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Abstract This article gives insights into the possible neuro-
nal processes involved in visual discrimination. We study the
performance of a spiking network of Integrate-and-Fire (IF)
neurons when performing a benchmark discrimination task.
The task we adopted consists of determining the direction of
moving dots in a noisy context using similar stimuli to those
in the experiments of Newsome and colleagues . We present a
neural model that performs the discrimination involved in this
task. By varying the synaptic parameters of the IF neurons,
we illustrate the counter-intuitive importance of the second-
order statistics (input noise) in improving the discrimination
accuracy of the model. We show that measuring the Firing
Rate (FR) over a population enables the model to discrim-
inate in realistic times, and even surprisingly significantly
increases its discrimination accuracy over the single neuron
case, despite the faster processing. We also show that increas-
ing the input noise increases the discrimination accuracy but
only at the expense of the speed at which we can read out the
FR.

1 Introduction

Discriminating between inputs is a basic task for the visual
system because it underlies recognition, decision, reasoning
and action. Experiments with random dot stimuli are classical
ways to carry out a discrimination task. In such experiments,
the task is to find the global direction of motion in a visual
display consisting of random dots, a certain percentage of
which are moving coherently in one direction or its oppo-
site. Thus the difficulty of the task depends on the number of
dots moving coherently. Newsome, Shadlen and Coworkers
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(1992, 1994, 1996, 2001) have experimented on this discrimi-
nation process in macaque monkeys since the macaque visual
system is one of the best understood and also currently one
of the best animal models we have for the human visual sys-
tem. The monkeys had to watch the random dots stimulus and
then make a deliberative eye movement towards one of two
targets that indicated the direction of motion in this display.
The experimenters studied the Firing Rates (FRs) of neurons
situated in the lateral intraparietal area (LIP) of the cortex,
and in the extrastriate visual cortex (areas MT and MST),
of monkeys that were performing the simple discrimination
task.

The FRs of the neurons in areas MT and MST accurately
follow the directional information of the display, and the ex-
pected performance of an ideal observer discriminating the
direction according to those FRs matches the psychologi-
cal performance of the monkeys. Furthermore, the FR of the
LIP neuron allows the experimenter to guess the action the
monkey will chose, even when the decision is in error. This
is characteristic of a motor control neuron, but the FR of the
LIP neuron, for a given decision, also depended on the ac-
tual global direction of the dots. These neurons are part of
the pathway between perception and decision, without being
pure sensory or motor neuron, they illustrate a typical senso-
rimotor decision process. Recently, a wealth of experimental
findings and model predictions suggest that what happens
here is a process of accumulation of evidence, whereby a
competition is induced between pools of neurons, and when
the difference of activity reaches a threshold, then the deci-
sion is taken. We have modelled a building block of this
more general decision-making system. We model neurons of
area MT that, solely influenced by the stimulus, provide the
evidence that informs the competition between the pools of
neurons in area LIP. This role of MT neurons has been experi-
mentally demonstrated by Parker and Newsome (1998),Brit-
tenetal. (1996), and Britten (2003). The discrimination accu-
racy of the MT neuron is a fundamental parameter for the
dynamics of the decision making based on the evidence they
provide. The time needed to read out the output of these neu-
rons is also a critical parameter for decision-making models.
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We have implemented a detailed model of the MT neu-
rons that provide the evidence for the decision making of
monkeys during a two choice discrimination task, and studied
how its performance varies with model parameters. We show
that increasing r, the ratio between inhibitory and excitatory
inputs to the neuron, significantly increases the discrimina-
tion accuracy of the model, although it also increases the
postsynaptic input noise, traditionally considered harmful.
Using an Integrate-and-Fire (IF) model, and modelling the
production of each action potential, enables us to study tim-
ing issues inherent in the overall decision-making process:
How long do we need to read out the FR of the model reli-
ably enough to reach an acceptable discrimination accuracy?

Hence, as well as measuring the FR of one single neuron,
we measured it over a population of neurons, which is much
more biologically plausible. It enables us to model discrimi-
nation within a realistic time scale, and is consistent with the
studies of Newsome and coworkers “Perceptual judgments of
motion direction are thought to depend on the pooled activ-
ity of at least 100 neurons” (Parker and Newsome 1998).
The population consists of identical neurons that have strictly
feedforward connections. Furthermore, we discovered that
the discrimination accuracy of the population model is sur-
prisingly better than that of the single neuron, even if we use
the same number of spikes to measure the FRs.

In Sect. 2, we describe the benchmark visual dicrimina-
tion task on which we apply our model. Then, in Sect. 3
we describe in detail the methods that we used: we explain
the assumptions made for the IF model, the structure of the
population of neurons, and the parameters that we control in
order to monitor the input noise. In Sect. 4, we present the
results and their interpretation, and in Sect. 5 we relate our
contribution to current research on visual decision making.

