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Training Spiking Neuronal Networks With
Applications in Engineering Tasks

Abstract— Spiking neuronal models employing means, vari-
ances and correlations for computation are introduced. We
present two approaches in the design of spiking neuronal net-
works, both of which are applied to engineering tasks. In explor-
ing the input-output relationship of integrate-and-fire neurons
with Poisson inputs, we are able to define mathematically robust
learning rules which can be applied to multi-layer and time series
networks. We show through experimental applications that it is
possible to train spike-rate networks on function approximation
problems and on the dynamic task of robot arm control.

Index Terms— Integrate-and-fire, Mean ISI, Variance, Kernel,
Robot Arm.

I. I NTRODUCTION

I N recent years, there has been significant growth in the field
of biological computation. In this time, a closer unification

between neuroscience and artificially intelligent computational
models, has been observed. As a result, computational neural
models exist, owing more to their biological counterparts
than previous classical artificially intelligent models. Voltage
threshold models such as integrate-and-fire (IF) model [17],
[22], [29]–[31], and the more biophysical Hodgkin-Huxley
(HH) model [16], [21], all incorporate more of the dynamics
of actual biological neurons than the traditional classical
approach to neural modelling; such as the perceptron [25].

In trying to understand the computational properties of the
brain it is necessary to understand the biophysical mechanisms
involved in the process. Defining these mechanisms with
computational models allows us to further explore some of
the complex and adaptive processes which may be employed
by biological neural systems.

As such, we have seen the field ofcomputational neuro-
sciencegrow considerably in recent years. A result of this
is the emergence of a variety of engineering applications,
and learning rules, which now employ biologically plausible
computational models. Indeed, we have seen many successful
applications within the fields of human arm movement [19],
computer vision [4] and speech recognition [23], [32], to
name just a few. In considering the application of biologically
plausible neural models we need to consider which type of
model to use, and how best to address the issue of training.

Many of the engineering applications which have applied
biophysical models, have used the IF model as the main
computational unit. In using this model, it is often the temporal
sensitivity of the neuron which is exploited within compu-
tation, i.e. the time interval between successive spikes. In
fact Bohte et al. [3], used this principal to develop anerror
regressionlearning rule to train a network of IF neurons. It is
worth noting at this point, that the rule developed by Bohte et
al. in [3] is one of the few learning rules, applied to spiking
networks, which is not based on a Hebbian [15] approach

to synaptic weight modification. Indeed many of the learning
rules, developed for use on spike-time dependent models [13],
rely on Hebbian correlation as the principal means for synaptic
weight modification. However, as Bohte et al. have shown,
with their backpropagation learning rule, Hebbian learning
need not be the only approach to training IF neurons for use
within engineering.

In [26] a single biologically plausible spike-rate model used
a mathematically derived backpropagation learning rule, to
solve a non-linear tractable task. Like Bohte et al. in [3],
the learning rule was based on error regression. However, the
neuron model used in [26] represented the IF model in terms
of its firing rate. Defining the model in these terms, provided
a relationship between the synaptic input of a neuron, and the
firing rate output of the model. The spike-rate model as pre-
sented in [26], provided both first and second order statistical
representation of the synaptic input. As such, computational
information is shown to be present in both the mean and
variance of synaptic input. When plotting the spiking rate
output of the model against its synaptic input, [26] presented a
series of firing rate output profiles, kernel-like in nature.One
of the main observation about this model is that its output
firing rate appears to owe more to radial basis function (RBF)
model than its classical predecessor: the perceptron.

As a unit of computation though, the single spike-rate model
has advantages over some classical models with the inclusion
of both the mean firing rate and the variance of the firing rate.
With many classical models, like the perceptron, if there is
an equal balance of excitatory and inhibitory inputs, the mean
effect on the model is zero. With the spike-rate model, this
is not the case. The spike-rate model includes both first and
second order statistics: the mean and variance. Indeed, it was
shown in [9], [26], that even when the mean input vanishes, the
model and the learning rule still function due to the synaptic
variance. As such, the spike-rate neuron is a computing model
of both the mean and variance. The output surface planes for
this model have been shown to be controllable by synaptic
modification through the use of the derived learning rule [26].

The spike-rate model therefore, has potential engineering
applications which we will introduce as part of this paper. The
advantages of using second order statistics over the classical
approach, which mainly use first order statistics, have been
known in literature for many years. In [11] for example, Feng
and Tuckwell introduced an optimal control task based upon
the control of second order statistics, the variance, which
presented some interesting properties.

Introducing second order statistics in computations is
though, a minimal requirement if we intend to implement
stochastic computations; an example being the Bayesian ap-
proach. Hence the framework we present here opens up the
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possibility of carrying out a random computation in neuronal
networks.

The computational power of spiking neuronal networks have
alreadly been explored in the liquid state machine [23] and
the echo state machine [18]. In their work, the computational
performance was achieved due to the high-dimensional projec-
tion of the low dimensional input space (a kernel property).
However, in the approach we present here, though we employ
the kernel property as a natural result of the spiking neuronal
network, we do not use the inefficient computational projection
of the input space to a high dimensional space.

In this paper therefore, we consider the design and structure
of a network of spike-rate neurons and what is involved
in training these networks for use in engineering tasks. We
propose two applications of these models, for use on specific
tasks, as a basis for investigating their computational prop-
erties. Our approach has been to derive learning algorithms
based on a multi-layered network of spike-rate neurons. We
have expanded on the learning rule introduced in [26], where
we identified the input-output relationship of the spike-rate
model and applied an error minimisation technique to train
the model. The network designs introduced here are specific
to the tasks of function approximation and robot control, and
have similar structures to RBF networks.

We therefore present one of the first applications of a
network of spike-rate neurons and show that it is possible to
train these networks with a mathematically derived learning
rule. Though the networks take a longer period of time to train
than their classical counterparts, they do offer a significant
advantage over classical AI models, in that they include both
the meanµ, and the varianceσ, of the input signal.

This paper is set out as follows. Section II will define the
model of the single spike-rate neuron; the basis of which
we will use in the building of our neuronal network, which
we will define in Section III. A network learning rule is
introduced in Section IV together with the results from the
function approximation tasks which we present in Section V.
Finally in Sections VI and VII we detail the approach we
took in applying the spike-rate model to the task of robot
arm control, defining the recurrent structure of a time series
network, together with the modified backpropagation through
time version of our network learning rule.

