix. For eagkl\and a task, a t-statistics is

calculated as in [4]. For a task, those voxels with high alitsolalues of t-statistics are selected.

[Il. RESULTS AND DISCUSSIONS

In this section, we present our data analysis results tetrtitle the convergence of Algorithm
1 and the sparsity of the weight vecter. By comparing our method with GLM-SPM method,
we demonstrate the validity of our algorithm for voxel séiac.

Convergence of Algorithm 1. As an example, we show our convergence analysis result for
Instructions task in run 1 of Subject 1. In the initial selestof voxels, we set\/| to 500. Three
cases are considered, in which the param&téhe number of constraints in (8)) of Algorithm 1
is set to be25, 50 and 75 respectively. The three subplots in Fig. 1 show three itexaiurves of

the convergence indeX(k) = |[w® — w(*=1]|, of Algorithm 1, which correspond to the three
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cases respectively. From Fig. 1, we can see that Algorithmnlerges after: 300 iterations in
the three cases. However, the execution time in our PC canp2i3GHz CPU, 3G RAM) for
the three cases afe7s, 426s and768s respectively. Thus wheh increases, the computational
burden increases rapidly.

Sparsity of weights. Fig. 2 shows two weight vectors obtained by Algorithm 1 (top) and
correlation coefficients (bottom) for the voxels M obtained in the two-fold cross-validation
for subject 1 and Instructions task. From this figure, we cam the sparsity in weights when
compared to correlation coefficients. Therefore, we cartlsaythe weight vector is more suitable
for localization of voxels than Pearson correlation.

Effectiveness. First, we check the correlation betwedrv andy, where A andy are fMRI
data matrix and a transformed task vector respectively. Astimned in Section II-A, the weight
vectorw can be seen as regression coefficients betwkandy. This means that the correlation
betweendw andy is big. Fig. 3 shows the iterative curves of this correlafienthe Instructions
task of three subjects for fold 1 (run 1 used for training).tAs number of iterations increases,
the three curves of correlation increase and tend to thregslwhich are larger than 0.9. This
demonstrates our analysis. When sparse representatiooaappis used for voxel selection, a
voxel whose fMRI time series is highly correlated yocan generally be selected. However, if
there are a set of voxels e. g. belonging to the same brainddredich the fMRI time series
are quite correlated to each other, then only small part mfeeentative voxels are selected. The
iterative Algorithm 1 of which each iteration uses differéime points may alleviate the loss of
these voxels which are highly correlatedyto

Next, we analyze the prediction accuracy. We compare Aligoril with GLM-SPM method
for voxel selection. First, we compare the ability of eachthmd in choosing thenost relevant
voxel. In the table I, we present the prediction accuracesraged over two folds) favy = 1
for three subjects, four transformed tasks. Hereaftgr,denotes the number of voxels &f the
set of selected voxels. From table |, we can see that the y@edécted by Algorithm 1 is more
correlated to the transformed task functions in most of caisen those selected by GLM-SPM
method.

Furthermore, we test if Algorithm 1 is consistently betteart GLM-SPM method for voxel
selection. Leb = [1,2,4,---,300]. For eachi (i = 1,---,151), we setNp = b;, and predict the

four transformed task functions for all subjects and averdng results over two folds of cross
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validation. Fig. 4 shows the plots of average predictiorueacy with respect td for the four
methods and three subjects and four tasks. In several caseshewn in the subplot in the first
row and the second column of Fig. 4, the performance of Atgoril is comparative to that of
GLM-SPM method; while in the other cases e.g. shown in thegleabn the second row and
the third column, the performance of Algorithm 1 is signifidg better than that of GLM-SPM
method.