2 The discrimination task

The discrimination task is the one that is used as a benchmark
task for decision theory by many authors (e.g., Wang 2002;
Shadlen and Gold 2004) and that has been set up by New-
some and coworkers (e.g. 1996). In this set of experiments,
the monkeys had to watch a display of dots, a certain per-
centage of them moving consistently in one direction or its
opposite, and the rest of the dots appearing at random places
on the screen as a perturbing noisy context. Then they had to
signify, by an eye movement, which was the consistent direc-
tion. Within this framework, the task could be made more or
less difficult by modifying the percentage of coherently mov-
ing dots.

Since we focus on the discrimination accuracy of the IF
model, our connections are strictly feedforward and we do
not take into account past information. We model only one
key stage of the decision making, the discrimination of stim-
uli on which the accumulation of evidence is based.

We assume that the discriminating neuron receives p syn-
aptic input composed of an actual signal perturbed by a noise.
If a percentage n./p of dots moves coherently in one direc-
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Fig. 1 In article we use a schematic plot of the model. The multilayer
part represents the early visual cortex, from the retina to MT. Itis treated
as a “black box” that gives a preprocessed input to the represented dis-
criminating neurons of area MT

tion, the same percentage of the synapses will receive coher-
ent input. Furthermore, we assume that the spike trains arriv-
ing at those synapses are correlated. The rest of the p — n,
synapses will receive randomly distributed inputs. The syn-
aptic inputs are modelled as Poisson processes. This is a very
simple model of the input to MT neurons, but it has been
shown with experimental evidence that motion detectors in
area V1 and in area MT/MST are constituted of columns
of neurons as expressed in Tovée (1996), and models have
been proposed for this organization by Heeger et al. (1995);
Simoncelli and Heeger (1998).

The outputs of the discriminating neuron are spike trains
whose FRs are related to the input of the movement. In order
to evaluate the discrimination accuracy, an ideal observer
uses the following rule: if the FR is larger (or smaller) than a
criterion, it represents the decision that the dots move up (or
down). The criterion is determined statistically, after mea-
suring, over hundred trials, the two first movement of the
distribution of the FRs (One FR per trial). See the Appendix
for more details. Because of the noise in the stimulus, and
because of the synaptic input noise, this decision can be erro-
neous, for example, the FR can be bigger than the criterion
when the movement is downwards. Of course, the clearer the
stimulus, the more widely separated the efferent spike trains,
and thus the fewer errors the model makes.

3 The neuron model
3.1 The Integrate-and-Fire model

The discriminating neuron model used here is the classical
IF model, as used in Gerstner and Kistler (2002), Tuckwell
(1988) and Feng (2001). The dynamics of the membrane
potential below threshold are defined as follows:

dv = _L(V - Vrest>dt + dlsyn(t)
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where L is the decay coefficient and the synaptic input is

P q
Iyn() = a D Ei() =b > 1;(0) (3.1)
i=1 j=1

with E;(¢) and [;(¢) being Poisson process with rates A; g
and A; 7, a and b being the positive magnitudes of the EPSP
and IPSP, and p and ¢ the numbers of excitatory and inhibi-
tory synapses.

As seen in the previous subsection, we modelled each
neuron to have 100 synapses. Each synapses receives a Pois-
son process with a rate A; that is proportionally linked to the
direction of one of the 100 moving dots on the screen, and
normalized between 0 and 100Hz. For example, if one dot
moves rightwards, the rate of the Poisson input to the corre-
sponding synapse will be 0, if it moves downwards, the rate
will be 25 Hz, leftwards, 50 Hz and if the dot moves upwards,
the rate of the Poisson process to the corresponding synapse
will be 75Hz. So for n, dots that move coherently, n. syn-
apses receive coherent inputs, namely A = 25 H z for adown-
wards movement, and & = 75 H z for an upwards movement.
Of course, one neuron in area MT has many more synapses
than 100, and more than one synapse receives information
concerning one moving dot. However the IF model that we
use enables us to group together synapses that receive similar
input and consider them as one. The n, synapses that receive
coherent inputs are correlated by a constant c, that reflects
the correlation of activity of different synapses as studied in
Feng (2001) and Zohary et al. (1994).

The main parameter that we study is the ratio between
inhibitory and excitatory synaptic inputs, we call this ratio
rior = %, from Eq. (3.1). Then we simplify the equation by
changing the notation and letting A; ; = r; g, and p = q.
This simplification is justified by the fact that the summation
of two Poisson processes with a rate m1 and m2, respec-
tively, will be a Poisson process with a rate m1 4+ m2. So,
the summation of ¢ = p Poisson processes with rate rA; g
will be a Poisson process with a rate pra; g. This quantity
of inhibitory postsynaptic input is exactly the same as the
one we would obtain with the original notation. This simpli-
fication is commonly used, e.g. by Feng (2003). Then, using
the diffusion approximation, as is common in the literature
(Tuckwell 1988; Ricciardi and Sato 1990) and assuming that
a = b, we reach the simplified following description of the
dynamics of our discriminating neuron:

Vdr
dV = ——— 4 pdt + No~/dt
14

where:

P
p=ay (I—rhi;
j=1

14 ne
o =a? Z(1+r)xj+ Z c(141)/Aikj
Jj=1 i.j=Lli#j
with V being the membrane potential. In our studies:

— The ratio between inhibitory inputs and excitatory inputs:
r is variable.

