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1 Introduction

Digital communications and signal processing refers to the field of study concerned with the trans-
mission and processing of digital data. This is in contrast with analog communications. While
analog communications use a continuously varying signal, a digital transmission can be broken
down into discrete messages. Transmitting data in discrete messages allows for greater signal pro-
cessing capability. The ability to process a communications signal means that errors caused by
random processes can be detected and corrected. Digital signals can also be sampled instead of
continuously monitored and multiple signals can be multiplexed together to form one signal.

Because of all these advantages, and because recent advances in wideband communication
channels and solid-state electronics have allowed scientists to fully realize these advantages, dig-
ital communications has grown quickly. Digital communications is quickly edging out analog
communication because of the vast demand to transmit computer data and the ability of digital
communications to do so.

Here is a summary on what we will cover in this course.

1. Data transmission: Channel characteristics, signalling methods, interference and noise, and
synchronisation;

2. Information Sources and Coding: Information theory, coding of information for efficiency
and error protection encryption;

3. Signal Representation: Representation of discrete time signals in time and frequency; z
transform and Fourier representations; discrete approximation of continuous signals; sam-
pling and quantisation; and data compression;

4. Filtering: Analysis and synthesis of discrete time filters; finite impulse response and infinite
impulse response filters; frequency response of digital filters; poles and zeros; filters for
correlation and detection; matched filters and stochastic signals and noise processes;

5. Digital Signal Processing applications: Processing of images using digital techniques.

The application of DCSP in industry and our daily life is enormous, although in this introduc-
tory module we are only able to touch several simple examples.

Part of the current lecture notes on DSP is taken from lecture notes of Prof. R. Wilson. Many
materials are adopted from public domain materials. Many thanks to Dr. Enrico Rossoni who
has spent a considerable time on going through the manuscript several times to correct typos. The
sections I include only for your reference and I will not go through them during lectures are marked
with a∗.
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Figure 1:A communications system

2 Data Transmission

2.1 The transmission of information

2.1.1 General Form

A communications system is responsible for the transmission of information from the sender to
the recipient. At its simplest, the system contains (see Fig. 1)

1. A modulator that takes the source signal and transforms it so that it is physically suitable for
the transmission channel

2. A transmission channel that is the physical link between the communicating parties

3. A transmitter that actually introduces the modulated signal into the channel, usually ampli-
fying the signal as it does so

4. A receiver that detects the transmitted signal on the channel and usually amplifies it (as it
will have been attenuated by its journey through the channel)

5. A demodulator that receives the original source signal from the received signal and passes it
to the sink

At each stage, signal processing techniques are required to detect signals, filter out noise and
extract features, as we will discuss in the second part of our course.
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Digital data is universally represented by strings of 1s or 0s. Each one or zero is referred to as a
bit. Often, but not always, these bit strings are interpreted as numbers in a binary number system.
Thus1010012 = 4110. The information content of a digital signal is equal to the number of bits
required to represent it. Thus a signal that may vary between 0 and 7 has an information content
of 3 bits. Written as an equation this relationship is

I = log2(n) bits (2.1)

wheren is the number of levels a signal may take. It is important to appreciate that information is
a measure of the number of different outcomes a value may take.

The information rate is a measure of the speed with which information is transferred. It is
measured in bits/second or b/s.

2.1.2 Examples

Telecommunications traffic is characterised by great diversity. A non-exclusive list is the follow-
ing:

1. Audio signals. An audio signal is an example of an analogue signal. It occupies a frequency
range from about 200 Hz to about 15KHz. Speech signals occupy a smaller range of fre-
quencies, and telephone speech typically occupies the range 300 Hz to 3300 Hz. The range
of frequencies occupied by the signal is called its bandwidth (see Fig. 2).

2. Television. A television signal is an analogue signal created by linearly scanning a two
dimensional image. Typically the signal occupies a bandwidth of about 6 MHz.
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3. Teletext is written (or drawn) communications that are interpreted visually. Telex describes
a message limited to a predetermined set of alphanumeric characters.

4. Reproducing cells, in which the daughter cells’s DNA contains information from the parent
cells;

5. A disk drive

6. Our brain

The use of digital signals and modulation has great advantages over analogue systems. These
are:

1. High fidelity. The discrete nature of digital signals makes their distinction in the presence of
noise easy. Very high fidelity transmission and representation are possible.

