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Plasma proteomic profiles predict future
dementiain healthy adults
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The advent of proteomics offers an unprecedented opportunity to predict

dementia onset. We examined this in data from 52,645 adults without
dementiain the UK Biobank, with 1,417 incident cases and a follow-up

time of 14.1 years. Of 1,463 plasma proteins, GFAP, NEFL, GDF15 and

LTBP2 consistently associated most with incident all-cause dementia
(ACD), Alzheimer’s disease (AD) and vascular dementia (VaD), and ranked
highin proteinimportance ordering. Combining GFAP (or GDF15) with
demographics produced desirable predictions for ACD (area under the
curve (AUC) =0.891) and AD (AUC = 0.872) (or VaD (AUC = 0.912)). This

was also true when predicting over 10-year ACD, AD and VaD. Individuals
with higher GFAP levels were 2.32 times more likely to develop dementia.
Notably, GFAP and LTBP2 were highly specific for dementia prediction. GFAP
and NEFL began to change at least 10 years before dementia diagnosis. Our
findings strongly highlight GFAP as an optimal biomarker for dementia
prediction, even more than 10 years before the diagnosis, with implications
for screening people at high risk for dementia and for early intervention.

Dementia progresses slowly from the asymptomatic stage to a fully
expressed clinical syndrome over many years'?. Because no effective
therapy is currently available, correctly determining whether a per-
son will progress to dementia in the near future has become a public
health priority®. This task is of the utmost importance for the timely
referral of at-risk populations and for subsequent early diagnosis and
prompt intervention. Nonetheless, it remains a major challenge for
clinicians, anditis not known how to best predict the onset of dementia.
A possible turning point has recently emerged with the advancement
of blood-based biomarkers, which could serve as a preferable tool
to facilitate early risk screening in the preclinical phase among the
general population*™,

Although some blood markers have been proven to be strongly
associated with dementia risk”™*, biomarker discovery efforts have
typically focused on one or a small number of proteins because of

technical constraints, and lacked the systematic comparison of human
proteomics. It has not been established which of the high-performing
markers harbors the greatest potential for risk prediction and moni-
toring. Other investigations have utilized the proteomics strategy to
reveal differences in blood proteins between people with and people
without dementia®". However, most of these investigations were
cross-sectional and did not take into account the impact of possible
reverse causality, nor did they address whether abnormal protein levels
were present preceding dementia onset and how long before dementia
such abnormalities could be detected. A recent prospective study
adopted proteomic analysis to predict incident dementia’®. Yet, the
mixed dementia outcome and the relatively small sample size reduced
the power toidentify proteins relevant to specific dementia etiologies.
Whetherand how proteomic patterns differ across the incident demen-
tiasubtypes remain unclear. Therefore, large-scale prospective studies
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with data on blood proteomics and specific dementias (for example,
AD) are crucial and necessary.

Furthermore, the predictive ability of the proteins, separately orin
combination, indifferentincidence time groups (for example, 10 years,
>10 years) has been neglected to date. However, this is particularly
important for the ultra early detection of dementia and for substan-
tially advancing the window for prevention and intervention. Beyond
predictive accuracy, optimal dementia prediction biomarkers should
be highly specific for the corresponding pathology™". Disappointingly,
blood proteomic biomarkers that can predict future dementia with the
required sensitivity and specificity remain largely undetermined**.

We innovatively employed a data-driven proteomic approachin
alarge prospective cohort with long follow-up to identify the plasma
biomarkersbest associated withdementia prediction and explore their
predictive performance. The recent release of data on 1,463 plasma
proteins from more than 50,000 individuals in the UK Biobank (UKB)
provides us with an unprecedented opportunity to: (1) comprehen-
sively test their associations withincident ACD, AD and VaD to identify
a set of candidate dementia-associated proteins; (2) determine the
magnitude of the protein contributions to the prediction of dementia;
(3) investigate the predictive accuracy of the top-ranked proteins,
individually and in combination, over 5,10 and many more years; (4)
examine the relationships between plasma proteins and the risk of
clinical progression, and further evaluate whether such relationships
are specific to dementia and not seen in people without dementia;
and (5) trace the trajectories of plasma proteins back from the time of
dementia diagnosis and assess when each protein begins to deviate
from normal control values.

Results

Participants’ characteristics

This study included 52,645 adults without dementia at baseline, witha
median age of 58 years, of whom 53.9% were female and 93.7% were of
white ancestry (Table 1). During amedian follow-up of 14.1years, 1,417
(2.7%) incident dementia cases were identified, of which 219 occurred
within 5 years, 833 within 10 years and 584 beyond 10 years. For incident
ACD participants, the median age was 66 years, 48.5% were female and
96.5% were of white ethnicity (all P< 0.001). There were 691 patients
diagnosed with AD, among whom 384 had incidents within 10 years
and 307 had incidents over 10 years. In addition, 285 patients were
diagnosed with VaD, among whom 148 had incidents within 10 years
and 137 had incidents over a decade. The incidence of ACD per 1,000
person-years from age 39 to 70 years was 2.00. In the 60-64-year age
group, theincidence rate of ACD was 2.07 per 1,000 person-years, and
it was 6.26 per 1,000 person-years in the 65-69-year age group.

Identifying proteins associated with incident dementia

Ofthe1,463 proteomicbiomarkers tested, after adjusting for age, sex,
education and APOE €4 alleles in model 1, we found 184, 16 and 139
proteins were remarkably associated with incident ACD, AD and VaD,
respectively (Fig.1aand Supplementary Table 2). Other proteins, such
as MAPT, were positively associated with the risk of ACD (P=0.002), AD
(P=0.043)and VaD (P=0.038), but the associations were not significant
after Bonferroni corrections. As asensitivity analysis, were-ran all analy-
ses under model 2, which additionally adjusted for vascular variables,
and found several significant associations could be replicated (Fig. 1a).
Importantly, after Bonferroni corrections, GFAP (ACD: hazard ratio
(HR)=1.53,P=1.35x10""; AD: HR=1.65,P=9.86 x10™; VaD: HR = .61,
P=2.06x10")and NEFL (ACD:HR =1.56,P=7.27 x107%; AD: HR =1.52,
P=3.25x10"%;VaD:HR =1.56, P=1.92 x 10) had the most significant
associations with the studied dementia types. Higher levels of GDF15
(ACD:HR=1.28,P=5.91x107"%; AD: HR=1.19,P=0.038; VaD: HR = 1.43,
P=4.99 x10®) and LTBP2(ACD:HR =1.24,P=7.97 x10"%; AD: HR =1.26,
P=2.05x10"%VaD:HR =1.35,P=0.010) could also increase the risk of
incident dementia (model 2). CST5, NPTXR and BCAN were associated

with ADincidence. Other proteins linked to VaD risk were EPHA2, GFRA1
and SPON2, among others. The main results we obtained from the
total population largely remained in APOE €4 carrier and noncarrier
subgroups (Supplementary Table 3). Enrichment analyses implicated
several biological pathways related to the significant proteins, such
as extracellular matrix organization, immune system and infectious
diseases (Fig. 1b and Supplementary Table 4).