— The number of synapses (corresponding to the number of
dots in an experiment): p = 100.

— A(j) is the rate of the Poisson process incoming to the
jth synapse. It is proportional direction of the jth dot.
0Hz < X < 100 Hz, the coherent signals being A =
25HzorA=T75Hz.

— The time decay parameter: y = 20 ms.

— The time step for the integration: df = 0.01 ms.

— Njpikes is the number of output spikes that we use to mea-
sure the FR.

— The correlation coefficient between coherent motion: ¢ =
0.1.

— The number of coherent inputs: n. < p is variable.
Coherent inputs are dots that move consistently in one
direction.

— The resting membrane potential: V,.5; = 0mV.

— The threshold membrane potential: Vi eshoiq = 20mV.

— N is anormally distributed random variable (mean 0, var-
iance 1); in the formal IF model, N\ \/E is the standard
Brownian motion.

3.2 The ratio between inhibitory and excitatory inputs (r)
augments the input noise

We can interpret the equation of the dynamics of the mem-
brane potential of the IF model (3.1) as aleaky neuron (— VTd’)
whose synapses receive a Poisson input of rate  (4+udt), per-
turbed by a synaptic stochastic noise ( N'o+/dr). In effect,
N is a normally distributed random variable. Since this sto-
chastic perturbation is proportional to (1 + r) and the mean
is proportional to to (1 — r), the stochastic effect of the syn-
apses must increase with r. We have measured this input
noise increase within the model, and presented the results in
the curves represented in Fig. 2.

As explained in Feng (2001), an increase in the coeffi-
cient of variability in the input will increase the coefficient
of variability of the efferent spike train of the neuron. This
increased variability affects the width of the histograms that
represent a set of measures of the output FR. Thus, intuitively,
it should be more difficult to discriminate between two inputs
from their efferent FRs. However, detailed investigations of
the spiking cells have shown that the temporal jitter of the
output spike is linked to the temporal jitter of the input syn-
apses by the following equation: o,,; = koj,, with k < 1
(Koch 1999). That means that the variability of the input
is significantly reduced by the neuronal computation. What
is more is that Feng and his colleagues (Feng et al. 2003)
have formally proved that the discrimination is easier when
the coherent inputs (those upon which we discriminate) are
correlated. In this article, we use a correlation coefficient of
¢ = 0.1 for synapses that receive the coherent input. This is
justified by the organization of area MT: Neurons detecting
the same direction will be grouped together, as shown by Liu
and Newsome (2003). This means that they will fire together
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Fig. 2 In (a) we show the noise to signal ratio (%, in the model) of the postsynaptic input to the neuron as a function of r. This ratio, that measures
the importance of the second-order statistics in the synaptic input, increases dramatically when we increase the number of inhibitory synapses (i.e.
r), and with synaptic correlation. The data was generated, for each value of r, by generating the stimulus 100 times, measuring the parameters o
and p of the postsynaptic input, and taking the mean value of ( % over these 100 repetitions. On curves (b) and (c¢), however, we see that the CV
of the neuron’s output is hardly affected by the synaptic correlation, only by r. Curve (B) shows the CV, that is, dispersion, of the FR(variance
divided by mean of the sample of FRs measured on 100 experiments), with and without synaptic correlation (¢ = 0 or ¢=0.1). To measure the
FR, we measured the time to 100 spikes, reversed it and normalized it. The curves are exponential fits with two parameters. The standard errors
of the regression (root mean squared errors of the fits) are, respectively, RMSE = 0.022 (¢ = 0) and RMSE = 0.014 (¢ = 0.1). Curve (c¢) shows
the CV of the Inter-Spike Interval over the hundred spikes used to measure the FR, with and without synaptic correlation (¢ = 0 or ¢=0.1).The
curves are quadratic fits. The standard errors of the regression (root mean squared errors of the fits) are, respectively, RMSE = 0.012 (¢ = 0) and
RMSE = 0.009 (¢ = 0.1).

as explained, for example, in Sheth et al. (1996). Further-
more, it has been shown (Zohary et al. 1994) that in area V5
of the visual cortex of the monkeys, the level of correlation is
0.1 and, although it is weak, has a significant impact on the
global behavior.

