
1626 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 9, SEPTEMBER 2008

Training Spiking Neuronal Networks With
Applications in Engineering Tasks

Phill Rowcliffe and Jianfeng Feng

Abstract—In this paper, spiking neuronal models employing
means, variances, and correlations for computation are intro-
duced. We present two approaches in the design of spiking
neuronal networks, both of which are applied to engineering tasks.
In exploring the input–output relationship of integrate-and-fire
(IF) neurons with Poisson inputs, we are able to define mathemati-
cally robust learning rules, which can be applied to multilayer and
time-series networks. We show through experimental applications
that it is possible to train spike-rate networks on function approx-
imation problems and on the dynamic task of robot arm control.

Index Terms—Integrate-and-fire (IF), kernel, mean interspike
interval (ISI), robot arm, variance.

I. INTRODUCTION

I N RECENT YEARS, there has been significant growth in
the field of biological computation. In that time, a closer

unification between neuroscience and artificially intelligent
computational models has been observed. As a result, com-
putational neural models exist, owing more to their biological
counterparts than previous classical artificially intelligent
models. Voltage threshold models such as integrate-and-fire
(IF) model [17], [22], [29]–[31], and the more biophysical
Hodgkin–Huxley (HH) model [16], [21], all incorporate more
of the dynamics of actual biological neurons than the traditional
classical approach to neural modeling, such as the perceptron
[25].

In trying to understand the computational properties of the
brain, it is necessary to understand the biophysical mechanisms
involved in the process. Defining these mechanisms with com-
putational models allows us to further explore some of the com-
plex and adaptive processes, which may be employed by bio-
logical neural systems.

As such, we have seen the field of computational neuro-
science grow considerably in recent years. A result of this
is the emergence of a variety of engineering applications,
and learning rules, which now employ biologically plausible
computational models. Indeed, we have seen many successful
applications within the fields of human arm movement [19],
computer vision [4], and speech recognition [23], [32], to

Manuscript received May 12, 2007; revised December 18, 2007; accepted
December 30, 2008. First published August 15, 2008; current version published
September 4, 2008.

P. Rowcliffe is with the Department of Informatics, School of Science and
Technology (SciTech), University of Sussex, Brighton, East Sussex BN1 9QH,
U.K. (e-mail: phillipr@sussex.ac.uk).

J. Feng is with the Centre for Computational System Biology, Fudan Uni-
versity, Shanghai, China and also with the Center for Scientific Computing and
Computer Science, University of Warwick, Coventry CV4 7AL, U.K. (e-mail:
jffeng@fudan.edu.cn).

Digital Object Identifier 10.1109/TNN.2008.2000999

name just a few. In considering the application of biologically
plausible neural models, we need to consider which type of
model to use, and how best to address the issue of training.

Many of the engineering applications that have applied bio-
physical models have used the IF model as the main computa-
tional unit. In using this model, it is often the temporal sensi-
tivity of the neuron that is exploited within computation, i.e.,
the time interval between successive spikes. In fact, Bohte et al.
[3] used this principle to develop an error regression learning
rule to train a network of IF neurons. It is worth noting at this
point that the rule developed by Bohte et al. [3] is one of the
few learning rules, applied to spiking networks, which is not
based on a Hebbian [15] approach to synaptic weight modifi-
cation. Indeed, many of the learning rules, developed for use
on spike-time-dependent models [13], rely on Hebbian corre-
lation as the principal means for synaptic weight modification.
However, as Bohte et al. have shown, with their backpropaga-
tion learning rule, Hebbian learning need not be the only ap-
proach to training IF neurons for use within engineering.

In [26], a single biologically plausible spike-rate model used a
mathematically derived backpropagation learning rule, to solve
a nonlinear tractable task. Like Bohte et al. in [3], the learning
rule was based on error regression. However, the neuron model
used in [26] represented the IF model in terms of its firing rate.
Defining the model in these terms provided a relationship be-
tween the synaptic input of a neuron and the firing rate output
of the model. The spike-rate model as presented in [26] pro-
vided both first- and second-order statistical representation of
the synaptic input. As such, computational information is shown
to be present in both the mean and the variance of synaptic input.
When plotting the spiking rate output of the model against its
synaptic input, Rowcliffe et al. [26] presented a series of firing
rate output profiles, kernel-like in nature. One of the main ob-
servation about this model is that its output firing rate appears to
owe more to radial basis function (RBF) model than its classical
predecessor: the perceptron.

As a unit of computation though, the single spike-rate model
has advantages over some classical models with the inclusion of
both the mean firing rate and the variance of the firing rate. With
many classical models, like the perceptron, if there is an equal
balance of excitatory and inhibitory inputs, the mean effect on
the model is zero. With the spike-rate model, this is not the case.
The spike-rate model includes both first- and second-order sta-
tistics: the mean and the variance. Indeed, it was shown in [9]
and [26] that even when the mean input vanishes, the model and
the learning rule still function due to the synaptic variance. As
such, the spike-rate neuron is a computing model of both the
mean and variance. The output surface planes for this model
have been shown to be controllable by synaptic modification
through the use of the derived learning rule [26].

1045-9227/$25.00 © 2008 IEEE

ROWCLIFFE AND FENG: TRAINING SPIKING NEURONAL NETWORKS WITH APPLICATIONS IN ENGINEERING TASKS 1627

The spike-rate model, therefore, has potential engineering ap-
plications, which we will introduce as part of this paper. The ad-
vantages of using second-order statistics over the classical ap-
proach, which mainly use first-order statistics, have been known
in literature for many years. In [11], for example, Feng and
Tuckwell introduced an optimal control task based upon the
control of second-order statistics, the variance, which presented
some interesting properties.

Introducing second-order statistics in computations is though
a minimal requirement if we intend to implement stochastic
computations; an example being the Bayesian approach. Hence,
the framework we present here opens up the possibility of car-
rying out a random computation in neuronal networks.