Proteinimportance ranking

For those dementia-associated proteins in both models 1and 2, we
further sorted them based on theirimportance to the prediction task.
Detailed analytic results are presented in Supplementary Table 5. As
showninthebar chart (Fig.2a and Supplementary Fig. 2), plasma GFAP,
NEFL and GDF15 consistently ranked highest in predicting either ACD
orits subtypes. In detail, NEFL was the strongest predictor of ACD,
followed by GFAP and GDF15. GFAP was the strongest predictor of
AD, followed by NEFL and GDF15. GDF15 was the strongest predictor
of VaD, followed by NEFL and GFAP. When the top few proteins were
included, the predictive power for dementia (AUC on the right axis)
escalated steeply and gradually fell into a flat fluctuation as more
proteins entered. Using this sequential forward selection scheme, we
ultimately chose the top 11 (NEFL, GFAP, GDF15,BCAN, LTBP2, NPTXR,
EDA2R, NTproBNP, EGFR, HPGDS and CSTS5), 7 (GFAP, NEFL, GDF15,
LTBP2,BCAN, NPTXR and CST5) and 4 (GDF15, NEFL, GFAP and MMP12)
proteins for ACD, AD and VaD prediction, respectively, for subsequent
analyses.

To have anintensive survey of the incidence time, we further cat-
egorized patientsinto 5-year, 10-year and over 10-year incidents. Impor-
tanceranking procedures wererepeated independently for these target
populations, and the yielded results were fed into corresponding later
analyses. The final selected important proteins were highly overlapped
with those chosen for predicting all incident dementia events.

Shapley additive explanations (SHAP) plots were leveraged to
intuitively interpret the effect of each selected protein by its value
magnitude (coded by a gradient of colors) and tendency direction on
the horizontal axis (the likelihood of developing dementia) (Fig. 2b and
Supplementary Fig.2). The protein GFAP, for example, appeared to hold
the widest range for all incident AD, suggesting that it had the most
considerable predictive power. In addition, participants with higher
GFAPlevels (coloredin red) were more likely to develop AD (right side),
whereasthose with lower GFAP levels (blue) tended to remain healthy
(left). Similar explanations were given for the rest of the proteins.

Predictive accuracy of plasma proteins
Employing the tenfold cross-validation approach, we then examined
the predictive accuracy of the above-selected important proteins for
future dementia. Relevant results are summarized in Supplementary
Tables 6 and 7. As for all incident ACD, plasma NEFL, GFAP or GDF15
alone produced modest AUC values of 0.746, 0.718 and 0.712, respec-
tively, which was similar to or higher than those achieved by other
separate proteins. This revealed the potential of these proteins to aid
in dementia prediction. To achieve higher predictive accuracy, we
explored the performance of plasma proteinsin combination with other
readily available measures including demographicindicators (age, sex,
educationand APOE g4 status) and cognitive tests (pairs matching time
and reaction time). The most marked increase in accuracy was seen
when NEFL (AUC = 0.898) or GFAP (AUC = 0.900) was combined with
demographicfeatures and brief cognitive tests (DeLong test P < 0.001;
Fig.3a). Notableimprovement was also observed when combining NEFL
(AUC = 0.890) or GFAP (AUC = 0.891) with demographic indicators,
whereas combining NEFL (AUC = 0.779) or GFAP (AUC = 0.768) with
cognitive metrics resulted in less prediction improvement.

Adding proteins to demographic features significantly improved
the prediction for incident all-time or 10-year ACD and AD (AAUC
ranged from 0.009 to 0.028, DeLong test P<0.017). Applying the
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Table 1| Baseline characteristics of UK Biobank participants included in the study

Participants' characteristics Overall Control Incident dementia Incident AD Incident VaD
N=52,645 N=51,228 N=1,417 Pvalue N=691 Pvalue N=285 Pvalue
Age, years 58 [560-64] 58 [560-63] 66 [63-68] 4.33x107%% 67 [63-68] 3.79%x107% 66 [63-68] 1.38x107%®
Sex (female) 28,393 (53.9) 27,706 (54.1) 687 (48.5) 3.39x107° 379 (54.8) 0.7 111(38.9) 4.34x107
Ethnicity (white) 49,353 (93.7) 47,985 (93.7) 1,368 (96.5) 1.36x107° 667 (96.5) 0.003 277(97.2) 0.020
Education, years 11[10-15] 11[10-15] 11[10-12] 750x107% 10[9-12] 8.46x10™ 1[M1112] 1.37x107°
APOE €4 single-copy 13,610 (25.9) 13,041(25.5) 569 (40.2) 1.39x107% 308 (44.6) 8.57x107%° 116 (40.7) 9.35x107°
carriers
APOE €4 double-copies 1,474 (2.8) 1,244 (2.4) 230 (16.2) 160 (23.2) 40 (14.0%)
carriers
Systolic blood pressure, 138 [126-152] 138 [125-152]  145[132-159] 5.34x107% 145 [132-159] 9.08x107% 147 [132-159] 272x107°
mmHg
Hypertension treatment 11,648 (22.1) 11,078 (21.6) 570 (40.2) 6.16x107 275 (39.8) 2.84x107%° 131(46.0) 6.26x107%
Diabetes 2,979 (5.7) 2,783 (5.4) 196 (13.8) 3.49x10™ 94 (13.6) 2.42x107%° 53(18.6) 914x10%
Current smoker 5,562 (10.6) 5,424 (10.6) 138(9.7) 0.326 60 (8.7) 0.120 31(10.9) 0.951
Atrial fibrillation 1140(2.2) 1,072 (2.1) 68 (4.8) 9.65x107™ 26 (3.8) 0.004 17(6.0) 1.52x107°
Coronary heart disease 3,244 (6.2) 3,004 (5.9) 240 (16.9) 3.91x10°% 99 (14.3) 2.43x107%° 61(21.4) 7.97x107%
Heart failure 481(0.9) 457(0.9) 24(1.7) 0.003 13(1.9) 0.012 6(2.1) 0.064
Stroke 936 (1.8) 873(1.7) 63 (4.4) 2.90x10™ 24 (3.5) 6.78x10™ 23(8.1) 1.58x10™
Peripheral artery disease 1191 (2.3) 1132(2.2) 59(4.2) 1.68x10° 21(3.0) 0180 20 (7.0) 1.34x1077
Total cholesterol, mmol ™ 5.6 [4.9-6.4] 5.6 [4.9-6.4] 5.4[4.6-6.2] 4.92x107° 5.5[4.6-6.4] 0.006 5.3 [4.4-6.0] 9.80x107
HDL cholesterol, mmoll™ 1.41.2-1.6] 1.4[1.2-1.6] 1.4[1.2-1.6] 0.003 1.4[1.2-1.6] 0.856 1.4[11-1.5] 9.44x10™
Body mass index 26.8 26.8 272 0.048 26.9 0.787 28.2 4.59x10™
[24.2-29.9] [24.2-29.9] [24.4-30.2] [24.2-29.8] [25.2-31.3]
Pairs matching time, s 189 [149-247]  189[149-246] 229 [172-326] 2.70x107 233 2.09x10™8 233 2.80x10™
[173-330] [179-342]
Reaction time, ms 543 [484-617] 540 [481-614] 594 117x10°® 594 7.83x10™ 605 314x10%
[531-687] [529-685] [543-696]