II. T HE MODEL DESCRIPTION

First we present the definition of the spike-rate model. We
begin by considering the IF model [6], [13], [31], defined many
times in literature and presented here as follows.

Suppose a cell receives excitatory postsynaptic potentials
(EPSPs) atn of its synapses, and inhibitory postsynaptic
potentials (IPSPs) atm of its inhibitory synapses. When the
membrane potentialV (t) is between its resting stateVrest and
its thresholdVthre, it satisfies the following equation

dV (t) = −τ(V (t) − Vrest)dt + dĪsyn(t) (1)

whereτ is the decay rate of the membrane, andĪsyn(t) is the

synaptic input

Īsyn(t) =
n

∑

j=1

wE
ijEj(t) −

m
∑

j=1

wI
ijIj(t) (2)

Here Ej(t) and Ij(t) are renewal processes fort ≥ 0; and
wE

ij > 0, wI
ij > 0 are the magnitudes of the EPSP and IPSP

respectively. The total current input into the neuron is summed
over all n excitatory, andm inhibitory, synapses. WhenV (t)
crosses the membrane thresholdVthre from below, a spike
is generated and the membrane resets to its resting potential
Vrest.

However in [31], Tuckwell showed that jump processes,
such asEj(t) andIj(t) in equation (2), can be approximated
using diffusion approximations, such that

Ej(t) ≈ λE
j t + λE

j

α/2
BE

j (t)

Ij(t) ≈ λI
j t + λI

j

α/2
BI

j (t)

where BE
j and BI

j are Brownian motions;λE
j , λI

j are the
synaptic input renewal process rates withλE

j = (λE
1 , · · · , λE

n ),
λI

j = (λI
1, · · · , λI

m), and α > 0 the parameter, discussed in
[11], which produces a Poisson process input whenα = 1.

We have seen in [6], that equation (1) can be approximated
as

dv(t) = −τ(v(t) − Vrest)dt + dīsyn(t) (3)

where
īsyn(t) = µit + σiB(t) (4)

and

µi =

n
∑

j=1

λE
j wE

ij −

m
∑

j=1

λI
jw

I
ij

σ2
i =

n
∑

j=1

(λE
j )α(wE

ij)
2 +

m
∑

j=1

(λI
j )

α(wI
ij)

2

+ ρ

n,m
∑

j 6=k=1

(λj
E)

α
2 (λk

E)
α
2 wE

ijw
E
ik

+ ρ

n,m
∑

j 6=k=1

(λj
I)

α
2 (λk

I)
α
2 wI

ijw
I
ik

(5)

here ρ is the correlation coefficient between the ith and jth
input, a detailed discussion of which is given in [28]. It is
worth noting here, that the model’s description of the synaptic
input, as given in equation (4), presents it in terms of input
mean and variance.

For simplicity of notation we next consider excitatory and
inhibitory inputs to be independent, withwij = wE

ij = wI
ij ,

m = n and λI
j = rλE

j = rλ. Here r = 0 if the unit only
receives purely excitatory inputs andr = 1 when the unit
receives equal excitatory and inhibitory inputs. Equation(5)
can now be rewritten as

µi =
n

∑

j=1

λjwij(1 − r)

σ
2
i = (

n
∑

j=1

λ
α
j w

2
ij + ρ

n
∑

j 6=k=1

λj

α
2 λk

α
2 wijwik)(1 + r

α)

(6)
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Equations (3), (4) and (6) represent the model in terms of its
membrane potential. As stated above, the synaptic input used
in this model, given in equation (4), presents a synaptic input
in terms of the mean inputµi and the varianceσ2

i , about this
mean. The importance of this can be seen in the case when
r = 1, i.e. when a neuron has an equal balance of excitatory
and inhibitory synaptic inputs. In this case, theµi term in (6),
i.e. the mean input, disappears. However, the variance term
σ2

i , remains and as a result the neuron still receives synaptic
activity.

Next, we represent this model in terms of its firing rate.
With the model represented in this way, we are able to see
a direct input-output relationship, previously shown to exist
in [7], in which computational information is encoded within
the firing rate of the model.

To achieve this, first let us definefi(λ) as the firing rate
output of the IF uniti, subject to synaptic input ratesλ =
(λ1, · · · , λn). We can write the firing rate in terms of the
interspike interval as

fi(λ) =
1

Tref+ < Ti(r) >
(7)

whereTref is the refractory period,< Ti(r) > is the mean
interspike interval of output uniti; note, i typically covers the
output space say ofi = 1, · · · , N .

The definition of the mean interspike interval has previously
been given in [6] as

< Ti(r) >=
2

τ

∫

Vthreτ−µi
σi

Vrestτ−µi
σi

g(x) dx (8)

whereτ is the decay rate of the IF model, andg(x), known
asDawson’s Integral, is defined as

g(x) = exp(x2)

∫ x

−∞

exp(−u2)du (9)

Now, the model, as presented in equations (3) and (4),
gives the neuron in terms of itsmean firing rateand its
standard deviation. As stated earlier, in classical artificial
neural networks, for a model with equally balanced excitatory
and inhibitory synaptic inputs, the firing rate activity is silent.
In the neural model presented here, it can clearly be seen that
this is not the case.

In Figure 1 we see an example of the case whenr = 1 in
(6), where the mean termµi disappears, but the varianceσ2

i

term remains. The figure plots of the firing rate output of a
model with 2 synapses with varying inputsλ1 = (−2, · · · , 2)
andλ2 = (−2, · · · , 2). Equation (7) presents the IF neuron in
terms of its firing rate output and its mean interspike interval.

It is this aspect of the model which has motivated much of
the remainder of this paper. By examining the variance term of
a neuronal model, rather than trying to smooth out any ’noise’
element, we will examine its computational properties in its
application to a series of engineering tasks. As such, we will
focus our experiments on the case ofr = 1. In doing so we
will effectively have a firing rate model with synaptic input
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Fig. 1. A graphical plot of the firing rate output plane of a single neuron
with two synaptic inputs, whereα = 2 andr = 1. Input values were varied
between -2 and 2.

terms

µi = 0

σ2
i = 2(

n
∑

j=1

λα
j w2

ij + ρ

n
∑

j 6=k=1

λj
α
2 λk

α
2 wijwik)

(10)

We will however define the network and learning rules, in
terms of a general approach, as such a learning rule, and
network design, should hold for the case whenr = 0, . . . , 1.

III. SPIKE-RATE NETWORKS

The kernel-like structure of the spike-rate model, similarto
that presented in figure 1, is an interesting property of the neu-
ron model. These kernel-like output profiles were previously
explored in [26], where similar outputs were observed for
differing synaptic weight configurations, i.e. differing values
of r.

