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Plasma proteomic profiles predict future 
dementia in healthy adults

Yu Guo1,4, Jia You    1,2,4, Yi Zhang1,4, Wei-Shi Liu1, Yu-Yuan Huang1, Ya-Ru Zhang1, 
Wei Zhang2, Qiang Dong    1, Jian-Feng Feng    2,3  , Wei Cheng    1,2,3   &  
Jin-Tai Yu    1 

The advent of proteomics offers an unprecedented opportunity to predict 
dementia onset. We examined this in data from 52,645 adults without 
dementia in the UK Biobank, with 1,417 incident cases and a follow-up 
time of 14.1 years. Of 1,463 plasma proteins, GFAP, NEFL, GDF15 and 
LTBP2 consistently associated most with incident all-cause dementia 
(ACD), Alzheimer’s disease (AD) and vascular dementia (VaD), and ranked 
high in protein importance ordering. Combining GFAP (or GDF15) with 
demographics produced desirable predictions for ACD (area under the 
curve (AUC) = 0.891) and AD (AUC = 0.872) (or VaD (AUC = 0.912)). This 
was also true when predicting over 10-year ACD, AD and VaD. Individuals 
with higher GFAP levels were 2.32 times more likely to develop dementia. 
Notably, GFAP and LTBP2 were highly specific for dementia prediction. GFAP 
and NEFL began to change at least 10 years before dementia diagnosis. Our 
findings strongly highlight GFAP as an optimal biomarker for dementia 
prediction, even more than 10 years before the diagnosis, with implications 
for screening people at high risk for dementia and for early intervention.

Dementia progresses slowly from the asymptomatic stage to a fully 
expressed clinical syndrome over many years1,2. Because no effective 
therapy is currently available, correctly determining whether a per-
son will progress to dementia in the near future has become a public 
health priority3. This task is of the utmost importance for the timely 
referral of at-risk populations and for subsequent early diagnosis and 
prompt intervention. Nonetheless, it remains a major challenge for 
clinicians, and it is not known how to best predict the onset of dementia. 
A possible turning point has recently emerged with the advancement 
of blood-based biomarkers, which could serve as a preferable tool 
to facilitate early risk screening in the preclinical phase among the 
general population4–6.

Although some blood markers have been proven to be strongly 
associated with dementia risk7–14, biomarker discovery efforts have 
typically focused on one or a small number of proteins because of 

technical constraints, and lacked the systematic comparison of human 
proteomics. It has not been established which of the high-performing 
markers harbors the greatest potential for risk prediction and moni-
toring. Other investigations have utilized the proteomics strategy to 
reveal differences in blood proteins between people with and people 
without dementia15–17. However, most of these investigations were 
cross-sectional and did not take into account the impact of possible 
reverse causality, nor did they address whether abnormal protein levels 
were present preceding dementia onset and how long before dementia 
such abnormalities could be detected. A recent prospective study 
adopted proteomic analysis to predict incident dementia18. Yet, the 
mixed dementia outcome and the relatively small sample size reduced 
the power to identify proteins relevant to specific dementia etiologies. 
Whether and how proteomic patterns differ across the incident demen-
tia subtypes remain unclear. Therefore, large-scale prospective studies 
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with AD incidence. Other proteins linked to VaD risk were EPHA2, GFRA1 
and SPON2, among others. The main results we obtained from the 
total population largely remained in APOE ε4 carrier and noncarrier 
subgroups (Supplementary Table 3). Enrichment analyses implicated 
several biological pathways related to the significant proteins, such 
as extracellular matrix organization, immune system and infectious 
diseases (Fig. 1b and Supplementary Table 4).

Protein importance ranking
For those dementia-associated proteins in both models 1 and 2, we 
further sorted them based on their importance to the prediction task. 
Detailed analytic results are presented in Supplementary Table 5. As 
shown in the bar chart (Fig. 2a and Supplementary Fig. 2), plasma GFAP, 
NEFL and GDF15 consistently ranked highest in predicting either ACD 
or its subtypes. In detail, NEFL was the strongest predictor of ACD, 
followed by GFAP and GDF15. GFAP was the strongest predictor of 
AD, followed by NEFL and GDF15. GDF15 was the strongest predictor 
of VaD, followed by NEFL and GFAP. When the top few proteins were 
included, the predictive power for dementia (AUC on the right axis) 
escalated steeply and gradually fell into a flat fluctuation as more 
proteins entered. Using this sequential forward selection scheme, we 
ultimately chose the top 11 (NEFL, GFAP, GDF15, BCAN, LTBP2, NPTXR, 
EDA2R, NTproBNP, EGFR, HPGDS and CST5), 7 (GFAP, NEFL, GDF15, 
LTBP2, BCAN, NPTXR and CST5) and 4 (GDF15, NEFL, GFAP and MMP12) 
proteins for ACD, AD and VaD prediction, respectively, for subsequent 
analyses.

To have an intensive survey of the incidence time, we further cat-
egorized patients into 5-year, 10-year and over 10-year incidents. Impor-
tance ranking procedures were repeated independently for these target 
populations, and the yielded results were fed into corresponding later 
analyses. The final selected important proteins were highly overlapped 
with those chosen for predicting all incident dementia events.

Shapley additive explanations (SHAP) plots were leveraged to 
intuitively interpret the effect of each selected protein by its value 
magnitude (coded by a gradient of colors) and tendency direction on 
the horizontal axis (the likelihood of developing dementia) (Fig. 2b and 
Supplementary Fig. 2). The protein GFAP, for example, appeared to hold 
the widest range for all incident AD, suggesting that it had the most 
considerable predictive power. In addition, participants with higher 
GFAP levels (colored in red) were more likely to develop AD (right side), 
whereas those with lower GFAP levels (blue) tended to remain healthy 
(left). Similar explanations were given for the rest of the proteins.

Predictive accuracy of plasma proteins
Employing the tenfold cross-validation approach, we then examined 
the predictive accuracy of the above-selected important proteins for 
future dementia. Relevant results are summarized in Supplementary 
Tables 6 and 7. As for all incident ACD, plasma NEFL, GFAP or GDF15 
alone produced modest AUC values of 0.746, 0.718 and 0.712, respec-
tively, which was similar to or higher than those achieved by other 
separate proteins. This revealed the potential of these proteins to aid 
in dementia prediction. To achieve higher predictive accuracy, we 
explored the performance of plasma proteins in combination with other 
readily available measures including demographic indicators (age, sex, 
education and APOE ε4 status) and cognitive tests (pairs matching time 
and reaction time). The most marked increase in accuracy was seen 
when NEFL (AUC = 0.898) or GFAP (AUC = 0.900) was combined with 
demographic features and brief cognitive tests (DeLong test P < 0.001; 
Fig. 3a). Notable improvement was also observed when combining NEFL 
(AUC = 0.890) or GFAP (AUC = 0.891) with demographic indicators, 
whereas combining NEFL (AUC = 0.779) or GFAP (AUC = 0.768) with 
cognitive metrics resulted in less prediction improvement.