The computational power of spiking neuronal networks have
already been explored in the liquid state machine [23] and the
echo state machine [18]. In their work, the computational per-
formance was achieved due to the high-dimensional projection
of the low-dimensional input space (a kernel property). How-
ever, in the approach we present here, though we employ the
kernel property as a natural result of the spiking neuronal net-
work, we do not use the inefficient computational projection of
the input space to a high-dimensional space.

In this paper, therefore, we consider the design and struc-
ture of a network of spike-rate neurons and what is involved
in training these networks for use in engineering tasks. We pro-
pose two applications of these models, for use on specific tasks,
as a basis for investigating their computational properties. Our
approach has been to derive learning algorithms based on a mul-
tilayered network of spike-rate neurons. We have expanded on
the learning rule introduced in [26], where we identified the
input–output relationship of the spike-rate model and applied
an error minimization technique to train the model. The network
designs introduced here are specific to the tasks of function ap-
proximation and robot control, and have similar structures to
RBF networks.

We, therefore, present one of the first applications of a
network of spike-rate neurons and show that it is possible to
train these networks with a mathematically derived learning
rule. Though the networks take a longer period of time to train
than their classical counterparts, they do offer a significant
advantage over classical artificial intelligence (AI) models in
that they include both the mean and the variance of the
input signal.

This paper is set out as follows. Section II will define the
model of the single spike-rate neuron, the basis of which we will
use in the building of our neuronal network that we will define in
Section III. A network learning rule is introduced in Section IV
together with the results from the function approximation tasks,
which we present in Section V. Finally, in Sections VI and VII,
we detail the approach we took in applying the spike-rate model
to the task of robot arm control, defining the recurrent structure
of a time-series network, together with the modified backprop-
agation through time version of our network learning rule.

II. MODEL DESCRIPTION

First, we present the definition of the spike-rate model. We
begin by considering the IF model [6], [13], [31], defined many
times in literature and presented here as follows.

Suppose a cell receives excitatory postsynaptic potentials
(EPSPs) at of its synapses, and inhibitory postsynaptic
potentials (IPSPs) at of its inhibitory synapses. When the
membrane potential is between its resting state and
its threshold , it satisfies the following:

(1)

where is the decay rate of the membrane and is the
synaptic input

(2)

Here, and are renewal processes for , and
and are the magnitudes of the EPSP and IPSP,

respectively. The total current input into the neuron is summed
over all excitatory and inhibitory synapses. When
crosses the membrane threshold from below, a spike is
generated and the membrane resets to its resting potential .

However, in [31], Tuckwell showed that jump processes, such
as and in (2), can be approximated using diffusion
approximations, such that

where and are Brownian motions, and are the
synaptic input renewal process rates with
and , and is the parameter, discussed
in [11], which produces a Poisson process input when .

We have seen in [6] that (1) can be approximated as

(3)

where

(4)

and

(5)

Here, is the correlation coefficient between the th and th
input, a detailed discussion of which is given in [28]. It is worth
noting here, that the model’s description of the synaptic input,
as given in (4), presents it in terms of input mean and variance.

For simplicity of notation, we next consider excitatory and
inhibitory inputs to be independent, with

, and . Here, if the unit only re-
ceives purely excitatory inputs and when the unit receives

1628 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 9, SEPTEMBER 2008

equal excitatory and inhibitory inputs. Equation (5) can now be
rewritten as

(6)

Equations (3), (4), and (6) represent the model in terms of
its membrane potential. As stated previously, the synaptic input
used in this model, given in (4), presents a synaptic input in
terms of the mean input and the variance , about this mean.
The importance of this can be seen in the case when , i.e.,
when a neuron has an equal balance of excitatory and inhibitory
synaptic inputs. In this case, the term in (6), i.e., the mean
input, disappears. However, the variance term remains and
as a result the neuron still receives synaptic activity.

Next, we represent this model in terms of its firing rate. With
the model represented in this way, we are able to see a direct
input–output relationship, previously shown to exist in [7], in
which computational information is encoded within the firing
rate of the model.

To achieve this, first let us define as the firing rate output
of the IF unit , subject to synaptic input rates .
We can write the firing rate in terms of the interspike interval as

(7)

where is the refractory period, is the mean inter-
spike interval of output unit ; note that typically covers the
output space say of .

The definition of the mean interspike interval has previously
been given in [6] as

(8)

where is the decay rate of the IF model, and , known as
Dawson’s integral, is defined as

(9)

Now, the model, as presented in (3) and (4), gives the neuron
in terms of its mean firing rate and its standard deviation. As
stated earlier, in classical artificial neural networks, for a model
with equally balanced excitatory and inhibitory synaptic inputs,
the firing rate activity is silent. In the neural model presented
here, it can clearly be seen that this is not the case.

In Fig. 1, we see an example of the case when in (6),
where the mean term disappears, but the variance term
remains. The figure plots of the firing rate output of a model
with two synapses with varying inputs and

. Equation (7) presents the IF neuron in terms
of its firing rate output and its mean interspike interval.

It is this aspect of the model that has motivated much of the
remainder of this paper. By examining the variance term of a
neuronal model, rather than trying to smooth out any “noise”
element, we will examine its computational properties in its ap-
plication to a series of engineering tasks. As such, we will focus
our experiments on the case of . In doing so, we will ef-
fectively have a firing rate model with synaptic input terms

(10)

We will, however, define the network and learning rules, in
terms of a general approach, because such a learning rule, and
network design, should hold for the case when .

III. SPIKE-RATE NETWORKS

The kernel-like structure of the spike-rate model, similar to
that presented in Fig. 1, is an interesting property of the neuron
model. These kernel-like output profiles were previously ex-
plored in [26], where similar outputs were observed for differing
synaptic weight configurations, i.e., differing values of .

These neural models appear to have more in common with
RBF models than their classical predecessors, such as the per-
ceptron. The spike-rate model’s output for is very similar
to that of a multiquadratic function used in some RBF models.
In comparing this spike-rate model’s output with that of a mul-
tiquadratic RBF, two important similarities have been observed.

First, multiquadratic RBF networks use basis functions sim-
ilar to those introduced in [14], and are generally of the form

(11)

where is the input, , and . The output of the
spike-rate model defined in (7) is equivalent to this function,
when in (11).