We also analyze the effectiveness of choosing R ugiag described in Section II-A. Example,
for instruction task, the number of voxels i obtained using Algorithm 1}V, are: Subject
1, 12 (fold 1), 29 (fold 2); Subject 224 (fold 1), 21 (fold 2); Subject 328 (fold 1), 20 (fold
2). The corresponding prediction accuracy (averaged averfolds) for the three subjects are
0.8151, 0.7469 and 0.8591 respectively. The prediction accuracy (averaged over widsj for
the four tasks are marked with a **” in Fig. 4. Even thoudl, does not correspond to the best
prediction accuracy, it can lead to a satisfactory resutinfthis analysis, we conclude that the
method described in Section II-A for selectifigs acceptable (Except for task 3 of subject 1.
The correlation between fMRI data and this task is always).low

Until now, we have presented our analysis resultstftasks. Considering3 tasks are available
for the 3 subjects in the data set, we haye cases (one case corresponds to one task and one
subject). We analyzed each case as described above for tingagks. After obtaining the
prediction accuracy averaged over two folds of cross vabdaby Algorithm 1, we count the
number of timesy; that Algorithm 1 shows the best prediction accuracy amoeddhr methods
for eachNp = b;, b = [1, 2,4, - - -, 300]. Performing the similar counting for GLM-SPM method,

Y ) Y

we obtainr{*™. Next, we calculate two ratios (percentages) for the twohis: & - 100%,
plspm)
Z39

ratios.

-100%. Fig. 5 shows the two ratio curves, from which we can see Aligor 1 has higher

Localization. Now we analyze the effectiveness of Algorithm 1 in selectuogels from a
biological perspective. Each of the four tasks evaluateé [gts, instructions, faces, velocity),
can be related to activity in specific region(s) of the br&ar example, the hits and velocity
events are expected to be correlated with activity in theomoobrtex, especially the part for
planning actions, which is the supplementary motor cortestructions task is expected to be
correlated with activity in the auditory cortex. Face egeate expected to be correlated with

activity in the fusiform face area (FFA), which is speciaktpor face processing, located on
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the ventral surface of the temporal lobe.

Now we choose two representative cases to show our resulesaization. The first case is
for task 2 (Instructions), run 1 and Subject 3, while the sélcoase is for task 3 (Faces), run 1
and Subject 2. In this two cases, Algorithm 1 has better pexdoce of prediction than GLM-
SPM method. For the other cases in which our algorithm hasibpérformance of prediction,
we have similar conclusion presented in the following.

For Instructions task, Fig. 6 shoi®0 voxels, of which50 voxels are selected by Algorithm 1,
while the otheb0 voxels are selected by GLM-SPM method. The brain slicesraneurological
(L=L) space. We can see that most of these voxels selectedhéoywio methods are in the
appropriateareas of the brain. For instance, Voxels from the auditorjegcare shown in Slices
13-18 etc. It follows from this figure that there are severatels which can be selected by both
Algorithm 1 and GLM-SPM method. Furthermore, many voxeleded by the two methods are
close in locations although they are not overlapped. Howelre voxels selected by GLM-SPM
method are mainly located in Slices 14 and 15, which form tlusters. The voxels selected
by Algorithm 1, which do not form clusters, are distributedmore slices than those selected
by GLM- SPM method.

There exist several voxels which can be selected by Algoritiother than GLM-SPM method
and useful for prediction/decoding. The two subplots infiret row of Fig. 7 show two voxels,
in which the first one with the highestvalue in SPM detection is selected by both Algorithm 1
and GLM-SPM method, the second one is selected only by Algoril other than GLM-SPM
method. The second row show the corresponding fMRI sigrfaliseotwo voxels. obviously, the
fMRI signals of the two voxels contain useful informationated to the task.

For Faces task, Fig. 8 shows the distribution of the voxels, of which50 voxels are selected
by Algorithm 1, while the otheb0 voxels are selected by GLM-SPM method. Similarly as in
Fig. 6, we can see that several voxels (highlighted in yellsglected by both Algorithm 1 and
GLM-SPM method are common. Furthermore, most of these smadected by the two methods
are in theappropriateareas of the brain. For instance, some selected voxels d@he ioccipital
cortex (e.g. Slices 10-15). Furthermore, only these vogelscted by GLM-SPM method form
several clusters (slices 11, 14 and 17).

Algorithm 1 based on sparse representation selects a catidirof voxels which are generally

distributed in wider brain areas than those selected by GBRA method. Since this combination
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of voxels is used to represent the corresponding task fumcAlgorithm 1 is more suitable for
prediction/decoding of tasks in many cases than GLM-SPMotetConversely, since it is easily
for GLM-SPM method to show cluster/group effect, this meth® suitable for localization of
active brain areas.