These neural models appear to have more in common with
RBF models than their classical predecessors, such as the
perceptron. The spike-rate model’s output forr = 1, is very
similar to that of a multiquadratic function used in some RBF
models. In comparing this spike-rate model’s output with that
of a multiquadratic RBF, two important similarities have been
observed.

Firstly, multiquadratic RBF networks use basis functions
similar to those introduced in [14], and are generally of the
form

y(x) = (x2 + c2)
1
2 (11)

wherex is the input,c > 0 and x ∈ R. The output of the
spike-rate model defined in equation (7), is equivalent to this
function, when0 < c < 1 in (11).

Secondly, in [24] it was proven that for a distinct set ofN
points inR

m0 there exists anN × N interpolation matrixΦ,
if the ji-th elementφji = φ(‖xj − xi‖) is non-singular. For
a multiquadratic function to be non-singular,{xi}

N
i=1 must be

distinct. This is true for both the multiquadratic RBF model
and the spike-rate model over all real inputs.

These two common features serve as a basis for the devel-
opment of a network model based on the principles of RBF
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network design. In the numerical models presented here, spike-
rate neurons replace the basis functions presented in traditional
RBF network architectures, and the network’s output com-
prises a linear summation of these spike-rate neuron’s outputs.

A. Kernel Neural Networks

We now introduce our first design of a network of spike-rate
neurons based on an RBF-style architecture.

The output profile of the spike-rate model, presented in
figure 1, shows a kernel centred at zero when inputλ = 0. We
see that a similar output is obtained in a multiquadratic RBFif
c, in equation (11), is set tozero. So we find that by including
centers for each spike-rate neuron, similar to the approach
taken in the positioning of basis units in RBF networks, we
ensure the spike-rate network is positioned across its input
space. In order to achieve this therefore, equation (6) is
modified as follows

µi =

n
∑

j=1

(λj − λ
i)wij(1 − r)

σ
2
i =

(

n
∑

j=1

(λj − λ
i)α

w
2
ij

+ρ

n
∑

j 6=k=1

(λj − λ
i)

α
2 (λk − λ

i)
α
2 wijwik



 (1 + r
α)

(12)

whereλi is the centre for neuroni over the dimensions of the
input spacej = 1, · · · , n specific to neuroni, andTref > 0. It
is now possible to place individual neurons across the neuron’s
input space by a suitable choice ofλi. For n input nodes on
the input layer, andM spike-rate neurons on layeri, the output
from this RBF-stylenetwork is defined as

yh(λ) =

M
∑

i=1

whifi(λ) (13)

whereyh is the output from output nodeh connected to neuron
i by the weight connectionwhi, as shown diagrammatically
in figure 2.

We observe that the outputyh(λ) is a special case of the
spike-rate model presented in equation (7) ifr is set to0,
i.e. when there are purely excitatory weight connections for
the neurons in the output layer of the network. Equation (6)
therefore, can be rewritten in the form

µh =
M
∑

i=1

fi(λ)whi

σ
2
h =

M
∑

i=1

fi(λ)α
w

2
hi + ρ

M
∑

i6=k=1

fi(λ)
α
2 fk(λ)

α
2 whiwhk

(14)

In the model defined in equations (13) and (14), thespecial
case spike-rate neuron differs from the spike-rate model,
discussed in section II, because it takes as inputs thefiring
rates from neurons in the previous layer. In a biological
framework, neurons emit and receive spikes. This is not the
case here though. We have instead chosen to model an RBF-
style architecture as our initial step in the examination ofthe
computational performance of a network of spike-rate neurons.
It should be noted however, that in [8] a theoretical framework
has been presented for a network of IF neurons in terms of the
first and second order statistics of the ISI. In the case there,

Fig. 2. Schematic plot of an RBF-style spike-rate network. Each of the
i = 1, · · · , M spike-rate neurons receivesj = 1, · · · , n inputs λ, with
weightswij . The output of the RBF-style networkyh is a summation of the
product of the firing rate of each of the spike-rate neuronsfi(λ) and the
output layer’s weight connectionwhi.

Feng et al. have shown that it is possible to build a neural
framework with a diffusion approximation for the renewal
inputs, and thus an approximation to describe the behaviour
of a network of IF neurons.

IV. N ETWORK TRAINING

To support the learning rules we will present in this paper,
we have included in appendix I, the derivation of a learning
rule for a single spike-rate neuron, first introduced in [26].
This shows how the synaptic weights are updated in order to
reduce the output error, during training. It is included here so
as to provide a broader picture in the training of the spike-rate
neuron, at both a single neuron level and a network level.

In the previous section, we introduced a spike-rate network
design similar to that of an RBF network, i.e. with an input
layer, a hidden layer of non-linear basis functions (or spike-
rate neurons in this case) and a linear output layer. We
therefore choose to apply a similar learning algorithm to
those used in training RBF networks. This algorithm involves
training the network in 2 separate stages. The first stage
consists of centering each of the spike-rate neurons across
the input space. A k-means algorithm is used to identify the
number of subsets within the training data. Once k-means is
complete, the output from this stage will identify the optimum
number of spike-rate neurons to use in the network, and where
their centres should be positioned so as to cover the range of
the input space.

The second stage in the training consists of a learning
rule which is used to update the weights in the network.
The network is trained on the same data set used in the k-
means section of the algorithm. Training is complete when
the network’s output falls within a specified error tolerance.
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A. Stage One

In this first stage, the algorithm partitions the input training
data sets into sub-groups. A set of training data is first iden-
tified, which traditionally covers the input-output space.For
this type of network the input data is a set of synaptic inputs
λ as defined in section II. The remainder of the algorithm is
defined as follows.

Let a
b be the set of input data points, whereb = 1, · · · , B.

For these data points, employ the k-means algorithm [5] to
partition this data into a set ofk vectors µ̃j where j =
1, · · · , k.

1) Partition the input data{ab}, into K initial sets which
cover this input space.

2) Calculate the mean point of each of thek sets

µ̃j(t) =
1

B

∑

b∈Sj

a
b

whereµ̃j(t) is the mean of the data points in setSj at
iteration t.

3) For each data point in{ab} calculate its distance from
each set’s centrẽµj(t), and reassign each point to the
set with the closest mean.

4) Calculate the new mean for each of the updated sets

µ̃j(t + 1) =
1

B

∑

b∈Sj

a
b

5) Repeat until changes in the groupings stabilise.