Second, in [24], it was proven that for a distinct set of
points in there exists an interpolation matrix ,
if the th element is nonsingular. For
a multiquadratic function to be nonsingular, must be
distinct. This is true for both the multiquadratic RBF model and
the spike-rate model over all real inputs.

These two common features serve as a basis for the develop-
ment of a network model based on the principles of RBF net-
work design. In the numerical models presented here, spike-rate
neurons replace the basis functions presented in traditional RBF
network architectures, and the network’s output comprises a
linear summation of these spike-rate neuron’s outputs.

A. Kernel Neural Networks

We now introduce our first design of a network of spike-rate
neurons based on an RBF-style architecture. The output profile
of the spike-rate model, presented in Fig. 1, shows a kernel cen-
tered at zero when input . We see that a similar output
is obtained in a multiquadratic RBF if , in (11), is set to zero.
So we find that by including centers for each spike-rate neuron,
similar to the approach taken in the positioning of basis units in
RBF networks, we ensure the spike-rate network is positioned

ROWCLIFFE AND FENG: TRAINING SPIKING NEURONAL NETWORKS WITH APPLICATIONS IN ENGINEERING TASKS 1629

Fig. 1. Graphical plot of the firing rate output plane of a single neuron with two synaptic inputs, where � = 2 and r = 1. Input values were varied between �2
and 2.

across its input space. To achieve this, therefore, (6) is modified
as follows:

(12)

where is the center for neuron over the dimensions of the
input space specific to neuron , and . It
is now possible to place individual neurons across the neuron’s
input space by a suitable choice of . For input nodes on the
input layer, and spike-rate neurons on layer , the output from
this RBF-style network is defined as

(13)

where is the output from output node connected to neuron
by the weight connection , as shown diagrammatically in

Fig. 2.
We observe that the output is a special case of the spike-

rate model presented in (7) if is set to 0, i.e., when there are
purely excitatory weight connections for the neurons in the

Fig. 2. Schematic plot of an RBF-style spike-rate network. Each of the i =
1; . . . ;M spike-rate neurons receives j = 1; . . . ; n inputs ���, with weights
w . The output of the RBF-style network y is a summation of the product
of the firing rate of each of the spike-rate neurons f (���) and the output layer’s
weight connection w .

output layer of the network. Equation (6), therefore, can be
rewritten in the form

(14)

In the model defined in (13) and (14), the special case
spike-rate neuron differs from the spike-rate model, discussed
in Section II, because it takes as inputs the firing rates from

1630 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 9, SEPTEMBER 2008

neurons in the previous layer. In a biological framework, neu-
rons emit and receive spikes. This is not the case here though.
We have instead chosen to model an RBF-style architecture
as our initial step in the examination of the computational
performance of a network of spike-rate neurons. It should be
noted, however, that in [8], a theoretical framework has been
presented for a network of IF neurons in terms of the first-
and second-order statistics of the interspike interval (ISI). In
the case there, Feng et al. have shown that it is possible to
build a neural framework with a diffusion approximation for
the renewal inputs, and thus an approximation to describe the
behavior of a network of IF neurons.

IV. NETWORK TRAINING

To support the learning rules we will present in this paper, we
have included in Appendix I the derivation of a learning rule for
a single spike-rate neuron, first introduced in [26]. This shows
how the synaptic weights are updated in order to reduce the
output error, during training. It is included here so as to provide
a broader picture in the training of the spike-rate neuron, at both
a single-neuron level and a network level.

In Section III, we introduced a spike-rate network design sim-
ilar to that of an RBF network, i.e., with an input layer, a hidden
layer of nonlinear basis functions (or spike-rate neurons in this
case), and a linear output layer. We, therefore, choose to apply
a similar learning algorithm to those used in training RBF net-
works. This algorithm involves training the network in two sep-
arate stages. The first stage consists of centering each of the
spike-rate neurons across the input space. A -means algorithm
is used to identify the number of subsets within the training data.
Once -means is complete, the output from this stage will iden-
tify the optimum number of spike-rate neurons to use in the net-
work, and where their centers should be positioned so as to cover
the range of the input space.

The second stage in the training consists of a learning rule,
which is used to update the weights in the network. The network
is trained on the same data set used in the -means section of the
algorithm. Training is complete when the network’s output falls
within a specified error tolerance.

A. Stage One

In this first stage, the algorithm partitions the input training
data sets into subgroups. A set of training data is first identified,
which traditionally covers the input–output space. For this type
of network, the input data is a set of synaptic inputs as de-
fined in Section II. The remainder of the algorithm is defined as
follows.

Let be the set of input data points, where . For
these data points, employ the -means algorithm [5] to partition
this data into a set of vectors where .

1) Partition the input data into initial sets that cover
this input space.

2) Calculate the mean point of each of the sets

where is the mean of the data points in set at
iteration .

3) For each data point in , calculate its distance from each
set’s center , and reassign each point to the set with
the closest mean.

4) Calculate the new mean for each of the updated sets

5) Repeat until changes in the groupings stabilize.
The resulting centers of each of the sets are then used as the
centers for each of the spike-rate neurons as presented in (12).
Here, with the number of spike-rate neurons , in the
network design, equal to the number of sets partitioned with the

-means algorithm, i.e., .
Once the centers of the neurons have been identified, the un-

supervised section of the training algorithm is concluded. This
stage of the algorithm has now provided the optimum number
neurons for the network, i.e., in (13) and the position of
their centers across the input space. The network as defined in
(13) can now be trained on the input data using stage two of the
algorithm.

B. Stage Two

This second stage of the algorithm consists of a supervised
learning rule. An approach similar to backpropagation [27], [34]
is used to adjust the weights between the output layer and the
hidden layer.

1) The Output Layer of an RBF-Style Network: The error
function , also known as the sum of squares error, is defined
as

(15)

where is the output of the network at neuron , as defined
in (13) and is the desired target response of output neuron .
The error is calculated over the total number of output neurons

, in the output layer. The output error here depends upon the
weights and so any correction of these weights is propor-
tional to the partial derivative of this error. This gradient change
is obtained using the definition for in (13), such that

(16)

To compliment the learning rule presented above, in
Appendix II, we have included a proof concept for a ver-
sion of this learning rule that can be applied to RBF-type
networks, which use spike-rate neurons in the output layer.
Though it is not biologically realistic for a spike-rate neuron
to have firing rates as synaptic inputs, the proof completes the
learning rule in terms of the backpropagation of the network
error.