Parameters setting. In the following, we present our parameter settings of Aldpon 1 in
this data analysis section. (i) From our analysis, the nunobenitially selected voxels does
not make any significant difference to the results. This pa&tar is set to 500 voxels in this
paper. We have tested our methods with 1000 and 2000 voxelsitial selection and confirmed
the insensitivity of the results to this parameter. (ii) Tinember of iterations corresponding to
the parametery in Algorithm 1 is fixed to 600. From the fact that Algorithm 1 ¢envergent
(section 1I-A) and that the changes is weights after 30Gaitens is not significant (see figure
3), the results will be consistent as long as the number oétitns is sufficiently large. (iii)
The number of constraintg in (8) is set to50 except that it is especially pointed out. The
results of Algorithm 1 are not very sensitive foprovided that is not too small. In Appendix
1, we analyze the sensitivity of the results foand provide support for the above statement.
Another approach towards selecting L would be to chooseaitsevrandomly in each iteration.
Although this is valid, we concluded from our analysis threg tesults are not significantly better.
Therefore the value of L is chosen to be small, but big enowghAfgorithm 1 to be valid so
that the computational burden is minimized. (iv) The par@m@in Algorithm 1 (corresponding
to Ny) determines the number of voxels selected by Algorithm 1héf objective is to localize
important voxels, it can be set as in Section II-A. If the ahije is to predict tasks as above,
this number can be chosen from a wide range (see Fig. 4). diypi@ can be set to a number

around100. Another method for setting is cross-validation, which is described in Appendix 2.

IV. CONCLUSIONS

In this paper, we presented an iterative detection algorifased on sparse representation.
Then, we analyzed its convergence and effectiveness. Tdosithm may be used for feature
selection, localization, novelty detection, etc as 1-n&wM. Here, we presented one application
for voxel (feature) selection in fMRI data analysis. Theutessdemonstrate that this method can
be used for voxel selection in the cases of both repeatedilstattasks (e.g. Instructions task)

and non-repeated stimulus/tasks (e.g. Faces task). Theespgpresentation model used in our
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algorithm can be seen as the opposite of the GLM Model widsgdufor fMRI analysis, however
there exists significant difference between the two modelshe sparse representation model,
a lot of voxels are considered simultaneously, but the stiskiilus conditions are considered
separately. Using our algorithm, a combination of voxeéssalected. This combination of voxels
plays an important role in effective/sparse represemaifaa task/stimulus function. Conversely,
voxels are considered separately, but the task/stimulngitons are considered simultaneously
in GLM model. The validity of our method was shown through teenparison with GLM-SPM
method in our data analysis.

In addition to voxel selection as shown in this paper, thesspaepresentation approach also
can be used for decoding a task based on fMRI activity. A smpiplementation strategy can
be: First, a sparse regression model is trained using maglelpereA is a known fMRI data
matrix constructed from selected voxels gnib a known task function. Second, an unknown task
function can be decoded using model (1), whaAres a new fMRI data matrix of selected voxels,
w is a sparse coefficient vector obtained in the training ph@seinitially analysis results, which
are not included in this paper, has shown the effectivenés$siodecoding method in several
cases. However, further study is needed in our future workimfproving the performance of
this decoding method since the constraint equation in m{#eis underdetermined and noise
is neglected.
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Appendix 1. On setting the number of constraints in Algorithm 1

In this appendix, we first show our results obtained by Aldon 1 with the numberd. of
constraints in (8) set to b&, = 25, L, = 50 and L3 = 75 respectively.