The resulting centres of each of the sets, are then used as the
centres for each of the spike-rate neurons as presented in (12).
Here µ̃j = λ

j , with the number of spike-rate neuronsM , in
the network design, equal to the number of sets partitioned
with the k-means algorithm, i.e.M = k.

Once the centres of the neurons have been identified the
unsupervised section of the training algorithm is concluded.
This stage of the algorithm has now provided the optimum
number neurons for the network, i.e.M = k in (13), and the
position of their centres across the input space. The network
as defined in (13) can now be trained on the input data using
stage two of the algorithm.

B. Stage Two

This second stage of the algorithm consists of a supervised
learning rule. An approach similar to backpropagation [27],
[34] is used to adjust the weights between the output layer
and the hidden layer.

1) The Output Layer of an RBF-Style Network:The error
function E, also known as thesum of squareserror, is defined
as

E =
1

2

P
∑

h=1

(dh − yh(λ))2 (15)

where yh(λ) is the output of the network at neuronh, as
defined above in (13) anddh is the desired target response of
output neuronh. The error is calculated over the total number
of output neuronsP , in the output layer. The output error here
depends upon the weightswhi and so any correction of these

weights is proportional to the partial derivative of this error.
This gradient change is obtained using the definition foryh(λ)
in equation (13), such that

∂E

∂whi
=

∂E

∂yh(λ)

∂yh(λ)

∂whi
(16)

= (dh − yh(λ))fi(λ)

To compliment the learning rule presented above, at appendix
II we have included a proof concept for a version of this
learning rule which can be applied to RBF-type networks
which use spike-rate neurons in the output layer. Though it is
not biologically realistic for a spike-rate neuron to havefiring
ratesas synaptic inputs, the proof completes the learning rule
in terms of the backpropagation of the network error.

V. A PPLYING THE LEARNING RULE

We now present a series of experimental results to illustrate
the spike-rate network’s ability to perform function approxi-
mation. The network was tested on a variety of functions and
we include two examples here for consideration.

The two functions the network was trained to approximate
are

y(x) = (1 + x − 2x2)e−x2

(17)

y(x) = sin(x) (18)

In all experimental trials a single layered network of 20
spike-rate neurons was used. Each spike-rate neuron had an
equal balance of excitatory and inhibitory synaptic inputs, i.e.
r = 1. These neurons were connected to an output node by
a linear summation of the weighted connection between them
and the output node. An optimal learning rate of 0.2 was used,
and a sample of input points taken from the curves in equations
(17) and (18) were used to train the network.

In figure 3(a) a graphical representation is presented, show-
ing the network’s output throughout the training process as
it was trained to approximate function (17). Initially the
network was set up with equal weight values of0.5. The
training algorithm described in section IV was used to train
the network, which converged the output to within an error of
0.01 by the 1994th iteration.

Figure 4(a) shows the network’s output when trained to
approximate function (18). Initially the network was set up
with equal weight values of0.5. The algorithm trained the
network to within an error convergence of0.01 in 1976
iterations.

Once training was complete, each network was tested on
the remaining input data, i.e. data which had not initially
been sampled for use in the network training. Figures 3(b)
and 4(b) show how the networks generalised this data, for
functions (17) and (18) respectively. In both figures the dotted
lines represent the original target output, and the thick black
lines represent the network’s approximation. Both networks
produced reasonable approximations using the data.

VI. ROBOT CONTROL

Following on from this, a dynamic application for the spike-
rate network is investigated; namely a network designed to
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Fig. 3. Figure 3(a) shows the network’s output when trained to fit the curve
defined by function (17). The change in the network’s output (the thin grey
line) is shown at 100 iterations intervals during the training. The target in both
figures 3(a) and 3(b), is represented by the dotted line. Figure 3(b) shows the
target output (the dotted line), and the network’s output (the thick black line)
after training. Here the network is tested on 100 data pointswithin the range
[−2, 2], which were not part of the data set used in training the network.

act as a control mechanism for a simulated robot arm, in the
task of goal locating. In order to accomplish this, anartificial
environmentwas designed, enabling arm data to be collected
for use in the initial training of the network. The artificial
environment permits accurate and detailed observations tobe
made of the robot arm’s performance and movement, both
during and after training.

A. The Two Joint Robot Arm

The robot controller and its environment are designed for the
task ofgoal location. The controller’s input data is the set of
Cartesian coordinates representing the target object’s location
within a 2 dimensional plane at figure 5. The network’s
objective is to move the robot’s arm towards these target
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Fig. 4. Figure 4(a) shows the network’s output when trained to fit the curve
defined by function (18). The change in the network’s output (the thin grey
line) is shown at 100 iterations intervals during the training. The target in both
figures 4(a) and 4(b), is represented by the dotted line. Figure 4(b) shows the
target output (the dotted line), and the network’s output (the thick black line)
after training. Here the network is tested on 100 data pointswithin the range
[−2, 1], which were not part of the data set used in training the network.

coordinates. The arm itself consists of two sections of length
l1 and l2, and two joints represented by the anglesθ1 andθ2.
The first joint fixates the arm at a point in the plane, with
θ1 describing the circular movement ofl1 about this point.
The second joint is between the two sectionsl1 and l2, with
θ2 describing the angular position ofl2 about this joint. The
network’s outputs are the two joint anglesθ1 and θ2 of the
robot arm. Figure 5 shows a diagrammatic representation of
the arm. A change in these angles directs the movement of
the robot arm

θ2 = arccos

(

x2 + y2 − l21 − l22
2l1l2

)

θ1 = arctan
(y

x

)

− arctan

(

l2sinθ2

l1 + l2cosθ2

)

(19)
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Fig. 5. A 2 dimensional representation of a human arm as seen from above. It
shows the position of the 2 joint anglesθ1 andθ2 which the network outputs
in order to control the movement of the robot arm. The length of the two arm
segments arel1 and l2, and the target position of the arm is represented by
the Cartesian coordinate pair(x, y).

wherex and y are the trajectory coordinates the arm traces
during the movement it makes towards its target. It is possible
to rewrite equation (19) in terms of these Cartesian coordinates
points:

x = l1cosθ1 + l2cos(θ1 + θ2)

y = l1sinθ1 + l2sin(θ1 + θ2) (20)

wherel1 and l2 are the length of the robot arm segments.