V. APPLYING THE LEARNING RULE

We now present a series of experimental results to illustrate
the spike-rate network’s ability to perform function approxima-

ROWCLIFFE AND FENG: TRAINING SPIKING NEURONAL NETWORKS WITH APPLICATIONS IN ENGINEERING TASKS 1631

Fig. 3. (a) Network’s output when trained to fit the curve defined by function
(17). The change in the network’s output (the thin gray line) is shown at 100
iterations intervals during the training. The target in both (a) and (b) is repre-
sented by the dotted line. (b) Target output (the dotted line) and the network’s
output (the thick black line) after training. Here, the network is tested on 100
data points within the range [�2; 2], which were not part of the data set used in
training the network.

tion. The network was tested on a variety of functions and we
include two examples here for consideration.

The two functions the network was trained to approximate are

(17)

(18)

In all experimental trials, a single-layered network of 20
spike-rate neurons was used. Each spike-rate neuron had an
equal balance of excitatory and inhibitory synaptic inputs, i.e.,

. These neurons were connected to an output node by a
linear summation of the weighted connection between them
and the output node. An optimal learning rate of 0.2 was used,
and a sample of input points taken from the curves in (17) and
(18) were used to train the network.

Fig. 4. (a) Network’s output when trained to fit the curve defined by function
(18). The change in the network’s output (the thin gray line) is shown at 100
iterations intervals during the training. The target in both (a) and (b) is repre-
sented by the dotted line. (b) Target output (the dotted line) and the network’s
output (the thick black line) after training. Here, the network is tested on 100
data points within the range [�2; 1], which were not part of the data set used in
training the network.

In Fig. 3(a), a graphical representation is presented, showing
the network’s output throughout the training process as it was
trained to approximate function (17). Initially, the network was
set up with equal weight values of 0.5. The training algorithm
described in Section IV was used to train the network, which
converged the output to within an error of 0.01 by the 1994th
iteration.

Fig. 4(a) shows the network’s output when trained to ap-
proximate function (18). Initially, the network was set up with
equal weight values of 0.5. The algorithm trained the network
to within an error convergence of 0.01 in 1976 iterations.

Once training was complete, each network was tested on the
remaining input data, i.e., data which had not initially been sam-
pled for use in the network training. Figs. 3(b) and 4(b) show
how the networks generalized this data, for functions (17) and

1632 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 9, SEPTEMBER 2008

Fig. 5. A 2-D representation of a human arm as seen from above. It shows the
position of the two joint angles � and � , which the network outputs to control
the movement of the robot arm. The length of the two arm segments are l and
l , and the target position of the arm is represented by the Cartesian coordinate
pair (x; y).

(18), respectively. In both figures, the dotted lines represent the
original target output and the thick black lines represent the net-
work’s approximation. Both networks produced reasonable ap-
proximations using the data.

VI. ROBOT CONTROL

Following on from this, a dynamic application for the spike-
rate network is investigated, namely, a network designed to act
as a control mechanism for a simulated robot arm, in the task of
goal locating. To accomplish this, an artificial environment was
designed, enabling arm data to be collected for use in the initial
training of the network. The artificial environment permits ac-
curate and detailed observations to be made of the robot arm’s
performance and movement, both during and after training.

A. Two Joint Robot Arm

The robot controller and its environment are designed for the
task of goal location. The controller’s input data is the set of
Cartesian coordinates representing the target object’s location
within a 2-D plane at Fig. 5. The network’s objective is to move
the robot’s arm towards these target coordinates. The arm itself
consists of two sections of length and and two joints repre-
sented by the angles and . The first joint fixates the arm at a
point in the plane, with describing the circular movement of

about this point. The second joint is between the two sections
and with describing the angular position of about this

joint. The network’s outputs are the two joint angles and
of the robot arm. Fig. 5 shows a diagrammatic representation of

the arm. A change in these angles directs the movement of the
robot arm

(19)

where and are the trajectory coordinates the arm traces
during the movement it makes towards its target. It is possible
to rewrite (19) in terms of these Cartesian coordinates points

(20)

where and are the length of the robot arm segments.

B. Design of the Neural Network

In designing the network for use in this task, we began by
identifying the set of inputs–outputs, which would be employed
by a robot controller. For the inputs, these would be the location
coordinates of the object in the environment. For the outputs,
these would be the robot arm’s angular movement over time.
How this information is generated is discussed in Section VI-D.

We chose, therefore, to expand on our RBF-style network,
presented in Section III-A, but with the inclusion of recurrent
connections. This approach, together with the application of a
backpropagation through time (BPTT) learning rule [35], is one
which is perfectly suited to dynamic tasks, and one which is
commonly applied, to similar problems, within the field of AI.
By unfolding the network in time, we are able to treat the entire
network as one large feedforward network.

Using this type of network, each time step in the movement
of the robot arm, i.e., , is represented by a dupli-
cate network. Each network, at each of the time steps, receives
external inputs from the robot environment, as well as recurrent
connections from neurons in previous time steps, as represented
in Fig. 6. A neuron’s output at time step is used as part of the
input for its equivalent neuron at the next time step . So for
an RBF-style network, as described in Section III-A, synaptic
inputs into a spike-rate neuron at time step comprise two main
elements: the normal synaptic input as introduced in (4) and a
recurrent input, such that in (4) is rewritten as (21) shown
at the bottom of the page, where is the synaptic input for a
spike-rate neuron in a BPTT network, is the input into neuron

which is external to the network, is the output from
neuron at the time step [note for],

is the magnitude of the postsynaptic potential for the net-

work at time , and is the time delay weight connection
between spike-rate neuron at time and spike-rate neuron

(21)

ROWCLIFFE AND FENG: TRAINING SPIKING NEURONAL NETWORKS WITH APPLICATIONS IN ENGINEERING TASKS 1633

Fig. 6. Graphical representation of time-series network, showing the network
unfolded over three time steps. Each network has two input nodes (the black
squares), a single layer of spike-rate neurons (the white circles), and two output
nodes (the black circles). Here, the network is duplicated over just three time
steps, with each unit in each network connected to its corresponding unit in the
subsequent network by the weight connection ~w , as represented in (21).

at time . In this example, there is no time-delayed recurrent
connection between the external inputs in the previous time step
and the neurons in the current time step, because inputs external
to the network remain constant for all i.e., for
all , and so we refer to these synaptic inputs as .
Also for all , i.e., the center of each spike-rate
neuron is constant for all .