Continuous data are presented as median [interquartile range] and categorical variables as number (percentage). Differences between incident dementia and healthy control groups were
compared using Student’s t-test for continuous variables and Pearson’s chi-squared test for discrete variables.

bootstrap method to compare AUC values produced similar conclu-
sions, and additionally revealed an improvement in discriminative
performance with the addition of GDF15 to demographic features in
ACD, and NEFL to demographic featuresin AD.

For assessing the combined power of selected important proteins,
we utilized the protein panel or proteinrisk score (ProRS) instead of the
single protein, by which significantly better accuracies were attained.
Specifically, the protein panel generated an AUC of 0.841 (Fig. 3a), simi-
lar to that achieved by ProRS of 0.837. Adding demographic features
further improved accuracies substantially, raising the AUC values to
0.908, whereas adding cognitive features to the protein panelincreased
the accuracy to only 0.850. The best-performing model was the full
model, combining the protein panel with demographic and cognitive
information, withan AUC of 0.913. Integrating ProRS with demographic
and cognitive data also provided an excellent AUC of 0.903.

The model fit for predicting all incident AD and VaD resulted in
similarly included variables and accuracies (Fig. 3b—c). The combina-
tion of GFAP (or GDF15) with demographic characteristics achieved
a good prediction for AD (AUC = 0.872) (or VaD (AUC = 0.912)). Fur-
ther adding cognitive tests did not improve the predictive power
significantly (AD: AUC = 0.878; VaD: AUC = 0.914). When applying
the same variable models to predict 5-year, 10-year and over 10-year
(Fig. 3d-f) incident dementia events or removing individuals who
developed dementia in the first two years of follow-up, similar and
robust results were produced. Of particular note, combining plasma
GFAP withdemographic characteristics gave an accurate prediction of
incidences of ACD (AUC = 0.872) and AD (AUC = 0.847) over 10 years,

with comparable performance to the full model integrating GFAP or
the protein panel with demographic and cognitive data. Acombination
of plasma GDF15 with demographic characteristics (AUC = 0.895) also
achieved an excellent prediction for over 10-year incident VaD, with
similar accuracy to that of the full model integrating GDF15 or the
protein panel withdemographicand cognitive data. These data suggest
that the combined model we derived could enable an accurate predic-
tion of future dementia even more than 10 years before the diagnosis.
Unexpectedly, adding cognition resultedin lower AUC valuesin some
models, particularly for over 10-yearincident AD and VaD, although this
was generally not significant using both DeLong and bootstrap tests.

Blood proteins and the risk of clinical progression

Next, weinvestigated the prognostic value of baseline plasma proteins
for progression to dementia. Baseline protein levels were dichoto-
mized into high and low groups and the cutoff was derived upon
the achievement of the largest Youden index when distinguishing
those who experienced clinical progression from those who did not
throughout the follow-up period. Detailed thresholds were shownin
Supplementary Table 8.

Subjects with higher baseline NEFL (HR =2.36,P=1.27 x10™*), GFAP
(HR=2.32,P=8.68 x10™¥) or GDF15 (HR=1.70, P=2.17 x 107%) levels
presented anelevated risk of developing dementia (Fig. 4a). This finding
was also pronounced in AD and VaD (Fig. 4b,c). Remarkably, individu-
als with higher GFAP levels were 2.91 times more likely to develop AD
than those with lower baseline GFAP. The likelihood of developing VaD
inthe future was 2.45 times greater for those with higher GDF15 levels
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Fig.1| Associations of plasma proteins with incident dementia. a, Volcano
plots showing the HR (x axis) and -log,,(P value) (y axis) for the global
associations of 1,463 proteins with incident ACD, AD and VaD. All results for both
Cox proportional hazard regression models1and 2 are shown here. Model 1was
adjusted for age, sex, education and APOE €4 alleles. Model 2 was additionally
adjusted for systolic blood pressure, hypertension treatment, history of
diabetes, smoking status, prevalent cardiovascular disease (atrial fibrillation,
coronary heart disease, heart failure, stroke or peripheral artery disease), total
and HDL cholesterol and body mass index. Pvalues were calculated under
two-sided tests and no multiple comparisons were applied. Proteins above

the horizontal dotted black line were significantly associated with incident
dementia after Bonferroni corrections (P < 0.05) taking into account the