B. Design of the Neural Network

In designing the network for use on this task, we began by
identifying the set of inputs-outputs which would be employed
by a robot controller. For the inputs these would be the location
coordinates of the object in the environment. For the outputs
these would be the robot arm’s angular movement over time.
How this information is generated is discussed in section VI-
D.

We chose therefore, to expand on our RBF-style network,
presented in section III-A, but with the inclusion of recurrent
connections. This approach, together with the applicationof a
Backpropagation Through Time(BPTT) learning rule [35], is
one which is perfectly suited to dynamic tasks, and one which
is commonly applied, to similar problems, within the field of
AI. By unfolding the network in time, we are able to treat the
entire network as one large feedforward network.

Using this type of network, each time step in the movement
of the robot arm, i.e.t = 1, ..., T , is represented by a
duplicate network. Each network, at each of the time steps,
receives external inputs from the robot environment, as well
as recurrent connections from neurons in previous time steps,
as represented in figure 6. A neuron’s output at time stept
say, is used as part of the input for its equivalent neuron at
the next time stept + 1. So for an RBF-style network, as
described in section III-A, synaptic inputs into a spike-rate
neuroni at time stept are comprised of two main elements:

Fig. 6. A graphical representation of time-series network, showing the
network unfolded over 3 time steps. Each network has 2 input nodes (the
black squares), a single layer of spike-rate neurons (the white circles) and 2
output nodes (the black circles). Here the network is duplicated over just 3
time steps, with each unit in each network connected to its corresponding unit
in the subsequent network by the weight connectionw̃

(t−1)
ii , as represent in

equation (21).

the normal synaptic input as introduced in (4) and a recurrent
input, such that̄isyn in (4) is rewritten as

ĩ
(t)
syn =

n
∑

j=1

λjwt
ij(1 − r)t

+

√

√

√

√(
n

∑

j=1

λα
j (w

(t)
ij )2 + ρ

n
∑

j 6=k=1

λj

α
2 λk

α
2 w

(t)
ij w

(t)
ik

)(1 + rα)·

B(t) + f
(t−1)
i (λ)w̃

(t−1)
ii

(21)

where ĩsyn is the synaptic input for a spike-rate neuron in a
BPTT network;λ is the input into neuroni which is external
to the network;f (t−1)

i (λi) is the output from neuroni at the
time stept − 1 (note for t = 0, f

(0)
i (λi) = 0); w

(t)
ij is the

magnitude of the postsynaptic potential for the network at time
t; w̃

(t−1)
ii is the time delay weight connection between spike-

rate neuroni at time t − 1 and spike-rate neuroni at time t.
In this example, there is no time delayed recurrent connection
between the external inputs in the previous time step and the
neurons in the current time step, since inputs external to the
network remain constant for allt i.e. λ

(t) = λ
(t−1) for all

t = 1, . . . , T and so we refer to these synaptic inputs asλ.
Also for all t, λi,(t) = λi,(t−1), i.e. the centre of each spike-
rate neuron is constant for allt.

To incorporate the time delayed inputsµ andσ are rewritten

µ̃
(t)
i =

(

n
∑

j=1

(

λj − λ
i
)

w
(t)
ij

)

(1 − r)

+f
(t−1)
i (λ)w̃

(t−1)
ii

(σ̃
(t)
i )2 =

(

n
∑

j=1

(λj − λ
i)α(w

(t)
ij )2

+ρ

n
∑

j 6=k=1

(λj − λ
i)

α
2 (λk − λ

i)
α
2 w

(t)
ij w

(t)
ik

)

·(1 + r
α) (22)
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For an output node of an RBF-style network, as introduced in
(13), the outputy(t)

h at time stept will therefore be

y
(t)
h (λ) =

M
∑

i=1

w
(t)
hi z

(t)
i (23)

with
z
(t)
i = f

(t)
i (λ) (24)

and

f
(t)
i (λ) =

1

Tref+ < T
(t)
i (r) >

(25)

where

< T
(t)
i (r) >=

2

τ

∫

Vthreτ−µ̃
(t)
i

σi

Vrestτ−µ̃
(t)
i

σi

g(x) dx (26)

with h being one ofP units on the output layer andy(0)
h = 0.

For each time stept = 1, 2, . . . , T , each network’s weight
matrix can be represented asw1,w2,. . . ,wT . So we see from
(21), that not only does each network receive inputs from
external sources and other neurons in the network, but also
from neurons in previous time step.

The output nodeh, is the weighted sum of the output it
receives from all the neurons in its current network at timet,
plus its recurrent connections with previous output neurons h
over the previoust−1 iterations. In definitions of time-delayed
neural networks [33] the weight connections beloww

(t)
hi , in our

definition given above, are set to zero. As this network is a
feed-forward time series network the omission ofw

(t−1)
hi and

below is appropriate since only information from the previous
time step is directly passed forwards in the network.

C. Dynamic Training

The training of this type of recurrent network will require
the development of a BPTT-style algorithm. To achieve this
the error function, defined in equation (15), is now defined for
a single layered network. Using the network’s output as shown
in (23), the total error over the time periodst = 1, . . . , T is
given as

E[1, T ] =
1

2

T
∑

t=1

P
∑

h=1

(

d
(t)
h − y

(t)
h (λ)

)2

(27)

whered
(t)
h is the desired response of the network to the input

patternλ at timet. To minimise this error with respect to the
synaptic weights a modified version of the BPTT algorithm
presented in [36], is applied:

1) Propagate information through the network for the time
interval t = 1, . . . , Tn (1 < Tn ≤ T ), noting at each
stage the network’sinputs, desired responseandsynaptic
weights.

2) Perform a backwards pass to calculate the local gradient
change on the output layer:

δ
(t)
h = −

∂E[1, T ]

∂
〈

T
(t)
h (r)

〉 (28)

for each time stept, beginning witht = T and working
backwards.

3) Adjust the weights accordingly using:

w
(t)
hi = w

(t)
hi − ηF w

(t)
hi (29)

where F is the ordered derivative [35] of the error
function (27) with respect to the weights in the network.
This is the feedback of any error in the network’s output
to those weightsw(t)

hi which are responsible for that
output error. Each of the networks fort = 1, . . . , T will
have their weights adjusted using equation (29), where:

F w
(t)
hi =

∂E[1, T ]

∂
〈

T
(t)
h (r)

〉

∂
〈

T
(t)
h (r)

〉

∂w
(t)
hi

=

T
∑

t=1

δ
(t)
h

∂
〈

T
(t)
h (r)

〉

∂w
(t)
hi

(30)

∂
〈

T
(t)
h

(r)
〉

∂w
(t)
hi

is as defined in equation (40) and inputs are

as stated in equation (21).