To incorporate the time-delayed inputs, and are rewritten

(22)

For an output node of an RBF-style network, as introduced in
(13), the output at time step will, therefore, be

(23)

with

(24)

and

(25)

where

(26)

with being one of units on the output layer and . For
each time step , each network’s weight matrix

can be represented as . So we see from (21)
that not only does each network receive inputs from external
sources and other neurons in the network, but also from neurons
in previous time step.

The output node is the weighted sum of the output it re-
ceives from all the neurons in its current network at time ,
plus its recurrent connections with previous output neurons
over the previous iterations. In definitions of time-delayed
neural networks [33], the weight connections below , in our
definition given previously, are set to zero. Because this network
is a feedforward time-series network, the omission of
and below is appropriate since only information from the pre-
vious time step is directly passed forward in the network.

C. Dynamic Training

The training of this type of recurrent network will require the
development of a BPTT-style algorithm. To achieve this, the
error function defined in (15) is now defined for a single-layered
network. Using the network’s output as shown in (23), the total
error over the time periods is given as

(27)

where is the desired response of the network to the input
pattern at time . To minimize this error with respect to the
synaptic weights, a modified version of the BPTT algorithm pre-
sented in [36] is applied.

1) Propagate information through the network for the time
interval , noting at each
stage the network’s inputs, desired response, and synaptic
weights.

2) Perform a backwards pass to calculate the local gradient
change on the output layer

(28)

for each time step , beginning with and working
backwards.

3) Adjust the weights accordingly using

(29)

where is the ordered derivative [35] of the error function
(27) with respect to the weights in the network. This is
the feedback of any error in the network’s output to those
weights that are responsible for that output error. Each
of the networks for will have their weights
adjusted using (29) where

(30)

1634 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 9, SEPTEMBER 2008

is as defined in (40) and inputs are
as stated in (21).

D. Generating Robot Data

To generate a set of robot arm data for training and testing
purposes, we tried to approximate some of the dynamics ob-
served in human arm movement. In [1], [2], [12], and [20], it
was shown that arm trajectories, between an initial starting point
and a target goal, form an approximate straight line. When mea-
suring the velocities of the arm movement along these trajecto-
ries they appear bell-like in shape. The movement begins with
an initial acceleration as the arm moves from its starting point
towards the goal, and then begins to decelerate as it approaches
this goal.

To achieve an approximation of this type of movement, to
allow for the generation of training data, a series of co-
ordinates are generated, which map out the arm’s trajectory as
it moves from its starting position towards its target goal.

Given the initial starting point coordinates and the final
target coordinates this straight line is split into segments

where is a segment of the line. Using this, a series of coor-
dinate pairs is calculated using

As each layer of the network represents an iterative time step of
equal length, velocity is, therefore, represented by the variation
of the outputs of and from one time step to the next. Se-
lecting data points from the trajectory data set, will generate the
required velocity if the appropriate spacing is chosen between
corresponding data points in order for them to produce the de-
sired bell-shaped velocity.

VII. ROBOT TRIALS

Graphical results are now presented showing the output when
a feedforward time-series network was trained in robot arm con-
trol for use in goal location. In these experimental trials, net-
works of varying sizes were trained to locate a variety of points
within the robot arm environment. In each case, the BPTT algo-
rithm presented in Section VI-C was used to train the network.
In most experiments, the learning rate remained fixed at 0.01.

1) Single-Goal Locating: The results presented in Fig. 7 are
from one of the experiments performed to test the network’s per-
formance when trained to locate a single goal in its environment.
In these experiments, the network consisted of two input nodes
that were fully connected to two spike-rate neurons, which were
in turn connected to two output units. The recurrent connections
were only between neurons on similar layers. The time series of
the network was for 15 equally spaced time steps. Fig. 6 shows
a similar network architecture, unfolded over three time steps.

Fig. 7(a) shows the desired output of the network. Each of the
15 time steps is shown indicating the position and trajectory of
the robot arm from a starting point at to its goal at .
The thick black lines represent the position of the robot’s angled

two joint arm at each of the 15 time steps. The circles represent
the robots end point along the trajectory path. The spacing of
these points are included to help represent the velocity change
along this trajectory.

The BPTT training algorithm was used to train the network on
this trajectory, and Fig. 7(b) shows the network’s performance
in locating the goal, after 39 training iterations. At this point, the
algorithm had trained the network to produce an output within
an error tolerance of 0.01. On examining the output in Fig. 7(b),
a small error is observed in the line of the trajectory as it ap-
proaches the goal.

The error plots during the training are shown in
Fig. 7(c) and (d). Fig. 7(c) shows the change in the output error
averaged over all the time steps (i.e., each one of the time-series
feedforward networks). Early on in the training cycle there
was a large output error when compared to the network’s
target output. However, this rapidly reduced during the training
process. Fig. 7(d) presents a more detailed plot of this error,
showing the output error for each of the 15 feedforward
networks, at each point in the 39 stages of the training process.
It can clearly be seen that the most substantial errors occur
at those networks which represent the latter half of the time
series, with the network at time step 15 contributing the largest
error. Network errors are passed forward in the series of
feedforward networks, accumulating almost exponentially in
networks further along the time sequence.

In Fig. 7(e) and (f), the change in the variance, is presented
during the training process. An important aspect of this model
over classical models is that information is contained within the
variance and is affected in the training process. In the experi-
mental models presented here, effectively making ,
thus it is the information contained within this variance, which
is used in the control of the robot arm.