3.3 Population coding
It has been shown by Feng et al. (2003) that measuring the FR

over only ten spikes significantly reduces the discrimination
accuracy of the neuronal system. However, especially in the

case of a ratio r close to one, the FR becomes very small,
because the generation of a spike becomes an exceptional
event, entirely dependent on the random variable A/. This
leads to unrealistic processing times, thus the FR approach
is said to be much too slow and consequently, many people
argue that it cannot be what is really used in the brain. Wait-
ing for one neuron to emit a hundred spikes before taking a
visual decision would indeed require unrealistic processing
time, since we know that the visual system processes even
complex information very fast, as argued, for example, in
VanRullen and Thorpe (2000). They show that even for dis-
criminating between very high-level categories of objects,
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“we only have time for one spike per neuron,” which leads
them to reject the FR approach (VanRullen and Thorpe 2001).

In order to overcome this daunting flaw, instead of dis-
criminating with the measured FR of one neuron (Feng and
Liu 2002; Feng et al. 2003), we can discriminate with the
measured FR of a population of neurons. The basic advan-
tage is that each neuron only needs to fire a few spikes, which
allows us to work with biologically realistic times. We can
choose to measure this FR within a time window, and take into
account only the spikes produced before 100 ms, for exam-
ple, or we can decide to measure the FR on the first hundred
or thousand spikes. The longer (or the more spikes), the more
reliable the statistics are.

The population of neurons is organized very simply. We
simulate a number n of strictly feedforward neurons (100,
in this article), that is, they are not-laterally connected and
there is no feedback. They are all the same as the neuron that
we describe in 3.1, they all receive the same input. In order
to measure the FR of the population, we measure the time ¢
needed for the population to emit a number s of spikes (typ-
ically 100, in this article) and we divide this number s by n
andt: FR = -2

nxt

4 Results
4.1 Input noise improves discrimination accuracy

We use the total probability of misclassification (TPM) as a
measure of the performance of the system. The TPM is the
number of errors divided by the total number of trials, and
in fact corresponds to the degree of overlapping between the
distributions of the outputs of the system over 100 trials, for
each type of stimulus. We explain in greater detail, in the
Appendix, how we calculate it.

We performed simulations of the discrimination task with
one neuron, measuring the FR with its first hundred spikes.
Measuring the FR over the first hundred spikes allows us
not only to measure the discriminative performance of the
neuron, but also to compare the time needed to compute the
FR with the time of the population, as seen in the following
subsection. We carried out experiments to measure the per-
formance on the whole range of ratios between inhibitory and
excitatory input, fromr = Otor ~ 1, along the range of input
coherence, from 0% of the dots moving coherently to 60%.
(For larger coherences, the TPM is too small to be compared
between the various ratios). When the correlation coefficient
is ¢ = 0.1 and the ratio r between inhibitory and excitatory
inputs increases, the postsynaptic input noise increases, as
seen in Sect. 3.2, but the discrimination improves. Figure 3
illustrates this result and its reasons: in the histogram rep-
resentations of the efferent FRs for a simple discrimination
task, the first-order difference (mean) decreases less than the
second-order difference (width) between the two histograms.
When the ratio r goes from r = 0.98 to r = 0.7, we mea-
sured that, whilst the difference between the mean FR of the
outputs corresponding to upwards and downwards stimuli
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Fig. 3 Illustration of the improvement of the discrimination accuracy
with r. Each histogram is a graphical representation of the distribution
of the efferent FRs over a hundred repeats of the same experiment.
From left to right: r = 0.98, downward; r = 0.98, upward; r = 0.7,
downward; r = 0.7, upward. The coherence of the kinematogram was
15. We see that the difference between the means of two histograms
decreases much less than the width of each histogram, when r increases.
Whilst the difference between the means of upwards and downwards
input is approximately halved (% = 1.9), the difference between

the width of the histograms is almost divided by 3: in the downwards
0.7

case, ( gr;}g,;h = 3.02). That leads to the separability of the output (the

histograr“ﬁds‘hdo not overlap) when r = 0.98, whilst the responses are not
separable (histograms do overlap) when r = (.7. This performance
improvement is quantified by measuring the total probability of mis-
classification (TPM): TPM, —g.93 = 0.01 whilst TPM,_g7 = 0.02

0.7
is approximately doubled (ggf%%“

= 1.92), the width of the
histograms is almost multiplinéeczlmby a factor 3 (In the down-