D. Generating Robot Data

In order to generate a set of robot arm data for training
and testing purposes, we tried to approximate some of the
dynamics observed in human arm movement. In [1], [2], [12]
and [20], it was shown that arm trajectories, between an initial
starting point and a target goal, form an approximate straight
line. When measuring the velocities of the arm movement
along these trajectories they appearbell-like in shape. The
movement begins with an initial acceleration as the arm moves
from its starting point towards the goal, and then begins to
decelerate as it approaches this goal.

To achieve an approximation of this type of movement, to
allow for the generation of training data, a series of(xi, yi)
coordinates are generated which map out the arm’s trajectory
as it moves from its starting position towards its target goal.

Given the initial starting point coordinates(0, 0) and the
final target co’ordinates(x, y) this straight line is split inton
segments

xseg =
x

n

wherexseg is a segment of the line. Using this, a series of
coordinate pairs is calculated using

xi = i × xseg

yi = xi
y

x

As each layer of the network represents an iterative time
step of equal length, velocity is therefore represented by the
variation of the outputs ofθ1 and θ2 from one time step to
the next. Selecting data points from the trajectory data set,
will generate the required velocity if the appropriate spacing
is chosen between corresponding data points in order for them
to produce the desired bell-shaped velocity.
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Fig. 7. Figure (a) shows the target position, and trajectory, of the robot arm in locating the object goal, over 15 equal time intervals. The position of the
robot arm, at each of the 15 time steps, is indicate by the thick black line which represents the segmentsl1 and l2 as indicated in figure 5. Figure (b) shows
the trajectory the robot arm traces out after 39 training iterations. Figure (c) is the total error output of the network during the training process. In figure (d)
the error over for each network, at each time step, is shown over the 39 training iterations. Figures (e) and (f) show the change in σ for each of the two
output units during the 39 training iterations.
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Fig. 8. Figure (a) shows the trajectory traced out by the robot arm in locating the goal at the Cartesian coordinates(1, 0), and figure (b) shows the trajectory
traced out by the robot arm in locating the goal at the Cartesian coordinates(1,−1). The position of the robot arm, at each of the 15 time steps, is indicated
by the thick black line which represents the segmentsl1 and l2 as indicated in figure 5. The controller was initially trained to locate goal 1 and then goal 2.
Figure (c) shows the trajectory paths when the controller was alternatively trained on goals 1 and 2. The error output during this training process is shown
in figure (d).Figures (e) and (f) show the change inσ for each of the two output units over 400 training iterations.
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VII. ROBOT TRIALS

Graphical results are now presented showing the output
when a feed-forward time series network was trained in robot
arm control for use in goal location. In these experimental
trials, networks of varying sizes were trained to locate a variety
of points within the robot arm environment. In each case the
BPTT algorithm presented in section VI-C was used to train
the network. In most experiments, the learning rateη remained
fixed at0.01.

1) Single Goal Locating:The results presented in figure 7
are from one of the experiments performed to test the net-
work’s performance when trained to locate a single goal in
its environment. In these experiments the network consisted
of 2 input nodes which were fully connected to 2 spike-rate
neurons, which were in turn connected to 2 output units. The
recurrent connections were only between neurons on similar
layers. The time series of the network was for 15 equally space
time steps. Figure 6 shows a similar network architecture,
unfolded over 3 time steps.

Figure 7(a) shows the desired output of the network. Each
of the 15 time steps are shown, indicating the position and
trajectory of the robot arm from a starting point at(0, 0) to its
goal at(1, 1). The thick black lines represent the position of
the robot’s angled 2 joint arm at each of the 15 time steps. The
circles represent the robots end point along the trajectorypath.
The spacing of these points are included to help represent the
velocity change along this trajectory.

The BPTT training algorithm was used to train the network
on this trajectory, and figure 7(b) shows the network’s per-
formance in locating the goal, after 39 training iterations. At
this point the algorithm had trained the network to produce
an output within an error tolerance of0.01. On examining the
output in figure 7(b) a small error is observed in the line of
the trajectory as it approaches the goal.

The error plots during the training are shown in figures 7(c)
and 7(d). Figure 7(c) shows the change in the output error
averaged over all the time steps (i.e. each one of the time
series feed-forward networks). Early on in the training cycle,
there was a large output error when compared to the network’s
target output. However, this rapidly reduced during the training
process. Figure 7(d) presents a more detailed plot of this error,
showing the output error for each of the 15 feed-forward
networks, at each point in the 39 stages of the training process.
It can clearly be seen that the most substantial errors occur
at those networks which represent the latter half of the time
series; with the network at time step 15 contributing the largest
error. Network errors are passed forward in the series of
feed-forward networks, accumulating almost exponentially in
networks further along the time sequence.

In figures 7(e) and 7(f) the change in the variance,σ, is
presented during the training process. An important aspect
of this model, over classical models is that information is
contained within the variance and is affected in the training
process. In the experimental models presented here,r = 1
effectively makingµi = 0, thus it is the information contained
within this variance which is used in the control of the robot
arm.

2) Multiple Goals: The results presented in figure 8 are
from the experiment performed to test the network’s perfor-
mance when trained to locate multiple goals in its environ-
ment. In these experiments the networks consisted of 2 input
nodes which were fully connected to a series of 15 spike-rate
neurons, which were in turn connected to 2 output units. The
recurrent connections were only between neurons on similar
layers. The time series of the network was tested for 15 equally
spaced time steps. Due to the computational intensity of the
network, we restricted the number of time steps to 15 so that
we would be able to test the dynamics of the network within
a reasonable time frame.

In the first series of experiments the network was trained to
locate one goal and then trained to locate a second goal. The
results in figures 8(a) and 8(b) show that the networkforgot
how to locate the first goal once it had learned how to locate
the second goal. In both instances the trajectory outputs were
identical to those produced by networks which had only been
trained on a single goal.

