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Training Spiking Neuronal Networks With
Applications in Engineering Tasks

Abstract— Spiking neuronal models employing means, vari- to synaptic weight modification. Indeed many of the learning
ances and correlations for computation are introduced. We ryles, developed for use on spike-time dependent mode]s [13
present two approaches in the design of spiking neuronal net- ray oy Hebbian correlation as the principal means for siinap

works, both of which are applied to engineering tasks. In explor- . -
ing the input-output relationship of integrate-and-fire neurons weight modification. However, as Bohte et al. have shown,

with Poisson inputs, we are able to define mathematically robust With their backpropagation learning rule, Hebbian leagnin
learning rules which can be applied to multi-layer and time series need not be the only approach to training IF neurons for use
networks. We show through experimental applications that it is  within engineering.
possible to train spike-rate n_etworks on function approximation In [26] a single biologically plausible spike-rate modeeds
problems and on the dynamic task of robot arm control. . . . .

a mathematically derived backpropagation learning rube, t

Index Terms— Integrate-and-fire, Mean ISI, Variance, Kemel, spolve a non-linear tractable task. Like Bohte et al. in [3],
Robot Arm. the learning rule was based on error regression. Howeer, th

neuron model used in [26] represented the IF model in terms
|. INTRODUCTION of its firing rate. Defining the model in these terms, provided

N recent years, there has been significant growth in the figldelationship between the synaptic input of a neuron, aed th

of biological computation. In this time, a closer unificatio firing rate output of the model. The spike-rate model as pre-
between neuroscience and artificially intelligent comparteal sented in [26], provided both first and second order steikti
models, has been observed. As a result, computational Ineuegresentation of the synaptic input. As such, computation
models exist, owing more to their biological counterpartisiformation is shown to be present in both the mean and
than previous classical artificially intelligent modeloltdge variance of synaptic input. When plotting the spiking rate
threshold models such as integrate-and-fire (IF) model, [1Hutput of the model against its synaptic input, [26] preserat
[22], [29]-[31], and the more biophysical Hodgkin-Huxleyseries of firing rate output profiles, kernel-like in natu@me
(HH) model [16], [21], all incorporate more of the dynamic®f the main observation about this model is that its output
of actual biological neurons than the traditional cladsicéiring rate appears to owe more to radial basis function (RBF)
approach to neural modelling; such as the perceptron [25].model than its classical predecessor: the perceptron.

In trying to understand the computational properties of the As a unit of computation though, the single spike-rate model
brain it is necessary to understand the biophysical meshmami has advantages over some classical models with the inolusio
involved in the process. Defining these mechanisms witti both the mean firing rate and the variance of the firing rate.
computational models allows us to further explore some ®fith many classical models, like the perceptron, if there is
the complex and adaptive processes which may be employadequal balance of excitatory and inhibitory inputs, theame
by biological neural systems. effect on the model is zero. With the spike-rate model, this

As such, we have seen the field odmputational neuro- is not the case. The spike-rate model includes both first and
sciencegrow considerably in recent years. A result of thisecond order statistics: the mean and variance. Indeed@sit w
is the emergence of a variety of engineering applicatiorshown in [9], [26], that even when the mean input vanishes, th
and learning rules, which now employ biologically plausiblmodel and the learning rule still function due to the symapti
computational models. Indeed, we have seen many succesgéulance. As such, the spike-rate neuron is a computing mode
applications within the fields of human arm movement [19pf both the mean and variance. The output surface planes for
computer vision [4] and speech recognition [23], [32], tthis model have been shown to be controllable by synaptic
name just a few. In considering the application of biolotljca modification through the use of the derived learning rulg.[26
plausible neural models we need to consider which type of The spike-rate model therefore, has potential engineering
model to use, and how best to address the issue of trainingpplications which we will introduce as part of this papdreT

Many of the engineering applications which have applieadvantages of using second order statistics over the c#ssi
biophysical models, have used the IF model as the mapproach, which mainly use first order statistics, have been
computational unit. In using this model, it is often the temgd known in literature for many years. In [11] for example, Feng
sensitivity of the neuron which is exploited within compuand Tuckwell introduced an optimal control task based upon
tation, i.e. the time interval between successive spikes. the control of second order statistics, the variance, which
fact Bohte et al. [3], used this principal to develop emor presented some interesting properties.
regressioriearning rule to train a network of IF neurons. It is Introducing second order statistics in computations is
worth noting at this point, that the rule developed by Bohte ¢hough, a minimal requirement if we intend to implement
al. in [3] is one of the few learning rules, applied to spikingtochastic computations; an example being the Bayesian ap-
networks, which is not based on a Hebbian [15] approagnoach. Hence the framework we present here opens up the
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possibility of carrying out a random computation in neudonaynaptic input

networks. n m
The computational power of spiking neuronal networks have Toyn(t) = Z wiE;(t) — Z whI;(t) 2)
alreadly been explored in the liquid state machine [23] and j=1 j=1

the echo state machine [18]. In their work, the computationa

performance was achieved due to the high-dimensionalq:}rojy%re Ej(t)land L;(t) are renewal processes for> 0; and

tion of the low dimensional input space (a kernel property}i; > 0 wi; > 0 are the magnitudes of the EPSP and IPSP
However, in the approach we present here, though we emprg)§pect|vely. '!'he total currgnt !n!out into the neuron is sed

the kernel property as a natural result of the spiking nealrorPVe" all 7 excitatory, andmn inhibitory, synapses. Whei (t)
network, we do not use the inefficient computational pragect CroSSes the membrane threshdlg,,.. from pelow, a spike i
of the input space to a high dimensional space. is generated and the membrane resets to its resting pdtentia