Do7 L .
wards case, Dgg’gh = 3.02). This visual results translates into
width
the quantitative measure of the TPM: TPM,_gog3 = 0.01

whilst TPM, —o 7 = 0.02. Each histogram represents the dis-
tribution of the FRs of the neurons for a hundred experi-
ments repeated with the same stimulus direction. Note that
the mean value of the FR for simulation (corresponding to
each histogram) has little information relevance for the dis-
crimination task, as it is just an offset, and the first effect
of adding inhibitory inputs is just a reduction in this FR. As
we intuitively guess, inhibitory inputs will reduce the rate
of the incoming signal, thus reduce the output FR (except in
some extremal cases, as described in Feng and Wei 2001).
What is important for discrimination is to have a large gap
between the means relative to the width of each histogram.
This is illustrated in Fig. 3. With r = 1, the efferent FR
depends solely on the synaptic noise. Because of the corre-
lation between synapses, the strength of this synaptic input
noise (o) is more dependent on the coherent stimuli than
the deterministic input drive (x). Furthermore, the stronger
the input noise, the larger the efferent FR (This is a conse-
quence of the diffusion process that governs the dynamics
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Fig. 4 Three curves that represent the error measured by TPM as a
function of r, for three coherence values, 15% (dot symbols), 20% (star
symbols), 25% (plus symbols). Each single symbol represents one mea-
sure of the TPM for the corresponding parameters (ratio and coherence)
(see Appendix for more details on how we calculate it). The curves are
exponential fits of the data points, with four parameters. The standard
errors of the regression (root mean squared errors of the fits) are respec-
tively RMSE = 0.02, RMSE = 0.019 and RMSE = 0.013. We see
that the TPM drops significantly for ratios close to 1, r >= 0.9. We
also see that it is naturally easier to discriminate when the input is more
coherent
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Fig. 5 Illustration of the decrease of TPM with increasing coherence,
and the influence of the ratio, r, on this decrease. The curves were
obtained by measuring the TPM, as explained in the Appendix, for
each value of the ratio r and of the coherence. This TPM is represented
by the symbols, and the curves join the data points with interpolated
straight lines

of the membrane potential). Consequently, the discrimina-
tion power of the neuron is increased by the increase of r.
Theoretically, we can understand this when we know that
adding inhibitory input to a leaky IF cell “has a subtractive
rather than a divisive effect on FRs” (Koch 1999): Plotting
the curves of efferent FR as a function of the input rate, the

adding of inhibitory input shifts the curves to the right with
very little effect on the slopes. This means that the relative
distance between the FR generated by two different stimuli
is preserved, even if the overall output mean and variance is
reduced, which is exactly what is needed in order to improve
the discrimination accuracy, and is illustrated in Fig. 3.

These results confirm that the task is obviously easier
when more dots move coherently, and confirm the counter-
intuitive result that increasing the noise to signal ratio of the
postsynaptic input, by increasing r, increases the discrimina-
tion accuracy of the neuron. Feng and Liu (2002) and Feng
et al. (2003) have analytically proved the simple fact that for
r = 1 the discrimination is better than for r = 0. Here we
have a more detailed description of how the probability of
error of the single neuron is not monotonically decreasing,
but reaches a peak around a ratio equal to 0.7, as we can see
in Fig. 4. We also show the importance of the separability of
the input to the discrimination performance in Fig. 5.

4.2 The population firing rate is more accurate

We compared the performance of the two models, the single
neuron and the population one, over the range of ratios and
coherence. We see, in Figs. 6 and 7, that the discrimination
of the population code is much more accurate than that of the
single neuron’s FR, for the same number of spikes.

The better performance of the population can be explained
as follows: the efferent FR of the population is not exactly
the same as that of a single neuron because the assumption of
ergodicity does not hold. In the population approach, we use
the first hundred spikes of a hundred neurons to measure the
FR, which means that we use on average one spike per neuron,
long Inter-Spike Interval (ISIs) are unlikely to be produced.
On average, the population will produce a hundred spikes be-
fore one neuron has generated a spike with an ISI longer than
twice the mean ISI. Thus, across all the experiments, we will
not obtain exceptionally low FRs, which are generated by
exceptionally long ISIs in the corresponding efferent spike
train. That means that the distribution of FRs, represented as
an histogram, such as in Fig. 3 or Fig. 11, has its left part cut.
Consequently, the histograms overlap less, which ultimately
means that the TPM is lower (see the Appendix for more de-
tails on the TPM). Graphically, it means that the output FR
histograms are better separated than what we see in Fig. 3,
and consequently the discrimination accuracy of the model
is increased.

4.3 Time considerations
4.3.1 Time to hundred spikes

In this part, we want to compare the time it takes for the model
to generate 100 spikes, which is a number that enables us to
reliably estimate the FR. This approach enables us to com-
pare the two approaches with an objective criterion. Figure 8
shows us the main improvement of using a population code:
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Fig. 6 The coherence of the stimulus was 15%. The continuous line rep-
resents the TPM versus r, for a population of a hundred neurons, using
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setup, but measuring the FR from one neuron. Both of them are exponen-
tial fitting with four parameters of the data represented with dots (sin-
gle neuron) and szars (population).The standard errors of the regression
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and RMSE = 0.019. The results obtained from the population of neu-
rons are clearly better, almost one order of magnitude, when r is close
to 1
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Fig. 7 Comparison of the discrimination performance with a single
neuron and a hundred neurons using the FR measured on the first hun-
dred spikes. The results are presented for two different values of r.
The curves were obtained by measuring the TPM, as explained in the
Appendix, for each value of the ratio  and of the coherence. This TPM
is represented by the symbols, and the curves join the data points with
interpolated straight lines. It is striking that the single neuron is much
less accurate

it is much quicker. In this figure, we see a dramatic increase
of the time when r tends to one. This is related to the fact
that, with perfectly balanced inputs, there is no determinis-
tic synaptic input. The only post-synaptic input is created
by synaptic noise, which means that reaching the threshold
potential to generate a spike is exceptional.