Adding proteins to demographic features significantly improved 
the prediction for incident all-time or 10-year ACD and AD (ΔAUC 
ranged from 0.009 to 0.028, DeLong test P < 0.017). Applying the 

with data on blood proteomics and specific dementias (for example, 
AD) are crucial and necessary.

Furthermore, the predictive ability of the proteins, separately or in 
combination, in different incidence time groups (for example, 10 years, 
>10 years) has been neglected to date. However, this is particularly 
important for the ultra early detection of dementia and for substan-
tially advancing the window for prevention and intervention. Beyond 
predictive accuracy, optimal dementia prediction biomarkers should 
be highly specific for the corresponding pathology11,19. Disappointingly, 
blood proteomic biomarkers that can predict future dementia with the 
required sensitivity and specificity remain largely undetermined4,6.

We innovatively employed a data-driven proteomic approach in 
a large prospective cohort with long follow-up to identify the plasma 
biomarkers best associated with dementia prediction and explore their 
predictive performance. The recent release of data on 1,463 plasma 
proteins from more than 50,000 individuals in the UK Biobank (UKB) 
provides us with an unprecedented opportunity to: (1) comprehen-
sively test their associations with incident ACD, AD and VaD to identify 
a set of candidate dementia-associated proteins; (2) determine the 
magnitude of the protein contributions to the prediction of dementia; 
(3) investigate the predictive accuracy of the top-ranked proteins, 
individually and in combination, over 5, 10 and many more years; (4) 
examine the relationships between plasma proteins and the risk of 
clinical progression, and further evaluate whether such relationships 
are specific to dementia and not seen in people without dementia; 
and (5) trace the trajectories of plasma proteins back from the time of 
dementia diagnosis and assess when each protein begins to deviate 
from normal control values.

Results
Participants’ characteristics
This study included 52,645 adults without dementia at baseline, with a 
median age of 58 years, of whom 53.9% were female and 93.7% were of 
white ancestry (Table 1). During a median follow-up of 14.1 years, 1,417 
(2.7%) incident dementia cases were identified, of which 219 occurred 
within 5 years, 833 within 10 years and 584 beyond 10 years. For incident 
ACD participants, the median age was 66 years, 48.5% were female and 
96.5% were of white ethnicity (all P < 0.001). There were 691 patients 
diagnosed with AD, among whom 384 had incidents within 10 years 
and 307 had incidents over 10 years. In addition, 285 patients were 
diagnosed with VaD, among whom 148 had incidents within 10 years 
and 137 had incidents over a decade. The incidence of ACD per 1,000 
person-years from age 39 to 70 years was 2.00. In the 60–64-year age 
group, the incidence rate of ACD was 2.07 per 1,000 person-years, and 
it was 6.26 per 1,000 person-years in the 65–69-year age group.

Identifying proteins associated with incident dementia
Of the 1,463 proteomic biomarkers tested, after adjusting for age, sex, 
education and APOE ε4 alleles in model 1, we found 184, 16 and 139 
proteins were remarkably associated with incident ACD, AD and VaD, 
respectively (Fig. 1a and Supplementary Table 2). Other proteins, such 
as MAPT, were positively associated with the risk of ACD (P = 0.002), AD 
(P = 0.043) and VaD (P = 0.038), but the associations were not significant 
after Bonferroni corrections. As a sensitivity analysis, we re-ran all analy-
ses under model 2, which additionally adjusted for vascular variables, 
and found several significant associations could be replicated (Fig. 1a). 
Importantly, after Bonferroni corrections, GFAP (ACD: hazard ratio 
(HR) = 1.53, P = 1.35 × 10−91; AD: HR = 1.65, P = 9.86 × 10−75; VaD: HR = 1.61, 
P = 2.06 × 10−31) and NEFL (ACD: HR = 1.56, P = 7.27 × 10−76; AD: HR = 1.52, 
P = 3.25 × 10−27; VaD: HR = 1.56, P = 1.92 × 10−15) had the most significant 
associations with the studied dementia types. Higher levels of GDF15 
(ACD: HR = 1.28, P = 5.91 × 10−16; AD: HR = 1.19, P = 0.038; VaD: HR = 1.43, 
P = 4.99 × 10−8) and LTBP2 (ACD: HR = 1.24, P = 7.97 × 10−9; AD: HR = 1.26, 
P = 2.05 × 10−4; VaD: HR = 1.35, P = 0.010) could also increase the risk of 
incident dementia (model 2). CST5, NPTXR and BCAN were associated 
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bootstrap method to compare AUC values produced similar conclu-
sions, and additionally revealed an improvement in discriminative 
performance with the addition of GDF15 to demographic features in 
ACD, and NEFL to demographic features in AD.

For assessing the combined power of selected important proteins, 
we utilized the protein panel or protein risk score (ProRS) instead of the 
single protein, by which significantly better accuracies were attained. 
Specifically, the protein panel generated an AUC of 0.841 (Fig. 3a), simi-
lar to that achieved by ProRS of 0.837. Adding demographic features 
further improved accuracies substantially, raising the AUC values to 
0.908, whereas adding cognitive features to the protein panel increased 
the accuracy to only 0.850. The best-performing model was the full 
model, combining the protein panel with demographic and cognitive 
information, with an AUC of 0.913. Integrating ProRS with demographic 
and cognitive data also provided an excellent AUC of 0.903.

The model fit for predicting all incident AD and VaD resulted in 
similarly included variables and accuracies (Fig. 3b–c). The combina-
tion of GFAP (or GDF15) with demographic characteristics achieved 
a good prediction for AD (AUC = 0.872) (or VaD (AUC = 0.912)). Fur-
ther adding cognitive tests did not improve the predictive power 
significantly (AD: AUC = 0.878; VaD: AUC = 0.914). When applying 
the same variable models to predict 5-year, 10-year and over 10-year 
(Fig. 3d–f) incident dementia events or removing individuals who 
developed dementia in the first two years of follow-up, similar and 
robust results were produced. Of particular note, combining plasma 
GFAP with demographic characteristics gave an accurate prediction of 
incidences of ACD (AUC = 0.872) and AD (AUC = 0.847) over 10 years, 

with comparable performance to the full model integrating GFAP or 
the protein panel with demographic and cognitive data. A combination 
of plasma GDF15 with demographic characteristics (AUC = 0.895) also 
achieved an excellent prediction for over 10-year incident VaD, with 
similar accuracy to that of the full model integrating GDF15 or the 
protein panel with demographic and cognitive data. These data suggest 
that the combined model we derived could enable an accurate predic-
tion of future dementia even more than 10 years before the diagnosis. 
Unexpectedly, adding cognition resulted in lower AUC values in some 
models, particularly for over 10-year incident AD and VaD, although this 
was generally not significant using both DeLong and bootstrap tests.