In this paper therefore, we consider the design and strelctd/r’“f_"“t' in 1311, Tuckwell sh d that i
of a network of spike-rate neurons and what is involved owever in [31], Tuckwell showe al Jump processes,

in training these networks for use in engineering tasks. V%'_Ch adsf]fj;j(t_) ande(t)_m et_quatmn (ﬁ)’tt::atn be approximated
propose two applications of these models, for use on specHﬁ:'ng ftusion approximations, such tha

tasks, as a basis for investigating their computationapfro E. ~ APty \EY2pE

: ; : : i(t) = AT+ A 5 (1)
erties. Our approach has been to derive learning algorithms a2
based on a multi-layered network of spike-rate neurons. We Li(t) ~ Mt+XN""Bl(t)

have expanded on the learning rule introduced in [26], where B s ) e
we identified the input-output relationship of the spikeera Where 5~ and Bj are Brownian motionsi; 'E/\j are Ethe
model and applied an error minimisation technique to traﬁi’n""pt'cl'nplJt reInewaI process rates with = (A AR
the model. The network designs introduced here are specflic = (\:*;A,), anda > 0 the parameter, discussed in

to the tasks of function approximation and robot control aff11]; which produces a Poisson process input whea 1.

have similar structures to RBF networks. We have seen in [6], that equation (1) can be approximated
We therefore present one of the first applications of S _

network of spike-rate neurons and show that it is possible to dv(t) = =7 (v(t) = Viest)dt + digyn () 3)

train these networks with a mathematically derived leayni

. . here
rule. Though the networks take a longer period of time tatrai

than their classical counterparts, they do offer a sigmfica tsyn(t) = pit + 0iB(1) ()
advantage over classical Al models, in that they includéa bojng
the meany, and the variance, of the input signal. n m

This paper is set out as follows. Section Il will define the i = Z/\EwE — Z)\f.wl.

. . . . g J Y J
model of the single spike-rate neuron; the basis of which = =1
we will use in the building of our neuronal network, which n m
we will define in Section IIl. A network leaming rule is op =3 (AP (wf)® + > (M) (w];)
introduced in Section IV together with the results from the j=1 j=1 5)
function approximation tasks which we present in Section V. n,m Ba B BB
Finally in Sections VI and VIl we detail the approach we +o Y (G ET) T wiwf
took in applying the spike-rate model to the task of robot J#k=1
arm control, defining the recurrent structure of a time serie wm N o
- o . +p Z N EOD 2wl w]

network, together with the modified backpropagation thioug J ij Vik
time version of our network learning rule. J7k=1

here p is the correlation coefficient between the ith and jth
input, a detailed discussion of which is given in [28]. It is
Il. THE MODEL DESCRIPTION worth noting here, that the model’s description of the syicap

. — . input, as given in equation (4), presents it in terms of input
First we present the definition of the spike-rate model. anwean and variance.

begin by considering the IF model [6], [13], [31], defined man " gqr simplicity of notation we next consider excitatory and
times in literature and presented here as follows. inhibitory inputs to be independent, with;; = wZE; = wl,
Suppose a cell receives excitatory postsynaptic potentiagh — n and A\l = rA\¥ = r\. Herer = 0 if the unit only
(EPSPs) atn of its synapses, and inhibitory postsynaptieeceives pureiy excitatory inputs and= 1 when the unit
potentials (IPSPs) at: of its inhibitory synapses. When thereceives equal excitatory and inhibitory inputs. Equat{6h
membrane potentidl (¢) is between its resting staié,., and Can now be rewritten as
its thresholdV;;,..., it satisfies the following equation n
pi =y Ajwij(1—r)
j=1

dV (t) = —1(V(t) — Vyest)dt + dI5yn(t) (1) ' (6)

of = QO Nwii+p Y A E M Fwgwa)(1+7%)
=1

wherer is the decay rate of the membrane, digl, (t) is the Py
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Equations (3), (4) and (6) represent the model in terms of its
membrane potential. As stated above, the synaptic input use
in this model, given in equation (4), presents a synaptictinp
in terms of the mean inpyt; and the variance?, about this
mean. The importance of this can be seen in the case wher
r = 1, i.e. when a neuron has an equal balance of excitatory s
and inhibitory synaptic inputs. In this case, theterm in (6), g s
i.e. the mean input, disappears. However, the variance term©
o2, remains and as a result the neuron still receives synaptic s
activity. 0

Next, we represent this model in terms of its firing rate.

With the model represented in this way, we are able to see
a direct input-output relationship, previously shown tasex

3

25

-2 -2

in [7], in which computational information is encoded withi Input 2 Input 1
the firing rate of the model.
To achieve this, first let us definﬁ()\) as the firing rate Fig. 1. A graphical plot of the firing rate output plane of aglexneuron

with two synaptic inputs, where = 2 andr = 1. Input values were varied

output of the IF uniti, subject to synaptic input rate€® = perween -2 and 2.
(M, -+, An). We can write the firing rate in terms of the
interspike interval as
) terms
i(A) = 7 i =0
fi(A) Trort <Ti(r) > ) I ) ) w0
2 _ a, 2 SN, S s
whereT,.; is the refractory period< T;(r) > is the mean i = 2(_2 Ajwij +p Z Aj? Ak ? wigwir)
interspike interval of output unit note,i typically covers the =t j7k=1
output space say af=1,--- , N. We will however define the network and learning rules, in
The definition of the mean interspike interval has previpusterms of a general approach, as such a learning rule, and
been given in [6] as network design, should hold for the case whes 0,...,1.
o prtbmerie 1. SPIKE-RATE NETWORKS
<Tir) >= T /vmw—ui g(w)dz (8) The kernel-like structure of the spike-rate model, simitar

i

that presented in figure 1, is an interesting property of #e n
wherer is the decay rate of the IF model, ag¢x), known ron model. These kernel-like output profiles were previpusl

asDawson’s Integralis defined as explored in [26], where similar outputs were observed for
- differing synaptic weight configurations, i.e. differinglues
o) =expla?) [ exp(-u)du @ ofr.
—0 These neural models appear to have more in common with

BF models than their classical predecessors, such as the

erceptron. The spike-rate model’s output foe 1, is very
similar to that of a multiquadratic function used in some RBF
models. In comparing this spike-rate model’s output withtth
of a multiquadratic RBF, two important similarities haveshe
A served.

irstly, multiquadratic RBF networks use basis functions

similar to those introduced in [14], and are generally of the
form

Now, the model, as presented in equations (3) and (
gives the neuron in terms of itmean firing rateand its
standard deviation As stated earlier, in classical artificial
neural networks, for a model with equally balanced excitato
and inhibitory synaptic inputs, the firing rate activity itest.
In the neural model presented here, it can clearly be seén
this is not the case.