Let b = [1,2,4,---,300] as in Section lll. For each pair af(i = 1,---,151) and L (L =
25,50,75), we set Ny = b; and obtain average prediction accuracies by Algorithm In wit
parameterl. (averaged over two folds of cross validation) for théasks, and subjects. Each
subplot of Fig. 9 shows three prediction accuracy curvegh(vaspect ta;) for L = 25, 50 and
75 respectively. Note that the prediction accuracy curvesifer 50 (black solid lines) are the
same as those in Fig. 4. By comparing these curves in eachosudfFig. 9, we can see that
the prediction results are not sensitive to the parameter

Next, we compare the sets of voxels selected by Algorithm th s parameterl. set as
L, = 25 and L, = 50 respectively. For théth task ¢ =1, - - -, 13), the jth subject { = 1,2, 3),
the kth run ¢ = 1,2), we calculate weight vectorsr;, ; ;. and wy,; ;. using Algorithm 1.
For a given numbeb, (b, = 1,2,4,---,400), we choose two sets of voxel’,, ;, (i, j, k) and
Ry, (i, j, k) from A (the initially selected00 voxels) usingwy, ; j, andwy, ; ; » respectively.
Furthermore, we calculate the numbgt, j, k, b,) of voxelse Ry, 4, (i, 7, k) N R, (i, 7, k) and
the ratioratio(i, j, k, b)) = q(”bil’“’l) Averagingratio(i, j, k, b;) across, j, k, we obtain the mean
of ratio(i, 7, k, b;) denoted as:(b;). Fig. 10 shows the curve of(b;) with b; (solid line).

For eachy; (b; = 1,2,4,---,400), we also randomly take two subsets/ot Denote the two
subsets as?;;, and Ry, each of which containg, voxels. We also calculate the ratigb,)
with which R, ;, and R, are overlapped. The curve ofp;) is shown as the dashed line in
Fig. 10.

From Fig. 10, we can see thatilif >~ 75, r(b;) > 70%. Furthermore, the ratio(b;) > 7(b;).
Therefore, the two voxel setB;, (i, 7, k) and Ry, ;, (7, j, k) determined by Algorithm 1 with
two constraint parameters; and L, respectively are overlapped to a high degree, i.e., most of
the voxels selected by Algorithm 1 with different paramgtérare the same. This is possibly

why the results obtained by Algorithm 1 are not sensitivd.to
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Appendix 2: Cross-validation method for setting the number of voxels for prediction of
tasks in fMRI data

In this section, we show a cross-validation method for gt in Algorithm 1, which
determines the number of voxels used to predict the taskst, For each subject and task,
the data set (including fMRI data and task data) of run 1 amd2ris equally divided into four
parts, each consisting of 250 time points. The first thretsae used for 3-fold cross-validation,
while the fourth part is used as an independent test daténsarte of the 3-fold cross-validation,
we use two parts for training, and predict the task of the peft. For each value aWV; (1 to
500, the number of selected voxels), a prediction accurédtigeovalidation feature is obtained.
After the 3-fold cross-validation is performed, three tliediction accuracy curves (with respect
to Ny) are obtained. An average prediction accuracy curve is tieained by taking the mean
of the three ones. Suppose that this average predictionmacaurve has maximum aty, i.e.
if Ny voxels are selected, the average prediction accuracy ismghémum.

Next, we use any two of the first three parts for training, abthim a weight vectomw. If
we rearrange the vectgw| (the absolute value vector) in descending order, and dehete
[lwi,], -+, [wigg, ||, thend = |w;,, |. We now predict the task of the independent test set using the
Ny voxels with weights{w;,, - - -, w;y, }. Three prediction accuracies are obtained using different
combinations of two parts for training, i.e. the three fotdd<ross validation. Similarly as above,
we also obtain an average prediction accuracy curve witheaso N (1 to 500) for the task
of this independent test set. Note that the valueMNgfis the point at which the average of
the prediction curves of the three folds is maximum. In eagbptot of Fig. 11, an average
prediction accuracy curve for the independent test setasegmted for one task of one subject
and the “*” represents the average prediction accuracyrohed byd. From this figure, we

can see that this cross-validation method for determinegparameteé is acceptable.
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Appendix 3: Robustness analysis

In this appendix, we analyze the robustness of Algorithm hdse. Consider the following

noisy model corresponding to (2),
min ||w||;, st., (A+V)w=y, (17)

whereV € RY*M is a noise matrix. The optimal solution of (17) is denotedvbpy. In this
paper,A andy are a data matrix and a transformed task function, thus wenas@ toA other
thany.