Blood proteins and the risk of clinical progression
Next, we investigated the prognostic value of baseline plasma proteins 
for progression to dementia. Baseline protein levels were dichoto-
mized into high and low groups and the cutoff was derived upon 
the achievement of the largest Youden index when distinguishing 
those who experienced clinical progression from those who did not 
throughout the follow-up period. Detailed thresholds were shown in 
Supplementary Table 8.

Subjects with higher baseline NEFL (HR = 2.36, P = 1.27 × 10−41), GFAP 
(HR = 2.32, P = 8.68 × 10−47) or GDF15 (HR = 1.70, P = 2.17 × 10−15) levels 
presented an elevated risk of developing dementia (Fig. 4a). This finding 
was also pronounced in AD and VaD (Fig. 4b,c). Remarkably, individu-
als with higher GFAP levels were 2.91 times more likely to develop AD 
than those with lower baseline GFAP. The likelihood of developing VaD 
in the future was 2.45 times greater for those with higher GDF15 levels 

Table 1 | Baseline characteristics of UK Biobank participants included in the study

Participants' characteristics Overall Control Incident dementia Incident AD Incident VaD

N = 52,645 N = 51,228 N = 1,417 P value N = 691 P value N = 285 P value

Age, years 58 [50–64] 58 [50–63] 66 [63–68] 4.33 × 10−289 67 [63–68] 3.79 × 10−163 66 [63–68] 1.38 × 10−68

Sex (female) 28,393 (53.9) 27,706 (54.1) 687 (48.5) 3.39 × 10−5 379 (54.8) 0.717 111 (38.9) 4.34 × 10−7

Ethnicity (white) 49,353 (93.7) 47,985 (93.7) 1,368 (96.5) 1.36 × 10−5 667 (96.5) 0.003 277 (97.2) 0.020

Education, years 11 [10–15] 11 [10–15] 11 [10–12] 7.50 × 10−22 10 [9–12] 8.46 × 10−18 11 [11,12] 1.37 × 10−5

APOE ε4 single-copy 
carriers

13,610 (25.9) 13,041 (25.5) 569 (40.2) 1.39 × 10−263 308 (44.6) 8.57 × 10−290 116 (40.7) 9.35 × 10−46

APOE ε4 double-copies 
carriers

1,474 (2.8) 1,244 (2.4) 230 (16.2) 160 (23.2) 40 (14.0%)

Systolic blood pressure, 
mmHg

138 [126–152] 138 [125–152] 145 [132–159] 5.34 × 10−36 145 [132–159] 9.08 × 10−23 147 [132–159] 2.72 × 10−9

Hypertension treatment 11,648 (22.1) 11,078 (21.6) 570 (40.2) 6.16 × 10−62 275 (39.8) 2.84 × 10−30 131 (46.0) 6.26 × 10−23

Diabetes 2,979 (5.7) 2,783 (5.4) 196 (13.8) 3.49 × 10−41 94 (13.6) 2.42 × 10−20 53 (18.6) 9.14 × 10−22

Current smoker 5,562 (10.6) 5,424 (10.6) 138 (9.7) 0.326 60 (8.7) 0.120 31 (10.9) 0.951

Atrial fibrillation 1,140 (2.2) 1,072 (2.1) 68 (4.8) 9.65 × 10−12 26 (3.8) 0.004 17 (6.0) 1.52 × 10−5

Coronary heart disease 3,244 (6.2) 3,004 (5.9) 240 (16.9) 3.91 × 10−65 99 (14.3) 2.43 × 10−20 61 (21.4) 7.97 × 10−28

Heart failure 481 (0.9) 457 (0.9) 24 (1.7) 0.003 13 (1.9) 0.012 6 (2.1) 0.064

Stroke 936 (1.8) 873 (1.7) 63 (4.4) 2.90 × 10−14 24 (3.5) 6.78 × 10−4 23 (8.1) 1.58 × 10−15

Peripheral artery disease 1,191 (2.3) 1,132 (2.2) 59 (4.2) 1.68 × 10−6 21 (3.0) 0.180 20 (7.0) 1.34 × 10−7

Total cholesterol, mmol l−1 5.6 [4.9–6.4] 5.6 [4.9–6.4] 5.4 [4.6–6.2] 4.92 × 10−10 5.5 [4.6–6.4] 0.006 5.3 [4.4–6.0] 9.80 × 10−7

HDL cholesterol, mmol l−1 1.4 [1.2–1.6] 1.4 [1.2–1.6] 1.4 [1.2–1.6] 0.003 1.4 [1.2–1.6] 0.856 1.4 [1.1–1.5] 9.44 × 10−4

Body mass index 26.8 
[24.2–29.9]

26.8 
[24.2–29.9]

27.2 
[24.4–30.2]

0.048 26.9 
[24.2–29.8]

0.787 28.2 
[25.2–31.3]

4.59 × 10−4

Pairs matching time, s 189 [149–247] 189 [149–246] 229 [172–326] 2.70 × 10−74 233 
[173–330]

2.09 × 10−48 233 
[179–342]

2.80 × 10−19

Reaction time, ms 543 [484–617] 540 [481–614] 594 
[531–687]

1.17 × 10−81 594 
[529–685]

7.83 × 10−43 605 
[543–696]