In Figure 1 we see an example of the case wheal in
(6), where the mean term; disappears, but the varianee 9 o1
term remains. The figur:enplots of the firing rate outpl?téof a y(w) = (27 +c7)* (1)
model with 2 synapses with varying inputs = (—2,--- ,2) wherez is the input,c > 0 andz € R. The output of the
andX; = (—2,---,2). Equation (7) presents the IF neuron irspike-rate model defined in equation (7), is equivalent i th
terms of its firing rate output and its mean interspike iraerv function, when0 < ¢ < 1 in (11).

Secondly, in [24] it was proven that for a distinct set/éf

It is this aspect of the model which has motivated much @iints inR"™° there exists anV x N interpolation matrix®,
the remainder of this paper. By examining the variance térmif the ji-th elemente;; = ¢(||x; — ;||) is non-singular. For
a neuronal model, rather than trying to smooth out any 'oise multiquadratic function to be non-singul@z;i}ﬁV , must be
element, we will examine its computational properties & itdistinct. This is true for both the multiquadratic RBF model
application to a series of engineering tasks. As such, wk widlnd the spike-rate model over all real inputs.
focus our experiments on the caserof= 1. In doing so we  These two common features serve as a basis for the devel-
will effectively have a firing rate model with synaptic inputopment of a network model based on the principles of RBF
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network design. In the numerical models presented heree-spi ij f
rate neurons replace the basis functions presented iridnzeli LH_, 1
RBF network architectures, and the network’s output com- .
prises a linear summation of these spike-rate neuron’sutsitp U
f Whi
A. Kernel Neural Networks I | 2
We now introduce our first design of a network of spike-rate N .
neurons based on an RBF-style architecture. .
The output profile of the spike-rate model, presented in P
figure 1, shows a kernel centred at zero when infput 0. We U .
see that a similar output is obtained in a multiquadratic KBF
¢, in equation (11), is set teera So we find that by including T .
centersfor each spike-rate neuron, similar to the approach N
taken in the positioning of basis units in RBF networks, we
ensure the spike-rate network is positioned across itstinpu o
space. In order to achieve this therefore, equation (6) is .
modified as follows .
pi =y (A = Awi(1—r)
j=1 Fig. 2. Schematic plot of an RBF-style spike-rate networkctEaf the
n i = 1,---, M spike-rate neurons receivgs= 1,--- ,n inputs A, with
_ C_yiyae, 2 weightsw; ;. The output of the RBF-style netwotk, is a summation of the
g = (Z()" A i (12) product ofjthe firing rate of each of the spike-rate neurgns\) and the
J=1 output layer’'s weight connectiowy,; .
+p > = AT (- Ai)ngjwz’k> (L47%)
j#k=1

' Feng et al. have shown that it is possible to build a neural
where\' is the centre for neuronover the dimensions of the framework with a diffusion approximation for the renewal
input spacg = 1, - - , n specific to neuron, andT,..;y > 0. It inputs, and thus an approximation to describe the behaviour
is now possible to place individual neurons across the mesiroof a network of IF neurons.

input space by a suitable choice &f. For n input nodes on

the input layer, and/ spike-rate neurons on laygrthe output

from this RBFster network is defined as IV. NETWORK TRAINING
M
yn(A) = Zwm‘fi(k) (13) To support the learning rules we will present in this paper,
i=1 we have included in appendix |, the derivation of a learning

wherey;, is the output from output nodeconnected to neuron rul_e for a single spike-rate_ neuron, first introduceq in [26]
i by the weight connectiom;;, as shown diagrammatically This shows how the synaptic weights are updated in order to
in figure 2. reduce the output error, during training. It is includedehso

We observe that the outpys,()) is a special case of theas to provide a broader picture in the training of the spite-r
spike-rate model presented in equation (7) ifs set to0, neuron, at both a single neuron level and a network level.
I.e. when there are purely excitatory weight connections f0 |, the previous section, we introduced a spike-rate network
the neurons in the output layer of the network. Equation ((a) . . ; . .
therefore. can be rewritten in the form esign similar to that of an RBF network, i.e. with an input

' layer, a hidden layer of non-linear basis functions (or spik
rate neurons in this case) and a linear output layer. We
therefore choose to apply a similar learning algorithm to

M

pn =Y fiA)wni
i=1

(14)  those used in training RBF networks. This algorithm invelve

M M
o :Zfi(A)awii‘f'p Z Fi) 2 fiu(A) 2 wpswne training the network in 2 separate stages. The first stage
i=1 i#k=1 consists of centering each of the spike-rate neurons across

In the model defined in equations (13) and (14), shecial the input space. A k-means algorithm is used to identify the
case spike-rate neuron differs from the spike-rate modefumber of subsets within the training data. Once k-means is
discussed in section I, because it takes as inputsfitng complete, the output from this stage will identify the optim
rates from neurons in the previous layer. In a biologicanumber of spike-rate neurons to use in the network, and where
framework, neurons emit and receive spikes. This is not tHeeir centres should be positioned so as to cover the range of
case here though. We have instead chosen to model an REF-input space.
style architecture as our initial step in the examinatiorihef The second stage in the training consists of a learning
computational performance of a network of spike-rate nesiro rule which is used to update the weights in the network.
It should be noted however, that in [8] a theoretical framdgwo The network is trained on the same data set used in the k-
has been presented for a network of IF neurons in terms of timeans section of the algorithm. Training is complete when
first and second order statistics of the ISI. In the case thetiee network’s output falls within a specified error toleranc
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A. Stage One weights is proportional to the partial derivative of thigogr

In this first stage, the algorithm partitions the input tiagn ' NS gradient change is obtained using the definitioryfg\)
data sets into sub-groups. A set of training data is first-idef? guation (13), such that
tified, which traditionally covers the input-output spa€er OF OF 0Oyn(A)
this type.of ngtwork Fhe input data is. a set of synaptic_ inpu.ts dwn; OYn(A) Own, (16)
A as defined in section Il. The remainder of the algorithm is (dn — ya(N) fi(N)
defined as follows.