number of proteins tested (n =1,463). b, Enrichment for Gene Ontology (GO),
Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome pathways.
Significant proteins after Bonferroni correction derived from Cox proportional
hazard regressionsin model 1or model 2 were fed into the Enrichr website
(https://maayanlab.cloud/Enrichr/) for enrichment analysis using the Olink
proteins as background gene set. P values were calculated under two-sided
tests and statistical significance was defined as a false discovery rate (FDR)-
corrected P < 0.05 (dotted horizontal line). The number above each bar is the
number of observed proteins in each pathway. Detailed results were shown in
Supplementary Table 4. BP, biological process; CC, cellular component; ECM,
extracellular matrix; MF, molecular function; TNF, tumour necrosis factor.
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Fig.2|Proteinimportance ranking and SHAP visualization of modeling
onallincident dementia populations. a, Sequential forward selection from
preselected candidate proteins. The bar chart indicates the importance of the
sorted proteins based on their contributions to the prediction of future ACD (as
judged by the information gain). The line chartillustrates cumulative AUC values
(right axis) upon the inclusion of proteins one by one in each iteration. The top
proteins we finally selected are marked in red. Shaded regions represent standard

errors derived from cross-validation. b, SHAP visualization plot of selected
proteins. The width of the range of the horizontal bars can be understood as the
extent of the contribution to the prediction of ACD; the wider their range, the
greater the contribution. The color of the horizontal bars denotes the magnitude
of plasma proteins, which was coded in agradient from blue (low) to red (high),
shown as the color bar on the right-hand side. The direction on the x axis indicates
thelikelihood of developing dementia (right) or being healthy (left).

relative to those with lower levels. Likewise, significant associations
were detected for other selected proteins (Supplementary Fig. 3).

In addition, and importantly, we examined the abilities of the
plasma proteins in predicting clinical progression to other disease
events. As expected, the risk of developing other dementias (except
AD and VaD) was elevated for those with higher GFAP levels. Itisworth
noting that nosignificant association was observed betweenbaseline
GFAPlevels and therisk of neurodegenerative diseases (except demen-
tia) (HR [95% confidence interval (CI)] =1.06 [0.94-1.20], P> 0.999),
neurological disorders (except dementia) (HR [95% CI] = 0.94 [0.88-
1.00], P=0.493) or mental and behavioral disorders (except dementia)
(HR[95% CI1=1.05[0.95-1.15], P> 0.999) (Fig. 4d), indicating that GFAP
may be specific for dementia. By contrast, the relationships between
baseline GDF15or NEFL and the risk of almost all these studied disease
events were significant. This is also true for other proteins (BCAN,
NPTXR, EDA2R, NTproBNP, EGFR, HPGDS and CST5) (Supplementary
Fig.4 and Supplementary Table 8). Subjects with higher baseline LTBP2
levels had a higher risk of developing ACD or AD, but this relationship

was not significant for nondementia diseases, which suggested that
LTBP2 may be dementia-specific.

Similar trends of disease risk were observed when using the contin-
uous values for each protein in the Cox model (Supplementary Fig. 5).

Results of replication validation analyses

Toassesstherobustnessof ourresults, werandomly divided the study par-
ticipantsinto two-thirds (training set, n = 35,096) and one-third (testing
set,n=17,549) sets. The results we obtained (Supplementary Tables 9-11)
were consistent with those obtained using the cross-validation strat-
egy that we performed previously. Specifically, from the training set,
we reaffirmed the importance of GFAP, NEFL, GDF15 and LTBP2 in the
prediction of ACD, AD and VaD. In the testing set, these proteins alone
yielded modest predictive accuracies (AUC = 0.7-0.8). Combining GFAP
(or GDF15) with demographic data achieved desirable predictions for
ACD (AUC = 0.894) and AD (AUC = 0.883) (or VaD (AUC = 0.907)). The
same parsimonious models produced AUC values of 0.861, 0.818 and
0.870 for over 10-year ACD, AD and VaD incidence, respectively, with
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Fig.3|Predictive accuracy of plasma proteins, alone or in combination
with other variables. a-f, Receiver operating curves show the performance of
different variable models for predicting all incident ACD (a), AD (b) and VaD (c) as
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well as the over 10-year incident ACD (d), AD (e) and VaD (f). Within the combined
model, demographicindicators included age, sex, education and APOE €4 status,
and cognitive tests included pairs matching time and reaction time.

comparable performanceto the fullmodel combining the protein panel
and clinical information.

Moreover, based on the protein cutoff values obtained from the
training set, we reconfirmed therelationships of theimportant proteins
with the risk of clinical progression in the testing set (Supplemen-
tary Table 12). In line with our primary results, individuals with higher
baseline NEFL and GDF15 levels had a higher risk of developing both
dementia and nondementia diseasesin the future, whereas the associa-
tion between baseline GFAP or LTBP2 levels and disease progression
was only significantin dementia.

Predementia trajectories for plasma proteins

We finally delineated the temporal trajectories of the plasma proteins
starting at dementia diagnosis using a backward 15-year timescale
and compared them with protein changes over the same period in
those free from dementia. Smoothing splines demonstrated that
plasma GFAP, GDF15 and NEFL appeared to deviate from normal val-
ues as early as over 10 years before the onset of dementia, either for
ACD, AD or VaD (Fig. 5). GFAP (group difference P= 0.017) and NEFL
(P=1.21x107* levels rose more steeply over time for individuals who
developed ACD compared with those who did not, whereas there was
no obvious difference in the steepness of GDF15 slopes (P=0.161).
The slope differences between AD cases and controls were signifi-
cant when analyzing GFAP (P=3.19 x10™), NEFL (P=3.19 x10™*) and
GDF15 (P=0.044), but not for the remaining proteins (Supplementary

Fig. 6 and Supplementary Table 13). By contrast, for GFAP (P = 0.855),
NEFL (P=0.127) and GDF15 (P = 0.127), the slopes did not significantly
deviate between incident VaD individuals and those who remained
without dementia.

Discussion

By performing a proteome-wide association study, we identified awide
array of plasma proteins associated with anincreased risk of incident
ACD, AD and VaD. Of these, GFAP, NEFL, GDF15 and LTBP2 consistently
had the most significant associations with future dementiaevents and
showed high importance in prediction tasks in 5-year, 10-year, over
10-year and all-time scenarios. To our knowledge, this study provides
theinaugural revelation of the importance ranking of plasma proteins
inpredictingincident ACD, AD and VaD. These proteins alone demon-
strated modest predictive accuracies (AUC = 0.7-0.8). Combining GFAP
(or GDF15) with basic demographic dataenabled desirable predictions
for ACD (AUC = 0.891) and AD (AUC = 0.872) (or VaD (AUC = 0.912)).
The same parsimonious models yielded AUC values of 0.872, 0.847
and 0.895 for over 10-year ACD, AD and VaD incidence, respectively,
with comparable performance to the fullmodel combining the protein
panel and clinical information. Individuals with higher GFAP levels
were 2.32 times more likely to develop dementia. Notably, GFAP and
LTBP2 were highly specific for dementia prediction, yet not for NEFL
and GDF15. Furthermore, changes in GFAP and NEFL began to occur at
least 10 years before dementia diagnosis, with concentrations rising
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moresteeply inindividuals withincident ACD or AD thanin those who
remained dementia-free.