3.14 × 10−27

Continuous data are presented as median [interquartile range] and categorical variables as number (percentage). Differences between incident dementia and healthy control groups were 
compared using Student’s t-test for continuous variables and Pearson’s chi-squared test for discrete variables.
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Fig. 1 | Associations of plasma proteins with incident dementia. a, Volcano 
plots showing the HR (x axis) and −log10(P value) (y axis) for the global 
associations of 1,463 proteins with incident ACD, AD and VaD. All results for both 
Cox proportional hazard regression models 1 and 2 are shown here. Model 1 was 
adjusted for age, sex, education and APOE ε4 alleles. Model 2 was additionally 
adjusted for systolic blood pressure, hypertension treatment, history of 
diabetes, smoking status, prevalent cardiovascular disease (atrial fibrillation, 
coronary heart disease, heart failure, stroke or peripheral artery disease), total 
and HDL cholesterol and body mass index. P values were calculated under 
two-sided tests and no multiple comparisons were applied. Proteins above 
the horizontal dotted black line were significantly associated with incident 
dementia after Bonferroni corrections (P < 0.05) taking into account the 

number of proteins tested (n = 1,463). b, Enrichment for Gene Ontology (GO), 
Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome pathways. 
Significant proteins after Bonferroni correction derived from Cox proportional 
hazard regressions in model 1 or model 2 were fed into the Enrichr website 
(https://maayanlab.cloud/Enrichr/) for enrichment analysis using the Olink 
proteins as background gene set. P values were calculated under two-sided 
tests and statistical significance was defined as a false discovery rate (FDR)-
corrected P < 0.05 (dotted horizontal line). The number above each bar is the 
number of observed proteins in each pathway. Detailed results were shown in 
Supplementary Table 4. BP, biological process; CC, cellular component; ECM, 
extracellular matrix; MF, molecular function; TNF, tumour necrosis factor.
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relative to those with lower levels. Likewise, significant associations 
were detected for other selected proteins (Supplementary Fig. 3).

In addition, and importantly, we examined the abilities of the 
plasma proteins in predicting clinical progression to other disease 
events. As expected, the risk of developing other dementias (except 
AD and VaD) was elevated for those with higher GFAP levels. It is worth 
noting that no significant association was observed between baseline 
GFAP levels and the risk of neurodegenerative diseases (except demen-
tia) (HR [95% confidence interval (CI)] = 1.06 [0.94–1.20], P > 0.999), 
neurological disorders (except dementia) (HR [95% CI] = 0.94 [0.88–
1.00], P = 0.493) or mental and behavioral disorders (except dementia) 
(HR [95% CI] = 1.05 [0.95–1.15], P > 0.999) (Fig. 4d), indicating that GFAP 
may be specific for dementia. By contrast, the relationships between 
baseline GDF15 or NEFL and the risk of almost all these studied disease 
events were significant. This is also true for other proteins (BCAN, 
NPTXR, EDA2R, NTproBNP, EGFR, HPGDS and CST5) (Supplementary 
Fig. 4 and Supplementary Table 8). Subjects with higher baseline LTBP2 
levels had a higher risk of developing ACD or AD, but this relationship 

was not significant for nondementia diseases, which suggested that 
LTBP2 may be dementia-specific.

Similar trends of disease risk were observed when using the contin-
uous values for each protein in the Cox model (Supplementary Fig. 5).

Results of replication validation analyses
To assess the robustness of our results, we randomly divided the study par-
ticipants into two-thirds (training set, n = 35,096) and one-third (testing 
set, n = 17,549) sets. The results we obtained (Supplementary Tables 9–11)  
were consistent with those obtained using the cross-validation strat-
egy that we performed previously. Specifically, from the training set, 
we reaffirmed the importance of GFAP, NEFL, GDF15 and LTBP2 in the 
prediction of ACD, AD and VaD. In the testing set, these proteins alone 
yielded modest predictive accuracies (AUC = 0.7–0.8). Combining GFAP 
(or GDF15) with demographic data achieved desirable predictions for 
ACD (AUC = 0.894) and AD (AUC = 0.883) (or VaD (AUC = 0.907)). The 
same parsimonious models produced AUC values of 0.861, 0.818 and 
0.870 for over 10-year ACD, AD and VaD incidence, respectively, with 
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Fig. 2 | Protein importance ranking and SHAP visualization of modeling 
on all incident dementia populations. a, Sequential forward selection from 
preselected candidate proteins. The bar chart indicates the importance of the 
sorted proteins based on their contributions to the prediction of future ACD (as 
judged by the information gain). The line chart illustrates cumulative AUC values 
(right axis) upon the inclusion of proteins one by one in each iteration. The top 
proteins we finally selected are marked in red. Shaded regions represent standard 

errors derived from cross-validation. b, SHAP visualization plot of selected 
proteins. The width of the range of the horizontal bars can be understood as the 
extent of the contribution to the prediction of ACD; the wider their range, the 
greater the contribution. The color of the horizontal bars denotes the magnitude 
of plasma proteins, which was coded in a gradient from blue (low) to red (high), 
shown as the color bar on the right-hand side. The direction on the x axis indicates 
the likelihood of developing dementia (right) or being healthy (left).
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comparable performance to the full model combining the protein panel 
and clinical information.

Moreover, based on the protein cutoff values obtained from the 
training set, we reconfirmed the relationships of the important proteins 
with the risk of clinical progression in the testing set (Supplemen-
tary Table 12). In line with our primary results, individuals with higher 
baseline NEFL and GDF15 levels had a higher risk of developing both 
dementia and nondementia diseases in the future, whereas the associa-
tion between baseline GFAP or LTBP2 levels and disease progression 
was only significant in dementia.

Predementia trajectories for plasma proteins
We finally delineated the temporal trajectories of the plasma proteins 
starting at dementia diagnosis using a backward 15-year timescale 
and compared them with protein changes over the same period in 
those free from dementia. Smoothing splines demonstrated that 
plasma GFAP, GDF15 and NEFL appeared to deviate from normal val-
ues as early as over 10 years before the onset of dementia, either for 
ACD, AD or VaD (Fig. 5). GFAP (group difference P = 0.017) and NEFL 
(P = 1.21 × 10−4) levels rose more steeply over time for individuals who 
developed ACD compared with those who did not, whereas there was 
no obvious difference in the steepness of GDF15 slopes (P = 0.161). 
The slope differences between AD cases and controls were signifi-
cant when analyzing GFAP (P = 3.19 × 10−4), NEFL (P = 3.19 × 10−4) and 
GDF15 (P = 0.044), but not for the remaining proteins (Supplementary  

Fig. 6 and Supplementary Table 13). By contrast, for GFAP (P = 0.855), 
NEFL (P = 0.127) and GDF15 (P = 0.127), the slopes did not significantly 
deviate between incident VaD individuals and those who remained 
without dementia.