Let a® be the set of input data points, where= 1,--- , B. 10 compliment the learning rule presented above, at appendi
For these data points, employ the k-means algorithm [5] tbwe have included a proof concept for a version of this
partition this data into a set of vectors i/ where j = learning rule which can be applied to RBF-type networks
1,-- k. which use spike-rate neurons in the output layer. Though it i

not biologically realistic for a spike-rate neuron to hdivang
ratesas synaptic inputs, the proof completes the learning rule
in terms of the backpropagation of the network error.

1) Partition the input datda’}, into K initial sets which
cover this input space.
2) Calculate the mean point of each of thesets

— 1
(t) = 5 Z al V. APPLYING THELEARNING RULE

beSs; We now present a series of experimental results to illustrat
the spike-rate network’s ability to perform function apgro
mation. The network was tested on a variety of functions and
we include two examples here for consideration.

The two functions the network was trained to approximate
e

where i/ (t) is the mean of the data points in sgt at
iterationt.

3) For each data point ifia’} calculate its distance from
each set’s centr@’(t), and reassign each point to thear
set with the closest mean.

4) Calculate the new mean for each of the updated sets ylz) = (1+x— 21:2)@*12 a7
) 1 = i 18
Pl =Ly a y(@) = sin() (18)

B bes; In all experimental trials a single layered network of 20

spike-rate neurons was used. Each spike-rate neuron had an
, equal balance of excitatory and inhibitory synaptic inputs
The resulting centres of each of the sets, are then used as the | These neurons were connected to an output node by

centres for each of the spike-rate neurons as presente@)in (1, jinear summation of the weighted connection between them
Here i/ = A/, with the number of spike-rate neuros, in - 5nq the output node. An optimal learning rate of 0.2 was used,
the network design, equal to the number of sets partitiongdy 4 sample of input points taken from the curves in equation
with the k-means algorithm, i.el/ = F. . (17) and (18) were used to train the network.

Once the centres of the neurons have been identified thg, figure 3(a) a graphical representation is presented, show

unsupervised section of the training algorithm is conotldejng the network’s output throughout the training process as
This stage of the algorithm has now provided the optimufp a5 trained to approximate function (17). Initially the

number neurons for the network, i/ =k in (13), and the nenyork was set up with equal weight values @6. The
position of their centres across the input space. The n&Wef,ining algorithm described in section IV was used to train
as defined in (13) can now be trained on the input data usifg network, which converged the output to within an error of

5) Repeat until changes in the groupings stabilise.

stage two of the algorithm. 0.01 by the 1994th iteration.
Figure 4(a) shows the network’s output when trained to
B. Stage Two approximate function (18). Initially the network was set up

This second stage of the algorithm consists of a supervis\gﬁh equal weight values 00.5. The algorithm trained the

learning rule. An approach similar to backpropagation ,[2)7}1;:‘;\’%5];0 within an error convergence 6f01 in 1976

[34] is used to adjust the weights between the output la .
Once training was complete, each network was tested on

and the hidden layer. h S q e d hich had nitiall
1) The Output Layer of an RBF-Style Networkhe error the remaining Input a_ta, .e. data w 'ch ha n_ot Initially
been sampled for use in the network training. Figures 3(b)

function E, also known as theum of squaresrror, is defined . .
as d and 4(b) show how the networks generalised this data, for

1 E functions (17) and (18) respectively. In both figures thaesbt
E=; Z(dh —yn(A)? (15) lines represent the original target output, and the thiclcll
h=1 lines represent the network’s approximation. Both network

where y,()\) is the output of the network at neurdn as produced reasonable approximations using the data.

defined above in (13) and}, is the desired target response of

output neurorh. The error is calculated over the total number VI. ROBOT CONTROL

of output neurong?, in the output layer. The output error here Following on from this, a dynamic application for the spike-
depends upon the weights,; and so any correction of theserate network is investigated; namely a network designed to
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15

Output

15

Output
Output

15 . . . . . . . 15 . . . . .
0.5 1 15 2 -2 -15 -1 -0.5 0 0.5 1

(b) (b)

Fig. 3. Figure 3(a) shows the network’s output when traireefittthe curve Fig. 4. Figure 4(a) shows the network’s output when trairefittthe curve
defined by function (17). The change in the network’s outpioé thin grey defined by function (18). The change in the network’s outpls¢ thin grey
line) is shown at 100 iterations intervals during the tnagniThe target in both line) is shown at 100 iterations intervals during the tnainiThe target in both
figures 3(a) and 3(b), is represented by the dotted line.r€ig§(b) shows the figures 4(a) and 4(b), is represented by the dotted line.r€ig(b) shows the
target output (the dotted line), and the network’s outpl¢ ¢hick black line) target output (the dotted line), and the network’s outpl ¢hick black line)
after training. Here the network is tested on 100 data paiitisin the range  after training. Here the network is tested on 100 data paisitisin the range
[—2, 2], which were not part of the data set used in training the nétwo  [—2, 1], which were not part of the data set used in training the né¢wo

act as a control mechanism for a simulated robot arm, in theordinates. The arm itself consists of two sections of theng
task of goal locating. In order to accomplish this,atificial [, andi,, and two joints represented by the anglesand 6.
environmentwas designed, enabling arm data to be collectdthe first joint fixates the arm at a point in the plane, with
for use in the initial training of the network. The artificiald; describing the circular movement &f about this point.
environment permits accurate and detailed observatiofe toThe second joint is between the two sectidnsand iz, with
made of the robot arm’s performance and movement, bath describing the angular position &f about this joint. The

during and after training. network’s outputs are the two joint anglés and 0, of the
robot arm. Figure 5 shows a diagrammatic representation of
A. The Two Joint Robot Arm the arm. A change in these angles directs the movement of