Consistent with previous research, NEFL*** has been reported to
be associated with AD and VaD, GFAP***, GDF15 (ref. 24), BCAN* and
NPTXR* with AD, with all associations in the same direction as in our
results. Therelations of AD with LTBP2 and CST5, as well as the relations
of VaD with GFAP, GDF15 and MMP12, were original findings. Several
mechanisms could link these proteins to dementia, including reactive
astrogliosis, blood-brain barrier and/or glymphatic dysfunction?,
axonal damage?, inflammation®*°, synaptic dysfunction and loss®,
amyloid-f clearance® and neuron apoptosis™. Interestingly, we found
the specificity of LTBP2 for dementia prediction, which needs to be
studied indepthin the future.

Our results showed the greatest importance of GFAP, NEFL and
GDF15 in predicting incident ACD and subtypes in both the long and
short terms. Plasma GFAP has been proposed as a promising candidate
biomarker for identifying AD*2. Most previous work on the predictive
value of GFAP has primarily focused on therisk conversion from mild cog-
nitiveimpairment to AD****, whereas few studies have predicted the risk
transition from normal cognition to AD. Two small longitudinal studies
have recently examined this and obtained similar AUC values as ours*?.
GFAP is currently a research interest for analyzing AD-specific associa-
tions®. Former studies have discovered elevated plasma GFAP levels in
both AD and nonAD dementias® *°, demonstrating its poor specificity
to AD, whichisinagreement with our findings. Itis, however, not further
studied whether GFAP is specific to dementia. By extending the previous
association between higher baseline blood GFAP and increased risk of
progressiontodementia’, we proved no relationship between GFAP and
therisk of nondementia eventsto helpfill this knowledge gap. The hand-
ful of studies assessing the performance of blood GFAP in distinguishing
dementia from other diseases also supported our results*. In addition,
lessevidenceisavailable assessing the predictive value of GFAPinincident
VaD. Nevertheless, this is plausible because GFAP was also increased in
patients with cerebrovascular disease**** and linked to vascular patholo-
gies***, suchas white matter hyperintensities and cerebral microbleeds,
which we hypothesized would increase the risk of VaD***’,

Studies have identified the high predictive value of plasma NEFL
for AD, whichyielded AUC values slightly lower than ours*~**%, While
reinforcing the use of NEFLin predicting AD, our results extended cur-
rent knowledge by preliminarily notingits predictive value for ACD and
VaD. As amarker of axonalinjury, NEFL hasbeen reported to belinked to
several neurological diseases* ™, inline with our derived associations
between NEFL and the risk of nondementia events. Previous studies
reported that plasma GDF15 was associated with cerebrovascular
disease burden**?and AD*, butits relationship with VaD has not been
elucidated. Here, we presented preliminary descriptions of its longi-
tudinal relationship with VaD and identified GDF15 as the strongest
predictor ofincident VaD in the studied plasma proteins. Our findings
were supported by a recent proteomics study in middle-aged adults
that identified GDF15 as a key marker for predicting dementia many
years later>’, Upregulation of GDF15in the central nervous system was
secondary to vascular brain damage* like stroke and cerebral microvas-
cular disease®, probably exerting anti-inflammatory and neurotrophic
effects” inresponse toinjuries. As the risk of dementiaincreased under
the influence of vascular brain damage*®*, it could link high plasma
GDF15 with incident AD and VaD. The elevation of plasma GDF15 may

also be attributed to risk factors for dementia such as cardiovascular
diseases, diabetes® and obesity*®.

Other proteins, such as the tau protein MAPT, significantly
increased the risk of ACD, AD and VaD when studied alone. However,
after takingintoaccount the number of proteins tested (n =1,463), the
associations lost significance (Bonferroni corrected P>0.05). Previous
studies have suggested an inferior prognostic and diagnostic perfor-
mance of total-tau when compared with NEFL*°', Our study marks the
initial extension of the comparison to 1,463 proteins. In addition, the
role of total-tau in risk of dementia is also controversial because one
study found plasma tau levels did not differ significantly between AD
patients and healthy controls®’. More studies are needed to further
elucidate the associations.

Driven by the multifactorial nature of dementia etiology and
the heterogeneity of clinical manifestations, plasma protein alone is
unlikely to attain the highest predictive accuracy®. Accordingly, there
is aneed to combine plasma proteins with other measures to gener-
ate the most accurate prediction of future dementia and establish an
optimal predictive algorithm that is noninvasive, cost-effective and
easily accessible. We found that the parsimonious model combining
GFAP (or GDF15) with basic demographic indicators could achieve a
desirable predictionfor ACD and AD (or VaD). Theresults were robust
inpredicting 5-year,10-year, over 10-year and all-time scenarios, which
isimportant but has not been explored before. Our proposed model
may offer considerable cost benefits compared with using lumbar
punctures or imaging scans to screen eligible participants, particularly
inprimary care.

Generally, adding proteins to demographic features significantly
improved the prediction, which reflected the complementary infor-
mation that proteins hold over demographic measures. This finding
may largely translate into the potential clinical utility of proteins as
an additional source of discriminatory information to refine future
dementia prediction. Moreover, it is worth noting that, both the AUC
values of demographic features alone and single key proteins were
high (>0.70), which could lead to a mild increase in AUC values when
combiningthem.

Addingadditional cognitive tests to the model has littleimprove-
ment in prediction accuracy, indicating that substantial parts of the
cognitive tests’ discriminatory information are shared with protein
indicators. Moreover, considering the AUC values of single proteins,
protein panel and demographic features alone were high, combining
them with cognition is reasonable to attain a mild increase in AUC
values. In some cases, adding additional cognitive tests to the model
did not yield an increased predictive accuracy and this phenomenon
was particularly present in over 10-year models. Because cognitive
decline occurslateinthe course of dementia, cognitive tests might hold
limited predictive information on over 10-year dementia outcomes.