Discussion
By performing a proteome-wide association study, we identified a wide 
array of plasma proteins associated with an increased risk of incident 
ACD, AD and VaD. Of these, GFAP, NEFL, GDF15 and LTBP2 consistently 
had the most significant associations with future dementia events and 
showed high importance in prediction tasks in 5-year, 10-year, over 
10-year and all-time scenarios. To our knowledge, this study provides 
the inaugural revelation of the importance ranking of plasma proteins 
in predicting incident ACD, AD and VaD. These proteins alone demon-
strated modest predictive accuracies (AUC = 0.7–0.8). Combining GFAP 
(or GDF15) with basic demographic data enabled desirable predictions 
for ACD (AUC = 0.891) and AD (AUC = 0.872) (or VaD (AUC = 0.912)). 
The same parsimonious models yielded AUC values of 0.872, 0.847 
and 0.895 for over 10-year ACD, AD and VaD incidence, respectively, 
with comparable performance to the full model combining the protein 
panel and clinical information. Individuals with higher GFAP levels 
were 2.32 times more likely to develop dementia. Notably, GFAP and 
LTBP2 were highly specific for dementia prediction, yet not for NEFL 
and GDF15. Furthermore, changes in GFAP and NEFL began to occur at 
least 10 years before dementia diagnosis, with concentrations rising 
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Fig. 3 | Predictive accuracy of plasma proteins, alone or in combination 
with other variables. a–f, Receiver operating curves show the performance of 
different variable models for predicting all incident ACD (a), AD (b) and VaD (c) as 

well as the over 10-year incident ACD (d), AD (e) and VaD (f). Within the combined 
model, demographic indicators included age, sex, education and APOE ε4 status, 
and cognitive tests included pairs matching time and reaction time.
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more steeply in individuals with incident ACD or AD than in those who 
remained dementia-free.

Consistent with previous research, NEFL20,21 has been reported to 
be associated with AD and VaD, GFAP22,23, GDF15 (ref. 24), BCAN25 and 
NPTXR26 with AD, with all associations in the same direction as in our 
results. The relations of AD with LTBP2 and CST5, as well as the relations 
of VaD with GFAP, GDF15 and MMP12, were original findings. Several 
mechanisms could link these proteins to dementia, including reactive 
astrogliosis, blood–brain barrier and/or glymphatic dysfunction27, 
axonal damage28, inflammation29,30, synaptic dysfunction and loss26, 
amyloid-β clearance31 and neuron apoptosis32. Interestingly, we found 
the specificity of LTBP2 for dementia prediction, which needs to be 
studied in depth in the future.

Our results showed the greatest importance of GFAP, NEFL and 
GDF15 in predicting incident ACD and subtypes in both the long and 
short terms. Plasma GFAP has been proposed as a promising candidate 
biomarker for identifying AD22. Most previous work on the predictive 
value of GFAP has primarily focused on the risk conversion from mild cog-
nitive impairment to AD23,33,34, whereas few studies have predicted the risk 
transition from normal cognition to AD. Two small longitudinal studies 
have recently examined this and obtained similar AUC values as ours35,36. 
GFAP is currently a research interest for analyzing AD-specific associa-
tions37. Former studies have discovered elevated plasma GFAP levels in 
both AD and nonAD dementias37–40, demonstrating its poor specificity 
to AD, which is in agreement with our findings. It is, however, not further 
studied whether GFAP is specific to dementia. By extending the previous 
association between higher baseline blood GFAP and increased risk of 
progression to dementia9, we proved no relationship between GFAP and 
the risk of nondementia events to help fill this knowledge gap. The hand-
ful of studies assessing the performance of blood GFAP in distinguishing 
dementia from other diseases also supported our results41. In addition, 
less evidence is available assessing the predictive value of GFAP in incident 
VaD. Nevertheless, this is plausible because GFAP was also increased in 
patients with cerebrovascular disease42,43 and linked to vascular patholo-
gies44,45, such as white matter hyperintensities and cerebral microbleeds, 
which we hypothesized would increase the risk of VaD46,47.

Studies have identified the high predictive value of plasma NEFL 
for AD, which yielded AUC values slightly lower than ours35,36,48. While 
reinforcing the use of NEFL in predicting AD, our results extended cur-
rent knowledge by preliminarily noting its predictive value for ACD and 
VaD. As a marker of axonal injury, NEFL has been reported to be linked to 
several neurological diseases49–51, in line with our derived associations 
between NEFL and the risk of nondementia events. Previous studies 
reported that plasma GDF15 was associated with cerebrovascular 
disease burden24,52 and AD24, but its relationship with VaD has not been 
elucidated. Here, we presented preliminary descriptions of its longi-
tudinal relationship with VaD and identified GDF15 as the strongest 
predictor of incident VaD in the studied plasma proteins. Our findings 
were supported by a recent proteomics study in middle-aged adults 
that identified GDF15 as a key marker for predicting dementia many 
years later53. Upregulation of GDF15 in the central nervous system was 
secondary to vascular brain damage54 like stroke and cerebral microvas-
cular disease55, probably exerting anti-inflammatory and neurotrophic 
effects29 in response to injuries. As the risk of dementia increased under 
the influence of vascular brain damage46,56, it could link high plasma 
GDF15 with incident AD and VaD. The elevation of plasma GDF15 may 

also be attributed to risk factors for dementia such as cardiovascular 
diseases, diabetes57 and obesity58.

Other proteins, such as the tau protein MAPT, significantly 
increased the risk of ACD, AD and VaD when studied alone. However, 
after taking into account the number of proteins tested (n = 1,463), the 
associations lost significance (Bonferroni corrected P > 0.05). Previous 
studies have suggested an inferior prognostic and diagnostic perfor-
mance of total-tau when compared with NEFL59–61. Our study marks the 
initial extension of the comparison to 1,463 proteins. In addition, the 
role of total-tau in risk of dementia is also controversial because one 
study found plasma tau levels did not differ significantly between AD 
patients and healthy controls62. More studies are needed to further 
elucidate the associations.

Driven by the multifactorial nature of dementia etiology and 
the heterogeneity of clinical manifestations, plasma protein alone is 
unlikely to attain the highest predictive accuracy8. Accordingly, there 
is a need to combine plasma proteins with other measures to gener-
ate the most accurate prediction of future dementia and establish an 
optimal predictive algorithm that is noninvasive, cost-effective and 
easily accessible. We found that the parsimonious model combining 
GFAP (or GDF15) with basic demographic indicators could achieve a 
desirable prediction for ACD and AD (or VaD). The results were robust 
in predicting 5-year, 10-year, over 10-year and all-time scenarios, which 
is important but has not been explored before. Our proposed model 
may offer considerable cost benefits compared with using lumbar 
punctures or imaging scans to screen eligible participants, particularly 
in primary care.

Generally, adding proteins to demographic features significantly 
improved the prediction, which reflected the complementary infor-
mation that proteins hold over demographic measures. This finding 
may largely translate into the potential clinical utility of proteins as 
an additional source of discriminatory information to refine future 
dementia prediction. Moreover, it is worth noting that, both the AUC 
values of demographic features alone and single key proteins were 
high (>0.70), which could lead to a mild increase in AUC values when 
combining them.