2) Multiple Goals: The results presented in Fig. 8 are from
the experiment performed to test the network’s performance
when trained to locate multiple goals in its environment. In
these experiments, the networks consisted of two input nodes
that were fully connected to a series of 15 spike-rate neurons,
which were in turn connected to two output units. The recur-
rent connections were only between neurons on similar layers.
The time series of the network was tested for 15 equally spaced
time steps. Due to the computational intensity of the network,
we restricted the number of time steps to 15 so that we would
be able to test the dynamics of the network within a reasonable
time frame.

In the first series of the experiments, the network was trained
to locate one goal and then trained to locate a second goal. The
results in Fig. 8(a) and (b) show that the network forgot how to
locate the first goal once it had learned how to locate the second
goal. In both instances, the trajectory outputs were identical to
those produced by networks that had only been trained on a
single goal.

In the second series of the experiments, the network was
trained alternatively on the two sets of trajectory data. The
training process was allowed to continue until convergence had
occurred within a predetermined error tolerance of 0.05. Fig. 8(c)
shows two output trajectory paths for the robot arm after training

ROWCLIFFE AND FENG: TRAINING SPIKING NEURONAL NETWORKS WITH APPLICATIONS IN ENGINEERING TASKS 1635

Fig. 7. (a) Target position and trajectory of the robot arm in locating the object goal over 15 equal time intervals. The position of the robot arm, at each of the 15 time
steps, is indicated by the thick black line that represents the segments l and l as indicated in Fig. 5. (b) Trajectory the robot arm traces out after 39 training iter-
ations. (c) Total error output of the network during the training process. (d) Error over for each network, at each time step, is shown over the 39 training iterations.
(e) and (f) Change in � for each of the two output units during the 39 training iterations.

the network for 600 iterations. The input goals were the pairs of
coordinate points and . Both trajectory paths show
a degree of error when compared to the expected straight line
paths of the desired response. There is a small error still present
towards the end of the trajectory path in both trials; however,
the spacing of the arm’s position for each of the time step inter-

vals is more accurate. We saw evidence of this in the function
approximation experiments in Section V. In those experiments,
the basic shape of the target curve was quickly modeled by the
network, but the exact positioning of the output curve required
longer training before it exactly matched the target data. In the
robotarm experiments, the shape of the curve would represent the

1636 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 9, SEPTEMBER 2008

Fig. 8. (a) Trajectory traced out by the robot arm in locating the goal at the Cartesian coordinates (1; 0). (b) Trajectory traced out by the robot arm in locating the goal
at the Cartesian coordinates (1;�1). The position of the robot arm, at each of the 15 time steps, is indicated by the thick black line, which represents the segments l

and l as indicated in Fig. 5. The controller was initially trained to locate goal 1 and then goal 2. (c) Trajectory paths when the controller was alternatively trained on
goals 1 and 2. (d) Error output during this training process. (e) and (f) Change in � for each of the two output units over 400 training iterations.

angular change of the robot arm’s joints over time. This general
shape appears to be modeled at the earlier stages of the network’s
training. The majority of the training appears to be matching the
detail of the movement rather than just the trend in the data, i.e.,
the path of the trajectory.

Fig. 8(d) is a graphical plot of the overall network error oc-
curring during the process the network was trained to locate the
two goals. The training cycle took 600 iterations. However, a
large acceptable error of 0.05 was used to ensure convergence
within a reasonable time period.

ROWCLIFFE AND FENG: TRAINING SPIKING NEURONAL NETWORKS WITH APPLICATIONS IN ENGINEERING TASKS 1637

Fig. 8(e) and (f) shows the change in the variance during the
training process. As in the single-goal location task, these bio-
logically plausible models use the information, contained within
the variance, as part of their computation.

VIII. CONCLUSION

We have expanded on the single-neuron model we defined
and tested in [26], and developed learning algorithms for use
with spike-rate neuronal networks, in particular, possible ap-
plications for use in engineering tasks. The definition of the
spike-rate model showed a relationship between the synaptic
stimulus and the neuron’s spike-rate activity.

We investigated the similarity between the single spike-rate
neuron model’s output and the basis function of an RBF model,
which we supported in our design of an RBF-style network of
spike-rate neurons. The element of synaptic variance , in-
cluded in the model, proved to be an important component in
the computational abilities of the spike-rate neuron. When we
examined the case of the mean input , we saw that

alone had computational properties sufficient enough for the
model to be applied to a series of nonlinear tasks. Indeed, it was
this computational component of synaptic input, which we used
in the two sets of experiments included here.

In presenting a generalized learning algorithm similar in
approach to the error minimization used in backpropagation,
we have shown how it is possible to train a spike-rate network
model, and apply it to engineering tasks. Though the network
structures were less biologically plausible than the original
design of the spike-rate model, the networks proved to be good
approximators capable of learning a variety of mathematical
functions. These networks quite quickly learned the trends
in sets of training data, though the dynamics of the model
meant that exact data matching took a large number of training
iterations.

We were also able to show that this single-layered network
model can be extended into a recurrent time-series structure,
and that it is possible to solve a dynamic control task with bi-
ologically plausible neuron models. By expanding on our gen-
eral definition of a spike-rate training algorithm introduced in
[26], we adopted a similar BPTT style training algorithm ap-
plicable for use on time-series spiking networks. Though com-
putationally expensive, the algorithm and network model were
able to solve the robot arm control task and locate the target in
the experiment.

The unfolded feedforward network structure presented in
Section VI-B lacked the real biological plausibility that one
might have expected when dealing the spike-rate neuron model.
In these networks, the recurrent connections used the firing
rate outputs from one layer, as part of the synaptic input in the
subsequent layer. Though the firing rate has an important role to
play in understanding the input–output relationship of a neuron,
its relevance as part of the synaptic input is meaningless. By
constructing the networks in this way, we were, however,
able to show a possible approach to a dynamic problem using
spike-rate neuron.