This study has clearimplications for the use of plasma GFAP, NEFL
and GDF15 as prognostic and/or monitoring biomarkersin the preclini-
cal phase of dementia. The dynamic changesin GFAP, NEFL and GDF15
provide observable evidence of early signs of dementiabeginning more
than 10 years before the diagnosis. All three proteins were strongly
associated with therisk of progression to dementia, and the effect sizes
of GFAP and NEFL were the largest. In particular, for AD, the effect sizes
of GFAP and NEFL were 1.8 and 1.5 times that of GDF15. These results
suggest that GFAP and NEFL are stronger prognostic markers for risk

Fig. 4| Predictive performance of baseline protein levels on the risk of
clinical progression. a-d, Unadjusted Kaplan-Meier curves present the clinical
progressionto ACD (a), AD (b), VaD (c) and nondementia diseases (d) over time,
visualized for individuals with low (blue line) and high (red line) baseline plasma
GFAP, GDF15 or NEFL levels. The cutoffs splitting the high- and low-protein

level groups were calculated by the achievement of the largest Youden index.
The number of individuals at risk per 2.5-year interval s listed below the curve.

Cox proportional hazard models estimate the association between baseline
dichotomized protein and disease risk, where HRs and Pvalues are calculated after
adjusting for age, sex, education and APOE €4 alleles. Shaded regions represent
standard errors derived from survival proportions. Pvalues were calculated

under two-sided tests. Bonferroni corrections were applied to assess significant
associations (P<0.05), taking into account the number of proteins tested here
(n=12).
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of incident ACD and AD than GDF15, as partially reported previously’.
Moreover, we found steeper rises in GFAP, NEFL and GDF15 levels in
individuals with incident AD but not VaD than in those who remained
dementia-free. This adds evidence to previous studies showing that
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plasma GFAP and NEFL concentrations rise at a constantly higher
rate in people who will develop AD***, VaD-related research needs
to be further explored in the future. Together with our findings that
GFAP was specificin predicting dementia onset, GFAP might be more
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Fig. 5| Temporal trajectories of plasma proteins preceding the dementia
diagnosis. a-c, The dynamic changes of plasma GFAP, GDF15 and NEFL before
developing ACD (a), AD (b) and VaD (c) were plotted. Nested case-control
studies were employed to match an individual with incident events (within
15-year observation period) to five healthy controls under matching criteria

of age (+2 years), sex and APOE g4 alleles. ACD versus non-ACD controls:
n=1,399 versus 6,995; AD versus non-AD controls: n = 677 versus 3,385; VaD/
non-VaD controls: n =281 versus 1,405. Red curves correspond to patients with

Time to diagnosis (years)

Time to diagnosis (years)

dementia, and blue curves correspond to controls. The mean values of protein
concentrations by time to the index date were fitted using locally weighted
smoothing curves. Error bars represent standard errors. The number of cases
inthel,2and 3 years before dementia diagnosis was small and thus aggregated.
Mann-Kendall trend tests were performed to examine the slope differences of
plasma protein levels over time for individuals with incident dementia compared
with those for individuals who did not develop dementia, where Pvalues were
calculated under two-sided tests and no multiple comparisons were applied.

valuable when measured repeatedly during the preclinical phase of
dementiaasanindicator of therapeutic effectsin future clinical trials.
If treatment-induced reductions in GFAP towards normal values are
clearly correlated with clinically beneficial effects, then future trials
targeting early-stage dementia could incorporate plasma GFAP as a
potential surrogate endpoint.

The strengths of our study include the long follow-up and high-
throughput proteome analysis of a large community-based sample,
which enabled us to replicate previous findings and discover unprec-
edented plasma biomarkers. Some limitations should be acknowl-
edged wheninterpreting the results. First, although acomprehensive
assessment of circulating proteins is provided by the UKB, not all of
the human proteome is captured within this platform, and biases
may be present in the priority of measuring secreted proteins. For
example, there is a lack of data on plasma amyloid and tau-related

proteins, which limits our ability to investigate their predictive values
in dementia. Second, the incidence of dementia is lower than that in
other reported cohorts given that the UKB participants tend to be
younger at enrollment. However, when compared with other studies
at certain same age groups (for example, the 65-69 years group)®,
the incidence rates were similar. To identify potential patients with
dementia, we haveincluded patients from hospital admissions, death
registers and primary care, as suggested previously®*. Third, validation
usingindependent external datasets would be ideal. However, obtain-
ing proteomics datafromlarge-scale prospective external cohorts with
long follow-up that perform Olink assays is currently unavailable. To
alleviate this issue, we performed a replication analysis by randomly
splitting the UKB into training and testing sets. The replication results
were consistent with those obtained using the cross-validation strategy
that we performed previously, which further suggests the robustness of
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our findings. Fourth, our study identified important protein biomark-
erswith highaccuracies forincident dementia prediction, which would
have significant implications for screening of high-risk populations for
dementia and early intervention. Regarding the generalization of the
protein thresholds, many practical circumstances need to be taken into
account, because different detection techniques, antibodies, sample
handling procedures and many other factors can affect the measured
protein concentrations. Fifth, there may be uncertainty in the diag-
nosis of UKB. For example, VaD often coexists with AD pathology, and
itis difficult to know how different the VaD category is from AD in the
absence of additional biomarkers.

Utilizing a data-driven proteomics strategy, we innovatively iden-
tified important plasma biomarkers for future dementia prediction
fromthelargest prospective community-based cohort with long-term
follow-up to date. Our findings strongly support the associations of
plasma GFAP, NEFL, GDF15and LTBP2 withincident ACD, AD and VaD,
and emphasize theirimportance in dementia prediction. Of note, GFAP
and the emerging biomarker LTBP2 could serve as promising predictive
biomarkers specific to dementia. Combining GFAP with basic demo-
graphicindicatorsachieved adesirable prediction for dementia, even
more than 10 years before the diagnosis. These findings are poised
to yield significant implications for screening people at high risk for
dementia and for early intervention.

Methods

Study population

The UKB is an ongoing large population-based prospective cohort
study with extensive and in-depth proteomic and phenotypic data.
Recruitment of over 500,000 individuals aged 39-70 years was suc-
cessfully achieved during 2006-2010, and their health is being fol-
lowed over the long term. Enrollees, registered under the UK National
Health Service, were sourced from 22 assessment centers across the
United Kingdom. For the purpose of analyses, we excluded subjects
with dementia at baseline or self-reported dementia and those with
missing proteomic data, yielding an analytic cohort of 52,645 par-
ticipants without dementia (median age 58 years and 53.9% females)
(Extended DataFig.1).