In the second series of experiments the network was
trained alternatively on the two sets of trajectory data. The
training process was allowed to continue until convergence
had occurred within a predetermined error tolerance of0.05.
Figure 8(c) shows 2 output trajectory paths for the robot arm
after training the network for 600 iterations. The input goals
were the pairs of coordinate points(1,−1) and (1, 0). Both
trajectory paths show a degree of error when compared to the
expected straight line paths of the desired response. Thereis
a small error still present towards the end of the trajectory
path in both trials, however the spacing of the arm’s position
for each of the time step intervals is more accurate. We saw
evidence of this in the function approximation experiments
in section V. In those experiments the basic shape of the
target curve was quickly modelled by the network, but the
exact positioning of the output curve required longer training
before it exactly matched the target data. In the robot arm
experiments, the shape of the curve would represent the
angular change of the robot arm’s joints over time. This
general shape appears to be modelled at the earlier stages of
the network’s training. The majority of the training appears to
be matching the detail of the movement rather than just the
trend in the data, i.e. the path of the trajectory.

Figure 8(d) is a graphical plot of the overall network
error occurring during the process the network was trained
to locate the two goals. The training cycle took 600 iterations.
However a largeacceptableerror of 0.05 was used to ensure
convergence within a reasonable time period.

Figures 8(e) and 8(f) show the change in the variance,σ,
during the training process. As in the single goal location
task, these biologically plausible models use the information,
contained within the variance, as part of their computation.

VIII. C ONCLUSION

We have expanded on the single neuron model we defined
and tested in [26], and developed learning algorithms for
use with spike-rate neuronal networks, in particular possible
applications for use in engineering tasks. The definition ofthe
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spike-rate model showed a relationship between the synaptic
stimulus and the neuron’s spike-rate activity.

We investigated the similarity between the single spike-
rate neuron model’s output and the basis function of an
RBF model, which we supported in our design of an RBF-
style network of spike-rate neurons. The element of synaptic
varianceσ2, included in the model, proved to be an important
component in the computational abilities of the spike-rate
neuron. When we examined the case of the mean inputµ = 0
(r = 1) we saw thatσ2 alone had computational properties
sufficient enough for the model to be applied to a series of
non-linear tasks. Indeed it was this computational component
of synaptic input, which we used in the two sets of experiments
included here.

In presenting a generalised learning algorithm similar in
approach to the error minimisation used in backpropagation,
we have shown how it is possible to train a spike-rate network
model, and apply it to engineering tasks. Though, the network
structures were less biologically plausible than the original
design of the spike-rate model, the networks proved to be good
approximators capable of learning a variety of mathematical
functions. These networks quite quickly learned the trends
in sets of training data, though the dynamics of the model
meant that exact data matching took a large number of training
iterations.

We were also able to show that this single-layered network
model can be extended into a recurrent time-series structure,
and that it is possible to solve a dynamic control task with
biologically plausible neuron models. By expanding on our
general definition of a spike-rate training algorithm introduced
in [26], we adopted a similar BPTT style training algorithm
applicable for use on time series spiking networks. Though
computationally expensive, the algorithm and network model
were able to solve the robot arm control task and locate the
target in the experiment.

The unfolded feedforward network structure presented in
section VI-B, lacked the real biological plausibility thatone
might have expected when dealing the spike-rate neuron
model. In these networks, the recurrent connections used the
firing rate outputs from one layer, as part of the synaptic input
in the subsequent layer. Though the firing rate has an important
role to play in understanding the input-output relationship
of a neuron, its relevance as part of the synaptic input is
meaningless. By constructing the networks in this way, we
were however, able to show a possible approach to a dynamic
problem using spike-rate neuron.

Both these experiments present us with the opportunity to
expand on our initial designs of a spike-rate network. By
retaining more of the features of the IF neuron, i.e. diffusion
approximations for the synaptic input renewal processes, we
would want to have similar approximations for the outputs
from the neural model, retainingµ and σ in the output
spike train. We would then have an opportunity of building
networks of IF neurons, where input-outputs from each layer
in the network retain more of the biologically observed spik-
ing features. We could then develop the spike-rate learning
rules presented here, for use on more biologically plausible
networks of spiking neurons.

Thus far however, the model has primarily been tested on
spike-rate neurons withr = 1. This was done in order to
test the computational effectiveness of the variance term.We
propose an initial extension to the work by including the case
whenr = 0.5 and0. This will have the effect of including the
meanand the variance in the computation. Comparing how
these models perform in engineering tasks, with results from
similar classical AI models, will help us identify any possible
computational advantage the spike-rate model has over its
classical counterpart. Could modelling the mean signal, and
the “noise” add to the model’s computational power?

Furthermore, the idea of employing the variance in compu-
tation is not new. It has been extensively discussed in the litera-
ture on stochastic resonance. In a typical scenario of stochastic
resonance, the output is maximised when the variance is,
usually, very small in value. In our set up here, however, the
variance and the mean are coupled, which implies that we
can not arbitrarily reduce the noise, while keeping the mean
(the first order statistics) unchanged. Although we do use the
important properties of second order statistics, our approach
is very different from that of stochastic resonance [10].

APPENDIX I
THE LEARNING RULE FOR THESINGLE NEURON MODEL

We include here, the learning rule for the single neuron
model. The model consists of a single layer ofi = 1, · · · , N
spike-rate neurons, each withj = 1, · · · ,m synaptic inputs
λj . The learning algorithm, shown here, seeks to minimise
the error between the spike-rate network’s outputfi(λj), and
the desired target outputdi, i.e.

E =
N

∑

i=1

(fi(λ) − di)
2 (31)

To minimise such an error, as in biological systems, we apply
an approach similar to backpropagation

∆wij = −η∆ijE

whereη is the learning rate and

∆ijE =
∂E

∂wij
(32)

with wij being the synaptic weight connections between units
i and j. Here we are seeking to minimise E.

So taking equation (32) and differentiating we get

∂E

∂wij
= 2(fi(λ) − di)

∂fi(λ)

∂wij
(33)

Using f as defined in equation (7)

∂fi(λ)

∂wij
= −

1

(Tref+ < Ti(r) >)2
∂ < Ti(r) >

∂wij
(34)
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Now, using the mean ISI< Ti(r) >, as defined in (8), we get

∂< Ti(r) >

∂wij
=

2

τ

∂

∂wij

[

g

(

Vthreτ − µi

σi

)

−g

(

Vrestτ − µi

σi

)]

=
2

τ

[

g(
ui

σi
)

(

u′
i,jσi − uiσ

′
i,j

σ2
i

)

−g(
vi

σi
)

(

v′
i,jσi − viσ

′
i,j

σ2
i

)]

(35)

with ui = Vthreτ − µi, vi = Vrestτ − µi, u′
i,j = ∂ui/∂wij ,

σ′
i,j = ∂σi/∂wij . Taken together, we have obtained a learning

rule, equations (34) and (35), for a single layered spike-rate
neuronal network. The weight update rule in (35) uses both
the mean and variance of synaptic input. The important feature
is that any change in the firing rate is dependent of changes
in these two components of synaptic input.