Both these experiments present us with the opportunity to ex-
pand on our initial designs of a spike-rate network. By retaining
more of the features of the IF neuron, i.e., diffusion approx-

imations for the synaptic input renewal processes, we would
want to have similar approximations for the outputs from the
neural model, retaining and in the output spike train. We
would then have an opportunity of building networks of IF neu-
rons, where inputs–outputs from each layer in the network retain
more of the biologically observed spiking features. We could
then develop the spike-rate learning rules presented here, for use
on more biologically plausible networks of spiking neurons.

Thus far, however, the model has primarily been tested on
spike-rate neurons with . This was done in order to test the
computational effectiveness of the variance term. We propose an
initial extension to the work by including the case when
and 0. This will have the effect of including the mean and the
variance in the computation. Comparing how these models per-
form in engineering tasks, with results from similar classical
AI models, will help us identify any possible computational
advantage the spike-rate model has over its classical counter-
part. Could modeling the mean signal and the “noise” add to
the model’s computational power?

Furthermore, the idea of employing the variance in computa-
tion is not new. It has been extensively discussed in the literature
on stochastic resonance. In a typical scenario of stochastic res-
onance, the output is maximized when the variance is, usually,
very small in value. In our set up here, however, the variance
and the mean are coupled, which implies that we cannot arbi-
trarily reduce the noise, while keeping the mean (the first-order
statistics) unchanged. Although we do use the important prop-
erties of second-order statistics, our approach is very different
from that of stochastic resonance [10].

APPENDIX I
LEARNING RULE FOR THE SINGLE-NEURON MODEL

We include here the learning rule for the single-neuron model.
The model consists of a single layer of spike-
rate neurons, each with synaptic inputs . The
learning algorithm, shown here, seeks to minimize the error be-
tween the spike-rate network’s output and the desired
target output , i.e.,

(31)

To minimize such an error, as in biological systems, we apply
an approach similar to backpropagation

where is the learning rate and

(32)

with being the synaptic weight connections between units
and . Here we are seeking to minimize .

Taking (32) and differentiating, we get

(33)

1638 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 9, SEPTEMBER 2008

Using as defined in (7)

(34)

Now, using the mean ISI , as defined in (8), we get

(35)

with and
. Taken together, we have obtained a learning

rule (34) and (35) for a single-layered spike-rate neuronal net-
work. The weight update rule in (35) uses both the mean and
the variance of synaptic input. The important feature is that any
change in the firing rate depends on the changes in these two
components of synaptic input.

APPENDIX II
THE OUTPUT LAYER OF A MULTILAYERED

SPIKE-RATE NETWORK

As a proof concept, we present the case for the second
stage of the learning rule, discussed in Section IV-B1, when

, i.e., the case when output units are not linear
weighted sums of hidden spike rate neurons as defined in (13)
but are themselves spike-rate neurons. In this situation, (16)
now becomes

(36)

where

(37)

Equation (37) is the local error gradient for output neuron .
The amount by which must change is given by the delta
rule where a proportion of the rate change in error is taken.
This is defined as the rate of change of the error with respect to
the synaptic weight connection

(38)

For the output layer, the delta rule is defined as

(39)

so taking , where is defined in (8)

(40)

with
and , and where

(41)

Here, is the input to neuron from another neuron , but
where neuron .

1) The Hidden Layer: For those spike-rate neurons on the
hidden layer, the local error gradient will be

(42)

and so using the chain rule, the partial derivative of the error
becomes

(43)

where is the output from spike-rate neuron . In this definition
of a multilayered feedforward spike-rate network, the output
from the spike-rate neurons on the hidden layer
is represented by the term , and this is the synaptic input for
the spike-rate neurons on the output layer.

Differentiating the rate output for unit with respect to the
input it receives from , as shown in (43)

(44)

with
and . Denoting these derivatives

with respect to

ROWCLIFFE AND FENG: TRAINING SPIKING NEURONAL NETWORKS WITH APPLICATIONS IN ENGINEERING TASKS 1639

Using the definition of given in (37), , for hidden neuron ,
is given as

(45)

and thus, the weight correction for the hidden neuron

(46)

APPENDIX III
LOCAL GRADIENT CHANGE IN BPTT

The computation of the ’s in (28) first require a calculation
at time , then the remainder can be calculated backwards
to time . This is calculated as follows:

(47)

where is the derivative of , as defined in (23), with
respect to its activation , as substituted here for clarity. Cal-
culating the ’s for the networks in layers

substituting for (47) and rewriting (23) such that

(48)

where

(49)

REFERENCES

[1] W. Abend, E. Bizzi, and P. Morasso, Human Arm Trajectory Forma-
tion, vol. 105, pp. 331–348, 1982.

[2] C. G. Atkenson and J. M. Hollerbach, “Kinematic features of unre-
strained vertical arm movements,” J. Neurosci., vol. 5, pp. 2318–2330,
1985.

[3] S. M. Bohte, J. N. J. N. Kok, and H. H. L. Poutre, “Error-backpropaga-
tion in temporally encoded networks of spiking neurons,” Neurocom-
puting, vol. 48, no. 1-4, pp. 7–37, 2002.

[4] C. Christodoulou, G. Bugmann, and T. G. Clarkson, “A spiking neuron
model: Applications and learning,” Neural Netw., vol. 15, no. 7, pp.
891–908, 2002.

[5] R. O. Duda and P. E. Hart, Pattern Classification And Scene Anal-
ysis. New York: Wiley, 1973.

[6] J. Feng, “Is the integrate-and-fire model good enough?,” Neural Netw.,
vol. 14, pp. 955–975, 2001.

[7] J. Feng, H. Buxton, and Y. C. Deng, “Training the integrate-and-fire
model with the informax principle I,” J. Physics, vol. 35, pp.
2379–2394, 2002.

[8] J. Feng, Y. C. Deng, and E. Rossoni, “Dynamics of moment neuronal
networks,” Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip.
Top., vol. 73, 2006, 049106-1–049106-17.

[9] J. Feng, Y. Sun, H. Buxton, and G. Wei, “Training the integrate-and-fire
model with the informax principle II,” IEEE Trans. Neural Netw., vol.
14, no. 2, pp. 326–336, Mar. 2003.