Blood proteomics

Thebaseline blood sample collection was completed at 22 local assess-
ment centers across the UK in 2007-2010. As previously described®>®°,
the majority of blood samples were randomly collected during the
baseline visit from UKB participants, and the remaining were gathered
from members of the UKB Pharma Plasma Proteome consortium and
individuals participating in the COVID-19 repeat-imaging study at
multiple visits. For each participant, blood samples were collected in
EDTA tubes and then immediately centrifuged at 2,500g for 10 min at
4°Ctoisolate plasma. Afterward, the supernatant was divided into
aliquotsand stored at—80 °C as soon as possible until further process-
ing. Samples were transported ondry ice to the Olink Analysis Service
in Sweden and then uniformly quantified using the antibody-based
Olink Explore Proximity Extension Assay®’. Proteomic profiling was
done on plasmasamples from 54,306 UKB participants spanning April
2021to February 2022. Experimenting investigators were blinded to all
sample characteristic or clinical data. More detailed sample handling
and storage procedures were reported in previous publications®s.
Following stringent quality control procedures (biobank.ndph.ox.ac.
uk/ukb/ukb/docs/PPP_Phase 1 _QC_dataset_companion_doc.pdf),
1,463 unique proteins were measured across four panels containing
cardiometabolic, inflammation, neurology and oncology proteins.
The inter- and intraplate coefficients of variation for all Olink panels
were lower than 20% and 10%, respectively. The protein levels were
provided by translating them into Normalized Protein eXpression
(NPX) values (https://biobank.ndph.ox.ac.uk/showcase/ukb/docs/
Olink_1536_B0O_to_B7_Normalization.pdf). To generate NPX values,

the counts for each sample and each assay were divided by the counts
for the extension control, and the ratio was further log-transformed.
Intra- and interplate variations were minimized through accounting
for the median of extension control-normalized counts, batch-specific
median NPX value, and difference of the assay specific median NPX
value of each batch® (https://biobank.ndph.ox.ac.uk/showcase/ukb/
docs/Olink_1536_B0O_to_B7_Normalization.pdf). Because proteomics
datawere preprocessed to log-transformed NPX values, data distribu-
tion (Supplementary Fig. 1) was assumed to be normal but this was not
formally tested.

Dementia outcomes

Curated disease phenotypes were defined using reports from hospital
admissions, primary care and death registry records (Supplementary
Table1). Primary outcomesincludeincident events due to ACD,AD and
VaD, ascertained from data records of first occurrence reports (fields
131036-37,130836-43), algorithm definitions (fields 42018-25), death
registrations (fields40001-02) and hospital inpatient data summaries
(fields 41270, 41280). The outcome date for dementia diagnosis was
established using the earliest recorded date of any aforementioned
data sources®. Follow-up visits commenced from the date of attend-
ance at the assessment center (field 53) until the earliest recorded date
of diagnosis, the date of mortality or the last available date supplied
by the hospital or general practitioner, whichever occurred first®*. The
last recorded date was March 2023. The diagnosis data were linked to
UK electronic health records among which the dementia cases were
reported by professional clinicians in hospitals, family doctors in the
primary care system or by staffin the death register system of the UK.
According to the International Classification of Diseases (ICD)-9 and
ICD-10 codes, dementia cases were diagnosed and classified. Self-
reported disease cases were excluded from this paper. All of these
ensure thereliability of dementia diagnosis.

Statistics and reproducibility

No statistical methods were used to predetermine sample size, but our
samplesizeis similar to or even higher than those reportedin previous
publications'**. In the descriptive analysis of variables of interest,
between-group (incident ACD/AD/VaD versus control) differences
were compared using chi-squared tests for categorical variables and
Student’s t-tests for continuous variables. First, Cox proportional haz-
ardregressionmodels were conducted to estimate the associations of
each plasma protein NPX value (scaled) with incident dementia (ACD,
AD and VaD). HR values, 95% Cls and P values were reported. Model 1
was adjusted for age, sex, education and APOE €4 alleles. Model 2 was
additionally adjusted for systolicblood pressure, hypertension treat-
ment, history of diabetes, smoking status, prevalent cardiovascular
disease (atrial fibrillation, coronary heart disease, heart failure, stroke
or peripheral artery disease), total and high-density lipoprotein (HDL)
cholesterol, and body mass index®*’°. Bonferroni corrections were
applied to assess significant associations (P<0.05), takinginto account
the number of proteins tested (n =1,463).

Enrichment analysis was performed on the significant proteins
after Bonferroni correction derived from Cox proportional hazard
regressionsinmodel1or model 2. We employed the Enrichr” using the
full set of Olink proteins as the reference to glean a deeper biological
understanding. Statistical significance was presented as the Pvalue of
Fisher’s exact test, followed by false discovery rate corrections viathe
Benjamini-Hochberg procedure’.

Important proteins were then determined in two steps: variable
importance ranking and sequential forward selection. The significant
proteins after Bonferroni corrections derived from Cox proportional
hazard regressionsinboth modelland model 2 were fed into a prelimi-
nary trained light gradient boosting machine (LGBM) classifier’®, and
eachproteinwasranked accordingtoits contribution to model perfor-
mance (as judged by the information gain), which can be considered
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asthe protein’s ability toidentify future dementia onset. Afterward, a
sequential forward selection approach was employed, adding proteins
to the newly developed LGBM classifier one at a time in succession
based on their ranking ofimportance®. The selection procedure ceased
once the optimal performance of the AUC was attained, artificially
defined as when no incremental performance was detected in two
consecutive DeLong tests. In this scenario, no significantimprovement
in model performance could be observed when additional proteins
were added. The selected important proteins were then visualized
using SHAP plots.