The robot controller and its environment are designed fer trt1he robot arm

task ofgoal location The controller’s input data is the set of 0, = arccos (932 +y° =15 - l%)
Cartesian coordinates representing the target objeatatitm 2041s

within a 2 dimensional plane at figure 5. The network’s 0. — . Y y losinfs 19
objective is to move the robot's arm towards these target 1 = arcan (_) - araan 1 + l5cosfs (19)
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/\. <= 2 Output Nodes

Qg/ \ 3 Duplicate Neural
| | h
V / Networks

Weight Connecting
Each Sequential
Neuron

[

Fig. 6. A graphical representation of time-series netwotigwsng the
network unfolded over 3 time steps. Each network has 2 inpdesidthe
black squares), a single layer of spike-rate neurons (thieeveircles) and 2
Fig. 5. A 2 dimensional representation of a human arm as seendhmve. It output nodes (the black circles). Here the network is dagdid over just 3
shows the position of the 2 joint anglés andd, which the network outputs time steps, with each unit in each network connected to itesponding unit
in order to control the movement of the robot arm. The length eftto arm  in the subsequent network by the weight connecﬁfgl_l), as represent in
segments aré, andl2, and the target position of the arm is represented bgquation (21).

the Cartesian coordinate pdit, y).

] . the normal synaptic input as introduced in (4) and a rectirren
wherez and y are the trajectory coordinates the arm tracegput, such that,,,, in (4) is rewritten as

during the movement it makes towards its target. It is pdssib
tFJOOirre];/;/rlte equation (19) in terms of these Cartesian coatdm HOR S gt (1 — )t
. j=1

n n N o 21
x = lycost + lacos(01 + 03) + J > A?(w§;>)2 +0 3 NG D) ). (21)
=1

v
= llsin91 + l2sin(01 + 92) (20) JF#k=1
B(t) + Y ovalt Y

wherel; andly are the length of the robot arm segments.
where%syn is the synaptic input for a spike-rate neuron in a
BPTT network;\ is the input into neuror which is external
to the network;fi(t_l)()\i) is the output from neuron at the

In designing the network for use on this task, we began liyne stept — 1 (note fort = 0, fi(o)()\,;) = 0); wg) is the
identifying the set of inputs-outputs which would be emgldy magnitude of the postsynaptic potential for the networknagt
by a robot controller. For the inputs these would be the looat ¢; u)g_l) is the time delay weight connection between spike-
coordinates of the object in the environment. For the ostputate neuron at timet — 1 and spike-rate neurohat timet.
these would be the robot arm’s angular movement over time.this example, there is no time delayed recurrent conoecti
How this information is generated is discussed in section Mhetween the external inputs in the previous time step and the
D. neurons in the current time step, since inputs external ¢o th

We chose therefore, to expand on our RBF-style networketwork remain constant for ail i.e. A® = A(=1 for all
presented in section IlI-A, but with the inclusion of re@mt ¢ = 1,...,T and so we refer to these synaptic inputslas
connections. This approach, together with the applicatioa Also for all ¢, \>(!) = \&:(t=1) je. the centre of each spike-
Backpropagation Through Tim@PTT) learning rule [35], is rate neuron is constant for &ll
one which is perfectly suited to dynamic tasks, and one whichTo incorporate the time delayed inpytsindo are rewritten
is commonly applied, to similar problems, within the field of N
Al .By unfolding the network in time, we are able to treat the BY = (Z ()\j _ /\i) wg)) 1-r
entire network as one large feedforward network.

Using this type of network, each time step in the movement

B. Design of the Neural Network

Jj=1

t—1 L (t—1
of the robot "arm, i.et = 1,...7T, is represented by a TN
duplicate network. Each network, at each of the time steps, n _
receives external inputs from the robot environment, ag wel (5{")? SO0 =AY (w)?
as recurrent connections from neurons in previous timesstep =
as represented in figure 6. A neuron’s output at time step .
say, is used as part of the input for its equivalent neuron at n Z O\ — )\i)%()\ _ /\i)% ®), )
the next time steg + 1. So for an RBF-style network, as P J k Wij Wik
described in section Ill-A, synaptic mPuts into a spikéera I#k=1
neuron: at time stept are comprised of two main elements: (1+r%) (22)
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For an output node of an RBF-style network, as introduced in  for each time step, beginning witht = 7" and working

(13), the outpuly,(f) at time stept will therefore be backwards.
" 3) Adjust the weights accordingly using:
By — () (1)
Y (A) = ; Wi %4 (23) w;;) _ w;;? _ nF—w;;) (29)
with where F_ is the ordered derivative [35] of the error
Zi(t) _ fi(t)( A) (24) fun_ct?on (27) with respect to the vyeights in the network.
This is the feedback of any error in the network’s output
and 1 to those weight&u,(l? which are responsible for that
FON) = G (25) output error. Each of the networks foe= 1, ..., 7 will
Trep+ <T; 7 (r) > have their weights adjusted using equation (29), where:
where +
g plaerni? F ) 9E[1,T] 8<T’5 )(r)>
T _w i =
<T{(r) >= = w gl@)yds  (26) " (10w ouf]

T | VrestT—h;

T (t)

with h being one ofP units on the output layer argtflo) =0. _ Zd(t) o <T’L (T)> (30)

For each time step = 1,2,...,T, each network’s weight Py h aw,ﬂ‘f}

matrix can be represented as,w?,... w?. So we see from

(21), that not only does each network receive inputs from 6<T£,*Zt(>r)> is as defined in equation (40) and inputs are

external sources and other neurons in the network, but also dwy; ) )

from neurons in previous time step. as stated in equation (21).