The time to hundred spikes decreases with the coherence
of the stimuli: the more dots move coherently, the larger the
FR. This is due to the correlated synapses: if more dots move
coherently, the positive correlation of the coherent synapses
will lead to a generally larger input noise.

Obviously, the population code is a much faster code:
in the case of an almost balanced ratio r, the single neu-
ron needs around ten seconds to generate a hundred spikes,
for coherence values typically between 10 and 20%. Further-
more, the time to hundred spikes of the population code, with
a ratio r close to 1, only goes up to the order of one second
with a hundred neurons, and 100ms with a thousand neu-
rons, without any loss of accuracy. With the increase of the
population size, the time to generate a hundred spikes signifi-
cantly decreases. Using the first hundred spikes of a thousand
neurons, we would use 0.1 spike per neuron, on average.

4.3.2 TPM as a function of the size of the time window:
A trade-off between accuracy and time

We know that, for most of the biological systems the absolute
performance must take into account not only the accuracy at
realizing the task, but also the time spent to achieve it (see, e.g.
Ratcliff et al. 1999 or Usher and McClelland 2001). Hence,
processing time is an important criterion for comparing the
various models. Thus, to put the TPM in perspective, we have
to measure the evolution of the quantity of errors with the size
of the time window during which we collect spikes.

We can see, in Fig. 9, the performance of the model for
various values of r, as a function of the time, within a one
second time window. It shows clearly that we reach much
better results with r & 1 than for »r = 0, but that we reach
acceptable performances much faster with » =~ 0. Bearing in
mind that significantly increasing the size of the population
would allow us to reach such results in a significantly shorter
time, these high performances seem relevant to the natural
time constraints.

4.3.3 Time to a good discrimination

Because of the Gaussian approximation of the distribution
of the efferent FR over 100 repeats, the TPM will never be
exactly zero. However, we can consider that a good discrimi-
nation performance is attained when TPM = 0.1, and that an
acceptable discrimination performance is reached for TPM =
0.2. As seen in the previous subsection, the TPM of the model
depends on the size of the time windows during which we
collect the spikes to accurately evaluate the FR of population.
This is a typical case of speed-accuracy trade-off.

We have measured 7' P M, (t), as in Fig. 9, for the whole
range of ratios, and evaluated #, such that 7 P M, (¢,) = 0.1
or 0.2, respectively. We have performed this analysis for a
coherence equal to 15%. Then we have fitted these data points
with an exponential model with four parameters. The data
clearly has an exponential behavior, and we had to use four
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Fig. 9 Comparison of the evolution of the TPM with the size of the time window, for r = 0.98, r = 0.95, r = 0.6 and r = 0. a Zoom on the
behavior for shorter time windows (1 < 250 ms). These curves show that the TPM decreases much faster with the time when r is low. The curves
are exponential fits to the data with 4 parameters. The root mean squared errors of the fits are, respectively, RMSE = 0.052, RMSE = 0.044,
RMSE = 0.018 and RMSE = 0.022. b Comparison of the evolution of the TPM for long-time windows, reaching to one second, for r = 0.98,
r = 0.95,r = 0.6 and r = 0. The data points are obtained by measuring the TPM, as explained in the Appendix. We see that for longer time
windows, the “slower” strategy that consists in using r &~ 1 outperforms the fast, small ratio approaches

parameters to obtain satisfactory standard errors between the
exponential fit and the data. Thus we obtained numerical
evaluations of the time to a good TPM (TPM = 0.1) as a
function of r (T (r)), and of the time to an acceptable TPM
(TPM = 0.2) as a function of r (T5(r)):

Ti(r) =a x e 4 ¢ x ")

D(r) = f x &) +h x e*n)

where a = 27.94, b = 0.6279, ¢ = 1.903¢ — 008, d = 23.8,
f = 3.349¢ 4 006, g = 6.936, h = —3.349¢ + 006, k =
6.936.

We can see an illustration of T (r) and 7>(r) in Fig. 10.
Figure 10 also shows the data points that were used to eval-
uate the fitting.

5 Discussion
5.1 Summary of the results

As a first result, we have shown that the discrimination per-
formance increases with the ratio r between inhibitory and
excitatory inputs, given that we use the same number of spikes
to measure the efferent FR. This is counter-intuitive because,
on the other hand, r increases the post-synaptic input noise.