Denote allN x N dimensional submatrices & andV as AY) and V) respectively, where
j=1,---,CY. SinceA is a real data matrix, we can assume that all submatécésare full
of rank. In this case, it follows from linear programming o [18] that there is a submatrix

say AU0) such that the 1-norm solutiow; of (2) satisfies

w1 = (AU0))1y (18)
That is,
[(AY)) "ty [ly = min{|[(AD)My|l, 5 =1,---, Cir}. (19)
Note that
lim [|[(AY) 4+ V)l = [[(A) Myl j=1,--,Ch. (20)

[IV]|—0

It follows from (19) and (20) that whefjV || is sufficiently small,
I(AG 4 V) Ty ||y = mind[[(AD + VO) y[|1j =1, O}, (21)

That is, (AW + V0U0))~ly js the 1-norm solutionw, of (17) with sufficiently small noise.

Furthermore, sincev, is close tow; in (18), w, can be represented by
W, = W1 + AW’[}, (22)

where Aw, is a disturbance vector resulted by the noise ma¥ixIt follows from (20) that
Aw, is small if || V|| is sufficiently small.
In the following, we consider the following noisy model aesponding to the model (8) in
Algorithm 1,
min ||w]|1, s.t., (Ag+ Vi)W =y, (23)
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whereV, ¢ R/*M s a noise matrix. The optimal solution of (23) is denotedvby’. From
the above analysisy(*) can be represented by

wh = wh L Aw®), (24)

wherew®) is the solution of (8).

Thus the output of Algorithm 1 aftek iterations in noise case is

1) _ Lyg o L ag
=—=> w4+ =% Aw)". 25
W, = 2 ;W + 2 ; W, (25)
K .
When||V,|| (k =1, -, K) are sufficiently small;- >~ Aw{" is close to zero. This is because:
i=1

(i) [|AWD|| is small, their mean is still small; (ii) the mean of each grf Awl) is generally
zero. Thus we have

WQ()K) ~ w), (26)

w(&) is the output of Algorithm 1 aftef( iterations in noiseless case. That is, the weight vector
obtained by Algorithm 1 is robust to noise at least to someaakeg

Fig. 12 shows three pairs of (black) andw, obtained by Algorithm 1 in noiseless case and
40dB noise case respectively. When the noise is sufficientlglisiwe can see thaw, is close
to w.

Now we enlarge the additive noise in model (232t@B, data analysis results (see Figs. 13

and 14) show that the weight vector obtained by Algorithm 4tiié effective for voxel selection.

DRAFT



24

0.2 0.2 0.2
= 4 4 4
= 0.1 o.1 o.1
300 600 a1 300 600 a1 300 600
Iteration k

1

Fig. 1. Three iterative curves demonstrating the convergesf Algorithm 1 with parametel set to be25, 50 and 75
respectively, wherel(k) is the convergence index of Algorithm 1. The execution tirethe three cases afel7s, 426s and

768s respectively.
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Fig. 2. First row: Weights of voxels il obtained by Algorithm 1 for subject 1 and Instructions ta&8&gond row: Correlation
coefficients for the same subject and task, each is calculaing the time series of a voxel N and the transformed task

function. The two columns correspond to two runs (i.e. twmalddn cross-validation) respectively.
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Fig. 3. The iterative curves of correlation betwedw andy (Instructions task) for three subjects and run 1, each stbpl

corresponds to one subject.
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Fig. 4. Prediction accuracy curves obtained by two methimdsach subplot, red solid line: Alg. 1; black dotted line: IGiSPM
method. The four rows correspond to four tasks (Hits, Irsions, Faces, Velocity) respectively. In each subplog, akerage

prediction accuracy marked by “*" is determined Byas in Section II-A.
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Fig. 5. Two percentage curve$) showing the performance of two methods3i# cases (3 subjects and 13 tasks). Red solid
line with stars (top): Algorithm 1; dash-dotted line withmxarks: GLM-SPM.
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AVERAGE PREDICTION ACCURACY RATES OVER TWO FOLDS OBTAINED WITH ONE V®REL FOR THREE SUBJECTSFOUR