The output node, is the weighted sum of the output it
receives from all the neurons in its current network at time
plus its recurrent connections with previous output nesifon
over the previous—1 iterations. In definitions of time-delayed In order to generate a set of robot arm data for training
neural networks [33] the weight connections belofff , in our and testing purposes, we tried to approximate some of the
definition given above, are set to zero. As this network is @ynamics observed in human arm movement. In [1], [2], [12]
feed-forward time series network the omissionudfi_l) and @and [20], it was shown that arm trajectories, between aralnit

below is appropriate since only information from the prexo Starting point and a target goal, form an approximate ditaig
time step is directly passed forwards in the network. line. When measuring the velocities of the arm movement

along these trajectories they appdmll-like in shape. The
movement begins with an initial acceleration as the arm move
C. Dynamic Training from its starting point towards the goal, and then begins to
The training of this type of recurrent network will requiredecelerate as it approaches this goal.
the development of a BPTT-style algorithm. To achieve this To achieve an approximation of this type of movement, to
the error function, defined in equation (15), is now defined f@llow for the generation of training data, a series(ef, y;)
a single layered network. Using the network’s output as showoordinates are generated which map out the arm’s trajector
in (23), the total error over the time periods= 1,...,7 is as it moves from its starting position towards its targetigoa

D. Generating Robot Data

given as Given the initial starting point coordinatg®,0) and the
» final target co’ordinates$x, y) this straight line is split intoy
1 2 segments
E[LT) =533 (4 ) (27) %9 .
t=1 h=1 I’seg - E

t) . . .
whered,,” is the desired response of the network to the inpyihere .., is a segment of the line. Using this, a series of
patternA at time¢. To minimise this error with respect to thecoordinate pairs is calculated using

synaptic weights a modified version of the BPTT algorithm

presented in [36], is applied: Ty = X Tseg
1) Propagate information through the network for the time i = x#
intervalt = 1,...,7,, (1 < T,, < T), noting at each r
stage the network'mputs desired responsandsynaptic As each layer of the network represents an iterative time
weights step of equal length, velocity is therefore representedhiey t
2) Perform a backwards pass to calculate the local gradig@tiation of the outputs of; and 6, from one time step to
change on the output layer: the next. Selecting data points from the trajectory data set
will generate the required velocity if the appropriate spgc
(S(t) _ aE[lvT] . . ’ -
L == (28) is chosen between corresponding data points in order fon the

9 <T1§t) (7”)> to produce the desired bell-shaped velocity.
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Fig. 7. Figure (a) shows the target position, and trajectofythe robot arm in locating the object goal, over 15 equaktintervals. The position of the
robot arm, at each of the 15 time steps, is indicate by the thaskdine which represents the segmehtsandl, as indicated in figure 5. Figure (b) shows
the trajectory the robot arm traces out after 39 trainintattens. Figure (c) is the total error output of the netwotkidg the training process. In figure (d)
the error over for each network, at each time step, is shown thee39 training iterations. Figures (e) and (f) show thengain o for each of the two
output units during the 39 training iterations.
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Fig. 8. Figure (a) shows the trajectory traced out by the ralbm in locating the goal at the Cartesian coordingtes)), and figure (b) shows the trajectory
traced out by the robot arm in locating the goal at the Caatesoordinate¢1, —1). The position of the robot arm, at each of the 15 time steps disated
by the thick black line which represents the segméntandl, as indicated in figure 5. The controller was initially train® locate goal 1 and then goal 2.
Figure (c) shows the trajectory paths when the controlles wléernatively trained on goals 1 and 2. The error outpuinduthis training process is shown
in figure (d).Figures (e) and (f) show the changevirior each of the two output units over 400 training iterations
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VII. ROBOT TRIALS 2) Multiple Goals: The results presented in figure 8 are

, . from the experiment performed to test the network’s perfor-
Graphical results are now presented showing the OUtRitnce when trained to locate multiple goals in its environ-

when a feed-forward .t|me series n_etwork was trained _|n robrWent. In these experiments the networks consisted of 2 input
arm control for use in goal location. In these experimental,jos which were fully connected to a series of 15 spike-rate
trials, networks of varying sizes were trained to locate@e¥ o rons, which were in turn connected to 2 output units. The
of points within the robot arm environment. In each case theq rent connections were only between neurons on similar

BPTT algorithm presented in section VI-C was used 10 Uajgy ey The time series of the network was tested for 15 qual
the network. In most experiments, the learning ratemained g3 ceq time steps. Due to the computational intensity of the

fixed at0.01. network, we restricted the number of time steps to 15 so that
1) Single Goal Locating:The results presented in figure 4ye would be able to test the dynamics of the network within
are from one of the experiments performed to test the nglveasonable time frame.
work's performance when trained to locate a single goal in |, the first series of experiments the network was trained to
its environment. In these experiments the network corist@cate one goal and then trained to locate a second goal. The
of 2 input n(_)des whiqh were fully connected to 2 spike-ra@suus in figures 8(a) and 8(b) show that the netwiorgot
neurons, which were in turn connected to 2 output units. Thg,y (o locate the first goal once it had learned how to locate
recurrent connections were only between neurons on Similge second goal. In both instances the trajectory outpute we
layers. The time series of the network was for 15 equally@pagentical to those produced by networks which had only been
time steps. Figure 6 shows a similar network architecturggined on a single goal.
unfolded over 3 time steps. In the second series of experiments the network was
Figure 7(a) shows the desired output of the network. Eaghiined alternatively on the two sets of trajectory datae Th
of the 15 time steps are shown, indicating the position agining process was allowed to continue until convergence
trajectory of the robot arm from a starting point(@t0) to its  nad occurred within a predetermined error tolerance.os.
goal at(1,1). The thick black lines represent the position ofjgyre 8(c) shows 2 output trajectory paths for the robot arm
the robot's angled 2 joint arm at each of the 15 time steps. Thfer training the network for 600 iterations. The input igoa
circles represent the robots end point along the trajegatly. \yere the pairs of coordinate points, —1) and (1,0). Both
The spacing of these points are included to help represent {fyjectory paths show a degree of error when compared to the
velocity change along this trajectory. expected straight line paths of the desired response. Tisere
The BPTT training algorithm was used to train the network small error still present towards the end of the trajectory
on this trajectory, and figure 7(b) shows the network’s pegath in both trials, however the spacing of the arm’s pasitio
formance in locating the goal, after 39 training iteratioAs for each of the time step intervals is more accurate. We saw
this point the algorithm had trained the network to produc&idence of this in the function approximation experiments
an output within an error tolerance 0f01. On examining the jn section V. In those experiments the basic shape of the
output in figure 7(b) a small error is observed in the line ghrget curve was quickly modelled by the network, but the
the trajectory as it approaches the goal. exact positioning of the output curve required longer irajn
The error plots during the training are shown in figures 7(@efore it exactly matched the target data. In the robot arm
and 7(d). Figure 7(c) shows the change in the output erigxperiments, the shape of the curve would represent the
averaged over all the time steps (i.e. each one of the timRgular change of the robot arm’s joints over time. This
series feed-forward networks). Early on in the trainingleyc general shape appears to be modelled at the earlier stages of
there was a large output error when compared to the networti@ network’s training. The majority of the training appets
target output. However, this rapidly reduced during thsning  be matching the detail of the movement rather than just the
process. Figure 7(d) presents a more detailed plot of this,er trend in the data, i.e. the path of the trajectory.
showing the output error for each of the 15 feed-forward Figure 8(d) is a graphical plot of the overall network
networks, at each point in the 39 stages of the training gaceerror occurring during the process the network was trained
It can clearly be seen that the most substantial errors ocggfocate the two goals. The training cycle took 600 iterzio
at those networks which represent the latter half of the tinMowever a largeacceptableerror of 0.05 was used to ensure
series; with the network at time step 15 Contributing thgé&t convergence within a reasonable time period_
error. Network errors are passed forward in the series ofFigures 8(e) and 8(f) show the change in the variamce,
feed-forward networks, accumulating almost exponestigll  during the training process. As in the single goal location
networks further along the time sequence. task, these biologically plausible models use the infoimmat
In figures 7(e) and 7(f) the change in the varianegjs contained within the variance, as part of their computation
presented during the training process. An important aspect
of this model, over classical models is that information is
contained within the variance and is affected in the tragnin
process. In the experimental models presented here, 1 We have expanded on the single neuron model we defined
effectively makingu; = 0, thus it is the information containedand tested in [26], and developed learning algorithms for
within this variance which is used in the control of the robaise with spike-rate neuronal networks, in particular guesi
arm. applications for use in engineering tasks. The definitiothef