We obtained the surprising result that the population code,
without lateral connections is more accurate than the single
neuron when we use the same the number of spikes to evalu-
ate the FR. Leaving aside any time considerations, measuring
the FR on the first hundred spikes of the population enables
much more accurate discriminations than measuring the FR
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Fig. 10 Illustration of the numerical estimation of the time to reach an
acceptable discrimination performance. The coherence of the input is
15%. The data was obtained using the evaluations of the function rep-
resenting TPM versus time. For each value of r we found ¢ such that
TPM(t) = 0.1 or TPM(¢) = 0.2. The curves are exponential fits to the
data with four parameters. The root mean squared errors of the fits are
RMSE = 28.74 (TPM = 0.1) and RMSE = 6.602 (TPM = 0.2)

on the first hundred spikes of one neuron. This is due to the
fact that we rule out the long ISIs.

Although increasing the ratio r increases the performance,
it also increases the processing time significantly. The study
of the discrimination performance as a function of the time
window during which we collect spikes shows that the proba-
bility of misclassification decreases much faster for the smaller
ratios. We numerically evaluated an expression of the time
needed to reach an acceptable TPM as a function of the
ratio.

Furthermore, we have seen that only ratios close to one
can reach a level of performance unreachable by the FR of a
population with exclusively excitatory synapses. These very
high performances are reached at the cost of a very long dis-
crimination process.

5.2 Comparison with other work

Experimental evidence for our model predictions Romo et
al. (2003) show that positive correlation is not always harm-
ful to discrimination accuracy, as it can successfully remove
the noise from the input. In their article, they show that this
happen when pools of sensory neurons have opposite slopes
characterizing their activity versus intensity of stimulus func-
tions.

Their research experimentally confirms what our model
predicts with numerical simulation. In our model, increas-
ing the intensity of the inhibition (i.e. the ratio r) increases
the discrimination accuracy when the correlation is positive
(here, ¢ = 0.1), but is useless if ¢ = 0 (unpublished sim-
ulation results). The activity (FR) of the inhibitory input is

modelled to be the same as the activity (FR) of the excitatory
input, but with the opposite effect on the synapse: thus the
post-synaptic effect is opposite. When the postsynaptic input
contributions are plotted against the coherence, the inhibi-
tory and excitatory contributions have opposite slopes, and
are positively correlated. In both their research and ours, this
leads to an improved discrimination accuracy. These situa-
tions are particular cases of noise substraction by negative
correlation. This phenomenon has been neglected but is now
being studied by Durrant et al. (2005).

Building block of larger decision models Our model is con-
sistent with larger models that simulate decision processes.
For example, in the work of Wang (2002), decision is mod-
elled by arecurrent network with an inhibitory feedback loop.
This neural network, after a few time steps, diverges to the
decision of the system. In the work of Rao (2004) the deci-
sion is made by a Bayesian network. Both of these models
are consistent with the idea of the accumulation of evidence,
as a decision variable that triggers the expression of a deci-
sion when a threshold is reached. This more general idea has
been studied by Gold and Shadlen (2003) and Shadlen and
Gold (2004). More precisely, Gold and Shadlen (2003) pro-
pose a model for how a decision variable, such as the ones we
can find in area LIP, accumulate motion information that is
represented in area MT and MST. Our model gives detailed
insights into how the very general motion information repre-
sented in MT or MST can be coded by IF neurons into a signal
that enables discrimination relevant to the task. Experimental
results (Ditterich et al. 2003) as well as psychological work
(Ratcliff and Rouder 1998) support this idea. This decision
process can be made faster or slower, according to the param-
eters of the network. In particular, Ratcliff proposes that the
speed of the accumulation variable, the “drift rate” varies with
the difficulty of stimuli, and varies as well with various trials
of the same difficulty. This drift rate variation is used to ex-
plain the variations of the reaction time (RT) and the accuracy
of the decision. It is straightforward to imagine how the drift
rate depends on the information given by our model: it will
be lower if the TPM is high, because the FR that would gen-
erate errors would have a negative effect on the accumulation
process.

Speed-accuracy trade-off Our model enables better discrim-
ination at the cost of longer processing times. This trade-off
between accuracy and speed of processing is a typical pattern
of decision making. The time needed to reach an efferent
spike train that reflects a reasonable decision goes from a few
dozen of milliseconds to hundred of milliseconds. This large
discrepancy is consistent with experimental results studied
by Shadlen and Gold (2004), where they show that the RT
of a monkey, in this precise discrimination task, can go up to
800 ms, according to the required reliability and to the diffi-
culty of the task. Of course we only model one neuronal layer,
hence we cannot precisely compare our results to the RT, but
the magnitude is similar. Furthermore, the RT depends on the
speed at which the evidence is expressed.
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5.3 Future work

The methods used here to interpret the efferent spike train by
comparing the FR to a decision boundary line is not a likely
brain process and has yet to be modelled, to have a plausible
model of overall decision making.