TASKS AND TWO METHODS THE ACCURACY RATES OBTAINED BY GLM-SPMMETHOD ARE IN BRACKETS

Sub 1

Sub 2

Sub 3

Hits

0.2656 (0.1308)

0.1819 (0.2143

0.2595 (0.1451)

Instructions

0.3227 (0.2233)

0.5518 (0.3620

0.5337 (0.1417 )

Faces

-0.0064 (-0.3193

0.0989 (0.1466

0.4368 (0.1033)

Velocity

0.2711 (0.0300)

0.1975 (0.0517

0.1489 (0.1432)
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Each subplot shows two prediction accuracy curves oddabyy Algorithm 1 in
noiseless case (red curve) a?8ddB noise case (black curve) respectively in Ap-

pendix 3. The four rows correspond to four tasks (Hits, ngtons, Faces, Velocity)

respectively. . . . . . L
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Fig. 6. Distribution of100 selected Voxels, of which0 voxels (highlighted in red) correspond to the fisét highest I\?v%'iAgFﬁrts

calculated by Algorithm 1, while the oth@&0 voxels (highlighted in green) correspond to the first highvedues oft-statistics
calculated by GLM-SPM method for task 2 (Instructions), Ruand Subject 3. If two voxels obtained by two methods are the

same, then it is highlighted in yellow. Slices are numbermednfinferior to the superior parts of the brain.
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Fig. 7. The first row: Two voxels of which the first one is setetty both Algorithm 1 and GLM-SPM method and the
second one is selected only by Algorithm 1. The t values inhbifaekets are obtained in the SPM detection. The second row:

fMRI signals corresponding to the two voxels respectively.
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A

Fig. 8. Distribution of100 selected Voxels, of which0 voxels (highlighted in red) correspond to the fisét highest I\?v%'iAgFﬁrts

calculated by Algorithm 1, while the oth@&0 voxels (highlighted in green) correspond to the first highvedues oft-statistics
calculated by GLM-SPM method for task 3 (Faces), Run 1 andeStB. If two voxels obtained by two methods are the same,

then it is highlighted in yellow. Slices are numbered frorfefior to the superior parts of the brain.
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Fig. 9. Three prediction accuracy curves obtained by Atbari1 with the numbers of constraints in (8) set to23e(red
solid line), 50 (black solid line) andr5 (black dashed line) respectively in Appendix 1. The four sawrrespond to four tasks

(Hits, Instructions, Faces, Velocity) respectively.
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Fig. 10. Ratio curves showing the degree that the two seleaizel sets are overlapped in Appendix 1. The sold lif@;)

obtained by Alg. 1; the dash-dotted ling(b;) obtained by randomly taking two sets of voxels.
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Subject 1 Subject 2 Subject 3
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Fig. 11. Average prediction accuracy curves for indepehtist set for three subjects and four tasks in Appendix 2 reviiee
four rows correspond to the four tasks (Hits, Instructidraces, Velocity) respectively. In each subplot, “*”: avgggrediction

accuracy determined b.
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Fig. 12. Each of the three subplots of the first row shows thighte/ectorsw (black) andw, (red) obtained by Algorithm 1
after 600 iterations in noiseless case and noise case respectivélppgandix 3, whereA andy are the same fMRI data matrix
and transformed task function as in Fig.+, corresponds tel0dB simulated zero mean Gaussian noise. Each of the three

subplots of the second row shows the emor w,. The three columns of this figure correspond to three paemsettings of

Algorithm 1: L = 25,50, 75 respectively.
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= i 4 i
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Iteration k

Fig. 13. Each subplot shows two iterative curves of Algarith obtained in noiseless case (black curve) 2hdB nose case
(red curve) in Appendix 3, wherA andy are the same fMRI data matrix and transformed task functioim &ig. 1. The three

subplots correspond to the three settie§s50 and 75 of the parameter. in Algorithm 1 respectively.
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Fig. 14. Each subplot shows two prediction accuracy cunaied by Algorithm 1 in noiseless case (red curve) a5dB
noise case (black curve) respectively in Appendix 3. The fows correspond to four tasks (Hits, Instructions, Fablefcity)

respectively.
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