Adding additional cognitive tests to the model has little improve-
ment in prediction accuracy, indicating that substantial parts of the 
cognitive tests’ discriminatory information are shared with protein 
indicators. Moreover, considering the AUC values of single proteins, 
protein panel and demographic features alone were high, combining 
them with cognition is reasonable to attain a mild increase in AUC  
values. In some cases, adding additional cognitive tests to the model 
did not yield an increased predictive accuracy and this phenomenon 
was particularly present in over 10-year models. Because cognitive 
decline occurs late in the course of dementia, cognitive tests might hold 
limited predictive information on over 10-year dementia outcomes.

This study has clear implications for the use of plasma GFAP, NEFL 
and GDF15 as prognostic and/or monitoring biomarkers in the preclini-
cal phase of dementia. The dynamic changes in GFAP, NEFL and GDF15 
provide observable evidence of early signs of dementia beginning more 
than 10 years before the diagnosis. All three proteins were strongly 
associated with the risk of progression to dementia, and the effect sizes 
of GFAP and NEFL were the largest. In particular, for AD, the effect sizes 
of GFAP and NEFL were 1.8 and 1.5 times that of GDF15. These results 
suggest that GFAP and NEFL are stronger prognostic markers for risk 

Fig. 4 | Predictive performance of baseline protein levels on the risk of 
clinical progression. a–d, Unadjusted Kaplan–Meier curves present the clinical 
progression to ACD (a), AD (b), VaD (c) and nondementia diseases (d) over time, 
visualized for individuals with low (blue line) and high (red line) baseline plasma 
GFAP, GDF15 or NEFL levels. The cutoffs splitting the high- and low-protein 
level groups were calculated by the achievement of the largest Youden index. 
The number of individuals at risk per 2.5-year interval is listed below the curve. 

Cox proportional hazard models estimate the association between baseline 
dichotomized protein and disease risk, where HRs and P values are calculated after 
adjusting for age, sex, education and APOE ε4 alleles. Shaded regions represent 
standard errors derived from survival proportions. P values were calculated 
under two-sided tests. Bonferroni corrections were applied to assess significant 
associations (P < 0.05), taking into account the number of proteins tested here 
(n = 12).
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of incident ACD and AD than GDF15, as partially reported previously9. 
Moreover, we found steeper rises in GFAP, NEFL and GDF15 levels in 
individuals with incident AD but not VaD than in those who remained 
dementia-free. This adds evidence to previous studies showing that 

plasma GFAP and NEFL concentrations rise at a constantly higher 
rate in people who will develop AD20,23. VaD-related research needs 
to be further explored in the future. Together with our findings that 
GFAP was specific in predicting dementia onset, GFAP might be more 
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valuable when measured repeatedly during the preclinical phase of 
dementia as an indicator of therapeutic effects in future clinical trials. 
If treatment-induced reductions in GFAP towards normal values are 
clearly correlated with clinically beneficial effects, then future trials 
targeting early-stage dementia could incorporate plasma GFAP as a 
potential surrogate endpoint.

The strengths of our study include the long follow-up and high-
throughput proteome analysis of a large community-based sample, 
which enabled us to replicate previous findings and discover unprec-
edented plasma biomarkers. Some limitations should be acknowl-
edged when interpreting the results. First, although a comprehensive 
assessment of circulating proteins is provided by the UKB, not all of 
the human proteome is captured within this platform, and biases 
may be present in the priority of measuring secreted proteins. For 
example, there is a lack of data on plasma amyloid and tau-related 

proteins, which limits our ability to investigate their predictive values 
in dementia. Second, the incidence of dementia is lower than that in 
other reported cohorts given that the UKB participants tend to be 
younger at enrollment. However, when compared with other studies 
at certain same age groups (for example, the 65–69 years group)63, 
the incidence rates were similar. To identify potential patients with 
dementia, we have included patients from hospital admissions, death 
registers and primary care, as suggested previously64. Third, validation 
using independent external datasets would be ideal. However, obtain-
ing proteomics data from large-scale prospective external cohorts with 
long follow-up that perform Olink assays is currently unavailable. To 
alleviate this issue, we performed a replication analysis by randomly 
splitting the UKB into training and testing sets. The replication results 
were consistent with those obtained using the cross-validation strategy 
that we performed previously, which further suggests the robustness of 
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Fig. 5 | Temporal trajectories of plasma proteins preceding the dementia 
diagnosis. a–c, The dynamic changes of plasma GFAP, GDF15 and NEFL before 
developing ACD (a), AD (b) and VaD (c) were plotted. Nested case–control 
studies were employed to match an individual with incident events (within 
15-year observation period) to five healthy controls under matching criteria 
of age (±2 years), sex and APOE ε4 alleles. ACD versus non-ACD controls: 
n = 1,399 versus 6,995; AD versus non-AD controls: n = 677 versus 3,385; VaD/
non-VaD controls: n = 281 versus 1,405. Red curves correspond to patients with 

dementia, and blue curves correspond to controls. The mean values of protein 
concentrations by time to the index date were fitted using locally weighted 
smoothing curves. Error bars represent standard errors. The number of cases 
in the 1, 2 and 3 years before dementia diagnosis was small and thus aggregated. 
Mann–Kendall trend tests were performed to examine the slope differences of 
plasma protein levels over time for individuals with incident dementia compared 
with those for individuals who did not develop dementia, where P values were 
calculated under two-sided tests and no multiple comparisons were applied.
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our findings. Fourth, our study identified important protein biomark-
ers with high accuracies for incident dementia prediction, which would 
have significant implications for screening of high-risk populations for 
dementia and early intervention. Regarding the generalization of the 
protein thresholds, many practical circumstances need to be taken into 
account, because different detection techniques, antibodies, sample 
handling procedures and many other factors can affect the measured 
protein concentrations. Fifth, there may be uncertainty in the diag-
nosis of UKB. For example, VaD often coexists with AD pathology, and 
it is difficult to know how different the VaD category is from AD in the 
absence of additional biomarkers.

Utilizing a data-driven proteomics strategy, we innovatively iden-
tified important plasma biomarkers for future dementia prediction 
from the largest prospective community-based cohort with long-term 
follow-up to date. Our findings strongly support the associations of 
plasma GFAP, NEFL, GDF15 and LTBP2 with incident ACD, AD and VaD, 
and emphasize their importance in dementia prediction. Of note, GFAP 
and the emerging biomarker LTBP2 could serve as promising predictive 
biomarkers specific to dementia. Combining GFAP with basic demo-
graphic indicators achieved a desirable prediction for dementia, even 
more than 10 years before the diagnosis. These findings are poised 
to yield significant implications for screening people at high risk for 
dementia and for early intervention.