Our model is “static” in so far as it does not depend on the
past, and it models only one stage of the perceptual decision.
Even though the visual process does not necessarily occur in
continuous time (explained in VanRullen and Koch 2003), we
need to devise a model that keeps past information to accu-
mulate. This accumulation of evidence can be implemented
by alarger dynamical model of competing units, whose diver-
gence indicates the decision. The instantaneous evidence pro-
vided by our MT model can be what is accumulated by such
a models. Such larger dynamical models have already been
presented by Lee et al. (1999) and by Wang (2002), and these
fit the biological data well as seen in Heekeren et al. (2004),
Sugrue et al. (2005), and Rorie and Newsome (2005). We too
are studying the dynamics of decisions made by competing
pools of IF neurons, but with a special emphasis on the role of
second-order statistics such as the variance of the low-level
background activity of the brain. The stimulus related evi-
dence is provided by a slightly adapted version of the model
that we present in this article. If we increase the viewing time,
the discrimination neurons that we modelled here provide a
FR that varies with time and that is used as evidence in the
decision making. This is beyond the scope of this article but
is the object of current work (Gaillard et al. 2005).

In order to have a realistic input from the primary visual
cortex that projects to the MT discriminating neurons of our
model, we can incorporate models presented by Heeger et
al. (1995) and Simoncelli and Heeger (1998) for velocity
encoding. Their model justifies the fact that the synapses
that receive coherent movements are correlated: movement
detectors are grouped in columns, thus the neurons detecting
the upward movement are close to each other, thus they will
probably send correlated signals.

5.4 Conclusion

Even if our model is still far from realistically simulating the
biological process, it is a good tool to study the effects of vari-
ous neuronal parameters on psychophysical performance. As
pointed out by Feng and his colleagues (Feng et al. 2003),
the improvement with the ratio between inhibitory and excit-
atory inputs is independent of the set of parameter values,
thus it is transposable to different neuronal processes. As
discussed, the model is consistent with several biologically
related models and with biological data. Thus, it is a very
good basis for building for a more general decision-making
model that can be related to biophysical measures such as
error rates or RT. That is the direction of our future research.
Furthermore, it could be a good source of inspiration for
experimental biologists to make hypotheses on the dynamics
and numbers of real neurons involved in the discrimination to
decision pathways, which are fundamental to any purposeful
activity.

Appendix: measuring the performance: the total proba-
bility of misclassification (TPM)

Firing rate distribution During the experiments, we pres-
ent the same setup to the discrimination model one hundred
times: a certain percentage of dots move downward (or up-
ward), and the rest is a random perturbation. Each time, we
measure the FR of the model. Then, we do the same for
the opposite motion, with the same coherence. For each new
display, the random perturbation is recreated. So we obtain
two distributions of FR, that are obviously not determinis-
tic because of the variation in the stimuli (randomly created
perturbation), and because of the synaptic noise. We know
that the output of an IF neuron has distribution statistics of
a renewal process, its rate being the FR. The FR distribu-
tions can then, according to the renewal theorem (Feller 1971;
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Tuckwell 1988), be modelled as a Gaussian distribution:

_ (x—p)?

Gx) = exp 2°

1
2wo?
where o2 is the variance of the sample of FRs and s its mean.
The absolute value of the term that multiplies the exponential
to determine the size of the area under the Gaussian can be
an arbitrary constant, since we calculate the probability of
misclassification as a fraction. This is illustrated in the shape

of the histogram of the distribution of the output FR, as in
Fig. 11.

Discrimination boundary Given the moving dot input, the
model gives us a FR from which we are able to tell the direc-
tion of the motion. The criterion here will be the compar-
ison of this FR to a value, the “discrimination boundary”.
If the FR is greater than this value, then the movement is
upwards, otherwise downwards. This boundary value is the
point where the two Gaussian curves, which model the up-
wards and downwards motion distributions of FR, overlap.
This is illustrated in Fig. 11, and its value can be formally
determined.

Total probability of misclassification (TPM) The TPM is the
number of misclassifications divided by the total number of
classifications. Using the Gaussian model for the output FR,
these numbers will be the areas under the curves. If we clas-
sify an upward pattern of input as downward, it means that the
FR is smaller than the boundary value, even if it has been gen-
erated by an upwards motion . This is the area of right-hand
Gaussian that falls on the left of the boundary. Consequently,
the number of errors will be the area under the right-hand
Gaussian on the left of the boundary, plus the area under
the left-hand Gaussian on the right of the boundary. The total
number of classifications is given by the sum of the two areas
under the whole right-hand and left-hand Gaussian curves.

P o Gup(¥)dx + [ Gaoun (x)dx
L% Gup(®) + G gown (x)dx

where B is the abscissa of the boundary line, Gyp and Gdown
are respectively the Gaussian functions that model the up-
ward and downward movements.

TPM =
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