[10] J. Feng and B. Tirozzi, “Stochastic resonance tuned by correlations in
neural models,” Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Inter-
discip. Top., vol. 61, no. 4, pp. 4207–4211, 2000.

[11] J. Feng and H. C. Tuckwell, “Optimal control of neuronal activity,”
Phys. Rev. Lett., vol. 91, 2003, 018101-1–018101-6.

[12] T. Flash and N. Hogan, “The coordination of arm movements: An ex-
perimentally confirmed mathematical model,” J. Neurosci., vol. 5, no.
7, pp. 1688–1703, 1985.

[13] W. Gerstner and W. Kistler, Spiking Neuron Models: Single Neurons,
Populations, Plasticity, 1st ed. Cambridge, U.K.: Cambridge Univ.
Press, 2002.

[14] R. L. Hardy, “Multiquadratic equations of topography and other irreg-
ular surfaces,” J. Geophys. Res., vol. 76, pp. 1905–1915, 1971.

[15] D. O. Hebb, The Organization of Behavior: A Neuropsychological
Theory. New York: Wiley, 1949.

[16] A. L. Hodgkin and A. F. Huxley, “A quantitative description of ion
currents and its applications to conductance and excitation in nerve
membranes,” J. Physiol. (London), vol. 117, pp. 500–544, 1952.

[17] J. J. B. Jack, D. Nobel, and R. Tsien, Electric Current Flow in Excitable
Cells, 1st ed. Oxford, U.K.: Oxford Univ. Press, 1975.

[18] H. Jäger and H. Haas, “Harnessing nonlinearity: Predicting chaotic sys-
tems and saving energy in wireless communication,” Science, vol. 304,
pp. 78–80, 2004.

[19] P. Joshi and W. Maass, “Movement generation with circuits of spiking
neurons,” Neural Comput., vol. 17, no. 8, pp. 1715–1738, 2005.

[20] Y. Uno, M. Kawato, and R. Suzui, “Formation and control of optimal
control trajectories in human multijoint arm movements: Minimum
torque change model,” Biol. Cybern., vol. 61, pp. 89–101, 1989.

[21] W. M. Kistler, W. Gerstner, and J. L. van Hemmen, “Reduction of
Hodgkin-Huxely equations to a single-variable threshold model,”
Neural Comput., vol. 9, pp. 1015–1045, 1997.

[22] B. Knight, “Dynamics of encoding in a population of neurons,” J. Gen-
eral Physiol., vol. 59, pp. 734–766, 1972.

[23] W. Maass, T. Natschlager, and H. Markram, “Real-time computing
without stable states: A new framework for neural computation based
on perturbations,” Neural Comput., vol. 14, no. 11, pp. 2531–2560,
2002.

[24] C. A. Micchelli, “Interpolation of scattered data: Distance matrices and
conditionally positive definitive functions,” Constructive Approx., vol.
2, pp. 11–22, 1986.

[25] F. Rosenblatt, Principles of Neurodynamics: Perceptrons and the
Theory of Brain Mechanisms. Washington, DC: Spartan, 1962.

[26] P. Rowcliffe, J. Feng, and H. Buxton, “Spiking perceptions,” IEEE
Trans. Neural Netw., vol. 17, no. 3, pp. 803–807, May 2006.

[27] D. E. Rumelhart, G. E. Hinton, and R. J. William, “Learning in-
ternal representations by error propagation,” in Parallel Distributed
Processing: Exploration in the Microstructure of Cognition, D. E.
Rumelhart and J. L. McCelland, Eds. Cambridge, MA: MIT Press,
1986, vol. 1, the PDF Research Group.

1640 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 9, SEPTEMBER 2008

[28] E. Salinas and T. J. Sejnowski, “Correlated neuronal activity and the
flow of neural information,” Nature Rev. Neurosci., vol. 2, pp. 539–550,
Aug. 2001.

[29] R. Stein, “Some models of neuronal variability,” J. Biophysics, vol. 7,
pp. 37–68, 1967.

[30] R. B. Stein, “The frequency of nerve action potentials generated by
applied currents,” Proc. R. Soc. Lond. A, Math. Phys. Sci., vol. 167, pp.
64–86, 1967.

[31] H. C. Tuckwell, Introduction to Theoretical Neurobiology. Cam-
bridge, U.K.: Cambridge Univ. Press, 1988, vol. 2.

[32] D. Verstraeten, B. Schrauwen, D. Stroobandt, and J. Van Campenhout,
“Isolated word recognition with the liquid state machine: A case study,”
Inf. Process. Lett., vol. 95, no. 6, pp. 521–528, 2005.

[33] R. L. Watrous and L. Shastri, “Learning phonetic features using
connectionist networks: An experimentation in speech recognition,”
in Proc. 10th Int. Joint Conf. Artif. Intell., 1987, pp. 851–854.

[34] P. Werbos, “Beyond regression: New tools for prediction and analysis
in the behavioral sciences,” Ph.D. dissertation, Dept. Appl. Math., Har-
vard Univ., New Haven, CT, 1974.

[35] P. J. Werbos, “Backpropagation through time: What it does and how to
do it,” Proc. IEEE, vol. 78, no. 10, pp. 1550–1560, Oct. 1990.

[36] R. J. Williams and J. Peng, “An efficient gradient-based algorithm for
on-line training of recurrent network trajectories,” Neural Comput., vol.
2, pp. 490–501, 1990.

Phill Rowcliffe, received the D.Phil. degree from
the Department of Informatics, Sussex University,
Sussex, U.K.

His research interests, within computational neu-
roscience, are in the information transmission within
the interspike interval and the application of mathe-
matical learning rules.

Jianfeng Feng, received the B.Sc., M.Sc., and Ph.D.
degrees from the Department of Probability and Sta-
tistics, Peking University, China.

Currently, he is the Director of the Centre for
Computational System Biology, Fudan University,
China and the Professor in Computational Biology,
Warwick University, Warwick, U.K. He has pub-
lished around 120 journal papers, and aims for
publications exclusively in journal with an impact
factor around three or above.