Methods
Study population
The UKB is an ongoing large population-based prospective cohort 
study with extensive and in-depth proteomic and phenotypic data. 
Recruitment of over 500,000 individuals aged 39–70 years was suc-
cessfully achieved during 2006–2010, and their health is being fol-
lowed over the long term. Enrollees, registered under the UK National 
Health Service, were sourced from 22 assessment centers across the 
United Kingdom. For the purpose of analyses, we excluded subjects 
with dementia at baseline or self-reported dementia and those with 
missing proteomic data, yielding an analytic cohort of 52,645 par-
ticipants without dementia (median age 58 years and 53.9% females) 
(Extended Data Fig. 1).

Blood proteomics
The baseline blood sample collection was completed at 22 local assess-
ment centers across the UK in 2007–2010. As previously described65,66, 
the majority of blood samples were randomly collected during the 
baseline visit from UKB participants, and the remaining were gathered 
from members of the UKB Pharma Plasma Proteome consortium and 
individuals participating in the COVID-19 repeat-imaging study at 
multiple visits. For each participant, blood samples were collected in 
EDTA tubes and then immediately centrifuged at 2,500g for 10 min at 
4 °C to isolate plasma. Afterward, the supernatant was divided into 
aliquots and stored at −80 °C as soon as possible until further process-
ing. Samples were transported on dry ice to the Olink Analysis Service 
in Sweden and then uniformly quantified using the antibody-based 
Olink Explore Proximity Extension Assay67. Proteomic profiling was 
done on plasma samples from 54,306 UKB participants spanning April 
2021 to February 2022. Experimenting investigators were blinded to all 
sample characteristic or clinical data. More detailed sample handling 
and storage procedures were reported in previous publications68. 
Following stringent quality control procedures (biobank.ndph.ox.ac.
uk/ukb/ukb/docs/PPP_Phase_1_QC_dataset_companion_doc.pdf ), 
1,463 unique proteins were measured across four panels containing 
cardiometabolic, inflammation, neurology and oncology proteins. 
The inter- and intraplate coefficients of variation for all Olink panels 
were lower than 20% and 10%, respectively. The protein levels were 
provided by translating them into Normalized Protein eXpression 
(NPX) values (https://biobank.ndph.ox.ac.uk/showcase/ukb/docs/
Olink_1536_B0_to_B7_Normalization.pdf). To generate NPX values, 

the counts for each sample and each assay were divided by the counts 
for the extension control, and the ratio was further log-transformed. 
Intra- and interplate variations were minimized through accounting 
for the median of extension control-normalized counts, batch-specific 
median NPX value, and difference of the assay specific median NPX 
value of each batch67 (https://biobank.ndph.ox.ac.uk/showcase/ukb/
docs/Olink_1536_B0_to_B7_Normalization.pdf). Because proteomics 
data were preprocessed to log-transformed NPX values, data distribu-
tion (Supplementary Fig. 1) was assumed to be normal but this was not 
formally tested.

Dementia outcomes
Curated disease phenotypes were defined using reports from hospital 
admissions, primary care and death registry records (Supplementary 
Table 1). Primary outcomes include incident events due to ACD, AD and 
VaD, ascertained from data records of first occurrence reports (fields 
131036-37, 130836-43), algorithm definitions (fields 42018-25), death 
registrations (fields 40001-02) and hospital inpatient data summaries 
(fields 41270, 41280). The outcome date for dementia diagnosis was 
established using the earliest recorded date of any aforementioned 
data sources69. Follow-up visits commenced from the date of attend-
ance at the assessment center (field 53) until the earliest recorded date 
of diagnosis, the date of mortality or the last available date supplied 
by the hospital or general practitioner, whichever occurred first64. The 
last recorded date was March 2023. The diagnosis data were linked to 
UK electronic health records among which the dementia cases were 
reported by professional clinicians in hospitals, family doctors in the 
primary care system or by staff in the death register system of the UK. 
According to the International Classification of Diseases (ICD)-9 and 
ICD-10 codes, dementia cases were diagnosed and classified. Self-
reported disease cases were excluded from this paper. All of these 
ensure the reliability of dementia diagnosis.

Statistics and reproducibility
No statistical methods were used to predetermine sample size, but our 
sample size is similar to or even higher than those reported in previous 
publications18,53. In the descriptive analysis of variables of interest, 
between-group (incident ACD/AD/VaD versus control) differences 
were compared using chi-squared tests for categorical variables and 
Student’s t-tests for continuous variables. First, Cox proportional haz-
ard regression models were conducted to estimate the associations of 
each plasma protein NPX value (scaled) with incident dementia (ACD, 
AD and VaD). HR values, 95% CIs and P values were reported. Model 1 
was adjusted for age, sex, education and APOE ε4 alleles. Model 2 was 
additionally adjusted for systolic blood pressure, hypertension treat-
ment, history of diabetes, smoking status, prevalent cardiovascular 
disease (atrial fibrillation, coronary heart disease, heart failure, stroke 
or peripheral artery disease), total and high-density lipoprotein (HDL) 
cholesterol, and body mass index20,70. Bonferroni corrections were 
applied to assess significant associations (P < 0.05), taking into account 
the number of proteins tested (n = 1,463).

Enrichment analysis was performed on the significant proteins 
after Bonferroni correction derived from Cox proportional hazard 
regressions in model 1 or model 2. We employed the Enrichr71 using the 
full set of Olink proteins as the reference to glean a deeper biological 
understanding. Statistical significance was presented as the P value of 
Fisher’s exact test, followed by false discovery rate corrections via the 
Benjamini–Hochberg procedure72.

Important proteins were then determined in two steps: variable 
importance ranking and sequential forward selection. The significant 
proteins after Bonferroni corrections derived from Cox proportional 
hazard regressions in both model 1 and model 2 were fed into a prelimi-
nary trained light gradient boosting machine (LGBM) classifier73, and 
each protein was ranked according to its contribution to model perfor-
mance (as judged by the information gain), which can be considered 
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as the protein’s ability to identify future dementia onset. Afterward, a 
sequential forward selection approach was employed, adding proteins 
to the newly developed LGBM classifier one at a time in succession 
based on their ranking of importance64. The selection procedure ceased 
once the optimal performance of the AUC was attained, artificially 
defined as when no incremental performance was detected in two 
consecutive DeLong tests. In this scenario, no significant improvement 
in model performance could be observed when additional proteins 
were added. The selected important proteins were then visualized 
using SHAP plots.