APPENDIX II
THE OUTPUT LAYER OF A MULTI -LAYERED SPIKE-RATE

NETWORK

As a proof concept we present the case for the second
stage of the learning rule, discussed in section IV-B.1, when
yh(λ) = fh(λ), i.e. the case when output units are not linear
weighted sums of hidden spike rate neurons as defined in
equation (13) but are themselves spike-rate neurons. In this
situation, equation (16) now becomes

∂E

∂whi
=

∂E

∂fh(λ)

∂fh(λ)

∂ 〈Th(r)〉

∂ 〈Th(r)〉

∂whi

= δh
∂ 〈Th(r)〉

∂whi
(36)

where:

δh =
∂E

∂fh(λ)

∂fh(λ)

∂ 〈Th(r)〉
(37)

Equation (37) is the local error gradient for output neuronh.
The amount by whichwhi must change is given by thedelta
rule where a proportion,η, of the rate change in errorE is
taken. This is defined as the rate of change of the error with
respect to the synaptic weight connectionwhi

∆whi = −η
∂E

∂whi
(38)

For the output layer the delta rule is defined as

∆whi = −ηδh
∂ 〈Th(r)〉

∂whi
(39)

So taking< Th(r) >, where< Th(r) > is defined in (8)

∂< Th(r) >

∂whi
=

2

τ

∂

∂whi

[

g

(

Vthreτ − µh

σh

)

−g

(

Vrestτ − µh

σh

)]

=
2

τ

[

g(
uh

σh
)

(

u′
h,iσh − uhσ′

h,i

σ2
h

)

−g(
vh

σh
)

(

v′
h,iσh − vhσ′

h,i

σ2
h

)]

(40)

with uh = Vthreτ −µh, vh = Vrestτ −µh, u′
h,i = ∂uh/∂whi,

σ′
h,i = ∂σh/∂whi, and where

µ′
h,i = λi(1 − r)

σ′
h,i =

(λα
i whi + λi

α
2 λik

α
2

∑

ik 6=i whik
)(1 + rα)

σ
(41)

Here λi is the input to neuronh from another neuroni, but
where neuronik 6= i.

1) The Hidden Layer:For those spike-rate neurons on the
hidden layer the local error gradient will be

δi =
∂E

∂fi(λ)

∂fi(λ)

∂ 〈Ti(r)〉

= −
∂E

∂fi(λ)

1

(Tref + 〈Ti(r)〉)2
(42)

and so using the chain rule, the partial derivative of the error
E becomes

∂E

∂fi(λ)
=

∂E

∂fh(λ)

∂fh(λ)

∂λi

= −

P
∑

h=1

(dh − fh(λ))
∂fh(λ)

∂λi
(43)

where λi is the output from spike-rate neuroni. In this
definition of a multi-layered feed-forward spike-rate network,
the output from thei = 1, · · · ,M spike-rate neurons on the
hidden layer is represented by the termλi, and this is the
synaptic input for theh = 1, · · · , P spike-rate neurons on the
output layer.

Differentiating the rate output for unith with respect to the
input it receives fromi, as shown in equation (43)

∂fh(λ)

∂λi
=

−1

(Tref + 〈Th(r)〉)2
∂ 〈Th(r)〉

∂λi

=
−2

τ(Tref + 〈Th(r)〉)2

×

[

g(
uh

σh
)

(

ũ′
h,iσh − uhσ̃′

h,i

σ2
h

)

−g(
vh

σh
)

(

ṽ′
h,iσh − vhσ̃′

h,i

σ2
h

)]

(44)

with uh = Vthreτ − µh, vh = Vrestτ − µh, ṽ′
h,i, ũ

′
h,i =

−∂µh/∂λi, σ̃′
h,i = ∂σh/∂λi. Denoting these derivatives with

respect toλi

µ̃
′
h,i = whi(1 − r)

σ̃
′
h,i =

α[2λα−1
i w2

hi + λi

α
2
−1whi

∑

ik 6=i
λi

α
2 whik

](1 + rα)

4σ

Using the definition ofδh given in equation (37),δi, for hidden
neuroni, is given as

δi = −
∂fi(λ)

∂ 〈Ti(r)〉

P
∑

h=1

(dh − fh(λi))

(Tref + 〈Th(r)〉)2
∂ 〈Th(r)〉

∂λi

= −
∂fi(λ)

∂ 〈Ti(r)〉

P
∑

h=1

δh
∂ 〈Th(r)〉

∂λi
(45)

and thus the weight correction for the hidden neuron

∆wij = −ηδi
∂ 〈Ti(r)〉

∂wij
(46)
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APPENDIX III
THE LOCAL GRADIENT CHANGE IN BPTT

The computation of theδ(t)
h ’s in equation (28) first require a

calculation at timet = T , then the remainder can be calculated
backwardsto time t = 1. This is calculated as follows

δ
(t)
h =

[

d
(t)
h − y

(t)
h (v

(t)
h )

]

y′(t)
h (v

(t)
h ) (47)

wherey′(t)
h (·) is the derivative ofy(t)

h , as defined in (23), with
respect to its activationv(t)

h , as substituted here for clarity.
Calculating theδ’s for the networks in layerst = T−1, · · · , 1:

δ
(t)
h =

∂E[t, t + 1]

∂v
(t)
h

=
∂E(t)

∂v
(t)
h

+
∂E(t + 1)

∂v
(t)
h

=
[

d
(t)
h − y

(t)
h (v

(t)
h )

] ∂y
(t)
h (v

(t)
h )

∂v
(t)
h

+
∂E(t + 1)

∂v
(t)
h

=
[

d
(t)
h − y

(t)
h (v

(t)
h )

]

y′(t)
h (v

(t)
h )

+

P
∑

k=1

[d
(t+1)
k − y

(t+1)
k (v

(t+1)
k )]

∂y
(t+1)
k (v

(t+1)
k )

∂v
(t)
h

= y′(t)
h (v

(t)
h )

×

(

d
(t)
h − y

(t)
h (v

(t)
h ) +

P
∑

k=1

w
(t)
khδ

(t+1)
k

)

substituting for equation (47) and rewriting (23) such that

y
(t)
h (λ) =

M
∑

i=1

w
(t)
hi y

(t)
i (v

(t−1)
i ) (48)

where
y
(t)
i (v

(t−1)
i ) = z

(t)
i (49)
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