Next, receiver operating characteristic analyses were performed
to evaluate the accuracy of the above-selected important proteins in
predicting dementia, both alone and in combination with other meas-
ures (demographicindicators: age, sex, educationand APOE €4 status;
cognitive tests: reaction time and pairs matching time®*). Reaction
time and pairs matching time were measured by two different cogni-
tive tests, the snap game (https://biobank.ndph.ox.ac.uk/showcase/
field.cgi?id=400; https://biobank.ndph.ox.ac.uk/showcase/field.
cgi?id=20023) and pairs matching game (https://biobank.ndph.ox.ac.
uk/showcase/label.cgi?id=100030), respectively. Detailed descrip-
tions have been supplied in the previous literature®. To assess the
combined power of the proteins, we further utilized the protein panel
(or ProRS) toreplace the single protein. The protein panel referred to
direct modeling using the combination of the above-selected impor-
tant proteins during the protein ranking procedure. The ProRS was
a predicted risk score generated from the LGBM model utilizing the
above-selected important proteins during the protein ranking pro-
cess, and it was developed to further exploit the ensembled proteins
as awhole to predict future dementia. DeLong tests’ and bootstrap
tests with 2,000 iterations implemented using R package pROC” were
adopted to compare whether the AUC values differed significantly
between models.

To evaluate the generalizability of the selected proteins and the
robustness of their predictive accuracy, we repeated the above analy-
ses among these target populations: 5-year/10-year/over 10-year/all
incident dementia, 10-year/over 10-year/all incident AD and 10-year/
over 10-year/all incident VaD. When performing the corresponding
analyses, individuals who developed dementia after the timestamps,
either 5 or 10 years, were treated as healthy individuals (for example,
for 5-year prediction analysis, people who developed dementia after
5years were treated not having dementia as beyond 5-year incidences
were unknown under the specific observation period). Notably, for
the over10-year analysis, individuals who developed dementia within
10 years were excluded because it assumed the observation period
was longer than 10 years, aiming to investigate the proteins’ predic-
tive utility for those who developed dementia more than 10 years
after baseline assessments. The analyses were repeated following the
exclusion of individuals who experienced ACD, AD or VaD within the
initial 2 years of follow-up.

The model establishment and evaluations were implemented
through internal leave-one-region-out cross-validation. In brief, we
split the dataset into ten folds based on the geographical locations
(EastMidlands, London, North East, North West, Scotland, South East,
South West, Wales, West Midlands, and Yorkshire and Humber) of the 22
assessment centers during participants’ recruitment. Each time, nine
folds of data were utilized as a training set and the rest as a testing set,
and we repeated this process ten times by shifting the folds of data as
training and testing sets. To further reduce overfitting, we tuned hyper-
parameters within the training data (ninefold of data) itself under each
cross-validation loop by randomly splitting 80% and 20% for model
development and model validation. In addition, we conducted feature
selection, dramatically reducing the pool of proteins engaged in the
prediction task to alleviate potential overfitting concerns. The testing
sets of the leave-one-region-out cross-validation were kept untouched
and merely used for model evaluations.

Subsequently, we constructed Kaplan—-Meier survival curves,
delineating high and low baseline top protein levels (the optimal cutoff
was determined by maximizing the Youden index), to visualize the
clinical progression of dementia events over time’. Cox proportional
hazard models adjusted for age, sex, education and APOE €4 alleles
were undertaken to estimate the differences in the prognostic value
of dichotomized protein concentrations. Of note, we explored the
relationships of certain plasma proteins with clinical progression in
nondementia diseases to assess their specificity in dementia events.

In addition, we randomly split the studied populationinto a two-
thirds and a one-third set. The significant proteins derived from Cox
proportional hazard regressions in both model 1 and model 2 were
fed into LGBM classifiers. Here we used the training set to ascertain
important proteins for dementia prediction and then evaluated the
predictive accuracies of these proteinsin the testing set. We reported
the performance metrics using median AUCs and 95% Cls, which were
obtained through bootstrap strategy. When investigating the clini-
cal progression of disease events over time, the protein cutoffs were
calculated using the training set and defined by the achievement of
thelargest Youdenindex. Cox proportional hazard models were then
applied to estimate the associations between baseline proteins and
dementiarisk within the testing set.

Lastly, temporaltrajectories were depicted to observe the dynamic
evolution of plasma proteins during the 15 years preceding dementia
diagnosis. To achieve this, a nested case-control study design was car-
ried out. Similar to a previous article’, all incident cases of dementia
identified during follow-up were considered as cases, whereas the
nested controls were selected by incidence density sampling among
cohort members who remained dementia-free at follow-up. Controls
were matched to patient casesin aratio of five controls per patient case
by age (+2 years), sex and APOE €4 alleles. The date of observation for
nested controls was set as the same for their matched dementia cases.
Locally weighted scatterplot smoothing curves were employed to plot
the mean concentrations of proteins concerning the time leading up
to the index date for both cases and controls’. Mann-Kendall trend
tests were employed to examine the existence of monotonic trendsin
plasma levels over time between those who developed dementia and
those who did not.

Data analyses and visualizations were implemented with librar-
ies of lifelines (v.0.27.4), LightGBM (v.3.3.2), scikit-learn (v.1.0.2),
pyMannKendall (v.1.4.2) and Shap (v.0.40.0) under Python (v.3.9) and
R (v.4.0.3). We considered two-tailed P < 0.05 to be significant.

Ethics statement

This research adhered to the Declaration of Helsinki. Before partici-
pation, all individuals provided written consent, and approval was
obtained fromthe North West Multi-Center Research Ethics Committee
(11/NW/0382; https://www.ukbiobank.ac.uk/learn-more-about-uk-
biobank/about-us/ethics)®*®. Subjects were compensated commen-
surate with the amount of research procedures accomplished and the
duration of involvement. The study received approval from the UKB
under application number 19542.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

The datausedinthe presentstudy are available from UK Biobank with
restrictions applied. Data were used under license and are thus not
publicly available. Access to the UK Biobank data can be requested
through astandard protocol (https://www.ukbiobank.ac.uk/register-
apply/). Data used in this study are available in the UK Biobank under
application number19542. All data supporting the findings described
inthismanuscriptareavailableinthe articleandinthe supplementary
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materials and from the corresponding author upon request. Source
dataare provided with this paper.

Code availability

All software used in this study is publicly available. The code used
in this study can be accessed at https://github.com/jasonHKU0907/
DementiaProteomicPrediction.
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Extended Data Fig.1| Flowchart for participants’ enrollment. From the UK
Biobank cohort, we excluded individuals with dementia at baseline or with
self-reported dementia and those who did not undergo plasma proteomic assay.
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The remaining participants were classified based on their first reported years
of ACD or AD or VaD after baseline. Abbreviations: ACD, all-cause dementia; AD,
Alzheimer’s disease; VaD, vascular dementia.
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