Next, receiver operating characteristic analyses were performed 
to evaluate the accuracy of the above-selected important proteins in 
predicting dementia, both alone and in combination with other meas-
ures (demographic indicators: age, sex, education and APOE ε4 status; 
cognitive tests: reaction time and pairs matching time64). Reaction 
time and pairs matching time were measured by two different cogni-
tive tests, the snap game (https://biobank.ndph.ox.ac.uk/showcase/
field.cgi?id=400; https://biobank.ndph.ox.ac.uk/showcase/field.
cgi?id=20023) and pairs matching game (https://biobank.ndph.ox.ac.
uk/showcase/label.cgi?id=100030), respectively. Detailed descrip-
tions have been supplied in the previous literature64. To assess the 
combined power of the proteins, we further utilized the protein panel 
(or ProRS) to replace the single protein. The protein panel referred to 
direct modeling using the combination of the above-selected impor-
tant proteins during the protein ranking procedure. The ProRS was 
a predicted risk score generated from the LGBM model utilizing the 
above-selected important proteins during the protein ranking pro-
cess, and it was developed to further exploit the ensembled proteins 
as a whole to predict future dementia. DeLong tests74 and bootstrap 
tests with 2,000 iterations implemented using R package pROC75 were 
adopted to compare whether the AUC values differed significantly 
between models.

To evaluate the generalizability of the selected proteins and the 
robustness of their predictive accuracy, we repeated the above analy-
ses among these target populations: 5-year/10-year/over 10-year/all 
incident dementia, 10-year/over 10-year/all incident AD and 10-year/
over 10-year/all incident VaD. When performing the corresponding 
analyses, individuals who developed dementia after the timestamps, 
either 5 or 10 years, were treated as healthy individuals (for example, 
for 5-year prediction analysis, people who developed dementia after 
5 years were treated not having dementia as beyond 5-year incidences 
were unknown under the specific observation period). Notably, for 
the over 10-year analysis, individuals who developed dementia within 
10 years were excluded because it assumed the observation period 
was longer than 10 years, aiming to investigate the proteins’ predic-
tive utility for those who developed dementia more than 10 years 
after baseline assessments. The analyses were repeated following the 
exclusion of individuals who experienced ACD, AD or VaD within the 
initial 2 years of follow-up.

The model establishment and evaluations were implemented 
through internal leave-one-region-out cross-validation. In brief, we 
split the dataset into ten folds based on the geographical locations 
(East Midlands, London, North East, North West, Scotland, South East, 
South West, Wales, West Midlands, and Yorkshire and Humber) of the 22 
assessment centers during participants’ recruitment. Each time, nine 
folds of data were utilized as a training set and the rest as a testing set, 
and we repeated this process ten times by shifting the folds of data as 
training and testing sets. To further reduce overfitting, we tuned hyper-
parameters within the training data (ninefold of data) itself under each 
cross-validation loop by randomly splitting 80% and 20% for model 
development and model validation. In addition, we conducted feature 
selection, dramatically reducing the pool of proteins engaged in the 
prediction task to alleviate potential overfitting concerns. The testing 
sets of the leave-one-region-out cross-validation were kept untouched 
and merely used for model evaluations.

Subsequently, we constructed Kaplan–Meier survival curves, 
delineating high and low baseline top protein levels (the optimal cutoff 
was determined by maximizing the Youden index), to visualize the 
clinical progression of dementia events over time9. Cox proportional 
hazard models adjusted for age, sex, education and APOE ε4 alleles 
were undertaken to estimate the differences in the prognostic value 
of dichotomized protein concentrations. Of note, we explored the 
relationships of certain plasma proteins with clinical progression in 
nondementia diseases to assess their specificity in dementia events.

In addition, we randomly split the studied population into a two-
thirds and a one-third set. The significant proteins derived from Cox 
proportional hazard regressions in both model 1 and model 2 were 
fed into LGBM classifiers. Here we used the training set to ascertain 
important proteins for dementia prediction and then evaluated the 
predictive accuracies of these proteins in the testing set. We reported 
the performance metrics using median AUCs and 95% CIs, which were 
obtained through bootstrap strategy. When investigating the clini-
cal progression of disease events over time, the protein cutoffs were 
calculated using the training set and defined by the achievement of 
the largest Youden index. Cox proportional hazard models were then 
applied to estimate the associations between baseline proteins and 
dementia risk within the testing set.

Lastly, temporal trajectories were depicted to observe the dynamic 
evolution of plasma proteins during the 15 years preceding dementia 
diagnosis. To achieve this, a nested case–control study design was car-
ried out. Similar to a previous article76, all incident cases of dementia 
identified during follow-up were considered as cases, whereas the 
nested controls were selected by incidence density sampling among 
cohort members who remained dementia-free at follow-up. Controls 
were matched to patient cases in a ratio of five controls per patient case 
by age (±2 years), sex and APOE ε4 alleles. The date of observation for 
nested controls was set as the same for their matched dementia cases. 
Locally weighted scatterplot smoothing curves were employed to plot 
the mean concentrations of proteins concerning the time leading up 
to the index date for both cases and controls76. Mann–Kendall trend 
tests were employed to examine the existence of monotonic trends in 
plasma levels over time between those who developed dementia and 
those who did not.

Data analyses and visualizations were implemented with librar-
ies of lifelines (v.0.27.4), LightGBM (v.3.3.2), scikit-learn (v.1.0.2), 
pyMannKendall (v.1.4.2) and Shap (v.0.40.0) under Python (v.3.9) and 
R (v.4.0.3). We considered two-tailed P < 0.05 to be significant.

Ethics statement
This research adhered to the Declaration of Helsinki. Before partici-
pation, all individuals provided written consent, and approval was 
obtained from the North West Multi-Center Research Ethics Committee 
(11/NW/0382; https://www.ukbiobank.ac.uk/learn-more-about-uk-
biobank/about-us/ethics)65,66. Subjects were compensated commen-
surate with the amount of research procedures accomplished and the 
duration of involvement. The study received approval from the UKB 
under application number 19542.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The data used in the present study are available from UK Biobank with 
restrictions applied. Data were used under license and are thus not 
publicly available. Access to the UK Biobank data can be requested 
through a standard protocol (https://www.ukbiobank.ac.uk/register-
apply/). Data used in this study are available in the UK Biobank under 
application number 19542. All data supporting the findings described 
in this manuscript are available in the article and in the supplementary 
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materials and from the corresponding author upon request. Source 
data are provided with this paper.

Code availability
All software used in this study is publicly available. The code used 
in this study can be accessed at https://github.com/jasonHKU0907/
DementiaProteomicPrediction.
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Extended Data Fig. 1 | Flowchart for participants’ enrollment. From the UK 
Biobank cohort, we excluded individuals with dementia at baseline or with 
self-reported dementia and those who did not undergo plasma proteomic assay. 

The remaining participants were classified based on their first reported years 
of ACD or AD or VaD after baseline. Abbreviations: ACD, all-cause dementia; AD, 
Alzheimer’s disease; VaD, vascular dementia.
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