VIII. CONCLUSION
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spike-rate model showed a relationship between the synapti Thus far however, the model has primarily been tested on
stimulus and the neuron’s spike-rate activity. spike-rate neurons witlr = 1. This was done in order to

We investigated the similarity between the single spikéest the computational effectiveness of the variance t&vn.
rate neuron model’s output and the basis function of gmwopose an initial extension to the work by including theecas
RBF model, which we supported in our design of an RBRwhenr = 0.5 and0. This will have the effect of including the
style network of spike-rate neurons. The element of synaptneanand the variance in the computation. Comparing how
variances?, included in the model, proved to be an importarthese models perform in engineering tasks, with results fro
component in the computational abilities of the spike-ratmilar classical Al models, will help us identify any pdssi
neuron. When we examined the case of the mean ipput) computational advantage the spike-rate model has over its
(r = 1) we saw thats? alone had computational propertieslassical counterpart. Could modelling the mean signad, an
sufficient enough for the model to be applied to a series tife “noise” add to the model's computational power?
non-linear tasks. Indeed it was this computational compbne Furthermore, the idea of employing the variance in compu-
of synaptic input, which we used in the two sets of experimertation is not new. It has been extensively discussed in theh
included here. ture on stochastic resonance. In a typical scenario of astith

In presenting a generalised learning algorithm similar iResonance, the output is maximised when the variance is,
approach to the error minimisation used in backpropagatiagsually, very small in value. In our set up here, however, the
we have shown how it is possible to train a spike-rate netwoysriance and the mean are coupled, which implies that we
model, and apply it to engineering tasks. Though, the nétwagan not arbitrarily reduce the noise, while keeping the mean
structures were less biologically plausible than the agbi (the first order statistics) unchanged. Although we do use th
design of the spike-rate model, the networks proved to be gomportant properties of second order statistics, our agpTo

approximators capable of learning a variety of mathemhtiag very different from that of stochastic resonance [10].
functions. These networks quite quickly learned the trends

in sets of training data, though the dynamics of the model
meant that exact data matching took a large number of tiginin APPENDIX|
lterations. o THE LEARNING RULE FOR THE SINGLE NEURON MODEL
We were also able to show that this single-layered network
model can be extended into a recurrent time-series StRICtUr \we include here. the learning rule for the single neuron

and that it is possible to solve a dynamic control task withqdel. The model consists of a single layerict 1,--- , N
biologically.plgusible neuron mode.ls'. By expanding On OWhike-rate neurons, each wih= 1,---,m synaptic inputs
general definition of a spike-rate training algorithm imweed . Tpe learning algorithm, shown here, seeks to minimise

J

in [26], we adopted a similar BPTT style training algorithmpe error between the spike-rate network’s outyif ), and
applicable for use on time series spiking networks. Thoughe desired target outpudt, i.e.

computationally expensive, the algorithm and network rhode

were able to solve the robot arm control task and locate the N

target in the experiment. E =
The unfolded feedforward network structure presented in i=

section VI-B, lacked the real biological plausibility thahe

might have expected when dealing the spike-rate neurd® minimise such an error, as in biological systems, we apply

model. In these networks, the recurrent connections used &0 approach similar to backpropagation

firing rate outputs from one layer, as part of the synapticinp

in the subsequent layer. Though the firing rate has an impiorta Awi; = —nA,;E

role to play in understanding the input-output relatiopshi

of a neuron, its relevance as part of the synaptic input Where, is the learning rate and

meaningless. By constructing the networks in this way, we

were however, able to show a possible approach to a dynamic AL E oF

problem using spike-rate neuron. *
Both these experiments present us with the opportunity to

expand on our initial designs of a spike-rate network. Byith w;; being the synaptic weight connections between units

retaining more of the features of the IF neuron, i.e. diffasi i andj. Here we are seeking to minimise E.

approximations for the synaptic input renewal processe&s, w So taking equation (32) and differentiating we get

would want to have similar approximations for the outputs

from the neural model, retaining. and o in the output oOE afi(A)

(fi(A) — di)? (31)

1

(32)

8’LUZ'J'

spike train. We would then have an opportunity of building dwy; =2(fi(A) — di) dwy; (33)
networks of IF neurons, where input-outputs from each layer

in the network retain more of the biologically observed spilUsingf as defined in equation (7)

ing features. We could then develop the spike-rate learning

rules presented here, for use on more biologically plaasibl afi(N) _ 1 o< Ti(r)> (34)

networks of spiking neurons. Ow;; (Trep+ < Ti(r) >)? Ow;;j
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Now, using the mean ISk T;(r) >, as defined in (8), we get with uj, = VipreT — pin, Vn = ViestT — tih, u;m = Ouy, /0w,

o< E(T) > - 2 9 VinreT — U;L,z' = 8Uh/8whi, and where
awij - T 6w” ag; /JJIhJ- = )\2(1 — ’I“)
ViestT — i A&w i+/\i%/\i Y L w o ) (1+r®
—g <U):| 0_;17; _ ( i Vh k sziz hk)( )(41)
4 ’ g
. 2 (E) ” — U Uz] Here )\; is the input to neurorh from another neuron, but
B AP a? where neuroni;, # i.
(Vo — o) 1) The Hidden Layer:For those spike-rate neurons on the
Ui 1,791 i,j . ) .
*g(; ( 2 )] (35) hidden layer the local error gradient will be
. ' OE  of;
Wlth U; = ‘/threT iy Vi = ViyestT — iy U 7,j = 8’&1/811)”, 6i - 3f( ) <f (( ;>
= Jo;/0w;,;. Taken together, we have obtained a learning B Lilr
ruIe equations (34) and (35), for a single layered spike-ra = OF 1 (42)
neuronal network. The weight update rule in (35) uses both SN (Trep + (Ti(r))?

the mean and variance of synaptic input. The important featand so using the chain rule, the partial derivative of thererr
is that any change in the firing rate is dependent of changBsbecomes

in these two components of synaptic input. OF B OEF  0Ofn(A)
ofi(x) 0fh( ) OA
APPENDIXII 8
THE OUTPUT LAYER OF A MULTI-LAYERED SPIKE-RATE = — Z (dn, — fa(X fh( ) (43)
NETWORK h=1

As a proof concept we present the case for the secomtiere \; is the output from spike-rate neuron In this
stage of the learning rule, discussed in section IV-B.1, whelefinition of a multi-layered feed-forward spike-rate nethy

yr(X) = fr(A), i.e. the case when output units are not lineahe output from the = 1,--- , M spike-rate neurons on the
weighted sums of hidden spike rate neurons as definedhiclden layer is represented by the tesm and this is the
equation (13) but are themselves spike-rate neurons. fn thynaptic input for they = 1,--- , P spike-rate neurons on the
situation, equation (16) now becomes output layer.
oF OE  fn(N) O(Tu(r)) Differentiating the rate output for unit with respect to the
B, = 3 FaN) D (Th () Owns input it receives from;, as shown in equation (43)
9 ofn(A) -1 9 (Th(r))
LG 26 _
= % Owp; (36) O\ (Tref + <Th (T)>)2 o\
-2
where: =
5 = OE  Jfn(N) 37) T(Trey + (Th(r)))?
0 () 0 (T (r)) . [ oy (ah i “h%z)
Equation (37) is the local error gradient for output neuhon Oh o}
The amount by whichuy; must change is given by thgelta v\ ((Uh.i0h — VRO, ;
rule where a proportiony), of the rate change in errdt is _9(;) ( o2 )] (44)
taken. This is defined as the rate of change of the error W|thth v ' v o,
Up = threT — Hhy Vh = VryestT — Wh, vhﬂ"“h,i =
respect to the synaptic weight connectiop; —Oun /0N, Uh,z = dop,/ON;. Denoting these derivatives with
Awp; = —n OF (38) respect to);
Owni ﬂ;z,i = wni(l—7)
For the output layer the delta rule is defined as , al2A T N w3, s N B wng, (14 17%)
B 0 (T (r)) The = 4o
Awni = =10n Owp; (39) Using the definition ob;, given in equation (37));, for hidden
So taking< Tj,(r) >, where< T} (r) > is defined in (8) neuron, Is given as
P
o< Th(T) > _ g 0 VthreT_llah 5 = afz( ) Z (dh _fh(/\z)) 8<Th(r)>
T 0w Toww P\ on 1 O(Ti(r)) &= (Tres + (Tu(r)))® A,
Vtres - P
g (P =) R S 0T s)
SO (Ty(r)) = O\
2| up, (UpiOh = UnOp ; , ) .
= - {g(a—h) (0—%> and thus the weight correction for the hidden neuron

Up, ”;L,iah - th—;L,’i Aw;; = —néiw (46)
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APPENDIXIII
THE LocAL GRADIENT CHANGE IN BPTT

The computation of thé,(f)’s in equation (28) first require a

(12]

(13]

calculation at time = T, then the remainder can be calculated

backwardsto time ¢ = 1. This is calculated as follows

o) = [ =y )] w1 @) (47)

wherey/\"(-) is the derivative of;\"), as defined in (23), with
respect to its activation;,(f), as substituted here for clarity.

(14]
(18]

(16]

. . 17
Calculating they's for the networks in layers=T-1,--- , 1: 7
(t) . aE[t, t+ 1] [18]
e I
ov,,
_ O0E(t)  OE(t+1) [19]
a (®) (t)
8’Uh 8’Uh [20]
(), ()
_ [ (! ﬂ Ay, (v,") | OE(t+1)
a n () () 21
vy, vy, (21]
_ (f) O () (t)
= [ - yh )} Yhn (Uh ) [22]
P (t+1) /. (t+1)
(t+1) (t+1) , (t+1) Oy, ( ) 23
+Z[d —y (v )]— [23]
P (t)
k=1 Yn
—_ @ @) 24
= Yy (,Uh ) [24]
P
(t) () ,, @) (t) s(t+1)
x| dy” —yp (v,) + Zwkh(sk (25]
[26]
substituting for equation (47) and rewriting (23) such that 2
7
-1
Z whz yz z )) (48)
where (28]
(), (t=1) ()
v (0 7) = 2 (49)
[29]
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