2. Time independence. A digitised signal is a stream of numbers. Once digitised a signal may
be transmitted at a rate unconnected with its recording rate.

3. Source independence. The digital signals may be transmitted using the same format irre-
spective of the source of the communication. Voice, video and text may be transmitted using
the same channel.

4. Signals may be coded. The same transmitted message has an infinite number of meanings
according to the rule used to interpret it.

One disadvantage of digital communication is the increased expense of transmitters and re-
ceivers. This is particularly true of real-time communication of analogue signals.

2.1.3 The conversion of analogue and digital signals

In order to send analogue signals over a digital communication system, or process them on a digital
computer, we need to convert analogue signals to digital ones. This process is performed by an
analogue-to-digital converter (ADC). The analogue signal is sampled (i.e. measured at regularly
spaced instant) (Fig 3) and then quantised (Fig. 3, bottom panel) i.e. converted to discrete numeric
values. The converse operation to the ADC is performed by a digital-to-analogue converter (DAC).

The ADC process is governed by an important law. The Nyquist-Shannon Theorem (which
will be discussed in Chapter 3) states that an analogue signal of bandwidthB can be completely
recreated from its sampled form provided it is sampled at a rate equal to at least twice its bandwidth.
That is

S ≥ 2B (2.2)

The rate at which an ADC generates bits depends on how many bits are used in the converter. For
example, a speech signal has an approximate bandwidth of 4kHz. If this is sampled by an 8-bit
ADC at the Nyquist sampling rate, the bit rateR to transform the signal without loss of information
is

R = 8bits× 2B = 64000b/s (2.3)
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Figure 3:Upper panel: Periodic sampling of an analogue signal. Bottom panel: Quantisation of a sampled
signal.

2.1.4 The relationship between information, bandwidth and noise

The most important question associated with a communication channel is the maximum rate at
which it can transfer information. Analogue signals passing through physical channels may not
achieve arbitrarily fast changes. The rate at which a signal may change is determined by the band-
width. Namely, a signal of bandwidthB may change at a maximum rate of 2B, so the maximum
information rate is 2B. If changes of differing magnitude are each associated with a separate bit,
the information rate may be increased. Thus, if each time the signal changes it can take one ofn
levels, the information rate is increased to

R = 2B log2(n) b/s (2.4)

This formula states that asn tends to infinity, so does the information rate.
Is there a limit on the number of levels? The limit is set by the presence of noise. If we continue

to subdivide the magnitude of the changes into ever decreasing intervals, we reach a point where
we cannot distinguish the individual levels because of the presence of noise. Noise therefore places
a limit on the maximum rate at which we can transfer information. Obviously, what really matters
is the signal to noise ratio (SNR). This is defined by the ratio signal powerS to noise powerN ,
and is often expressed in deciBels (dB):

SNR = 10 log10(S/N) dB (2.5)

The source of noise signals vary widely.
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1. Input noise is common in low frequency circuits and arises from electric fields generated
by electrical switching. It appears as bursts at the receiver, and when present can have a
catastrophic effect due to its large power. Other people’s signals can generate noise: cross-
talk is the term given to the pick-up of radiated signals from adjacent cabling. When radio
links are used, interference from other transmitters can be problematic.

2. Thermal noise is always present. This is due to the random motion of electric charges present
in all media. It can be generated externally, or internally at the receiver.

There is a theoretical maximum to the rate at which information passes error free over a chan-
nel. This maximum is called thechannel capacity, C. The famous Hartley-Shannon Law states
that the channel capacity,C (which we will discuss in details later) is given by

C = B log2(1 + (S/N)) b/s (2.6)

For example, a 10kHz channel operating at a SNR of 15dB has a theoretical maximum infor-
mation rate of10000 log2(31.623) = 49828b/s.

The theorem makes no statement as to how the channel capacity is achieved. In fact, in practice
channels only approach this limit. The task of providing high channel efficiency is the goal of
coding techniques.

2.2 Communication Techniques

2.2.1 Time, frequency and bandwidth

Most signal carried by communication channels are modulated forms of sine waves. A sine wave
is described mathematically by the expression

s(t) = A cos(ωt + φ) (2.7)

The quantitiesA,ω, φ are termed the amplitude, frequency and phase of the sine wave. We can
describe this signal in two ways. One way is to describe its evolution in time domain, as in the
equation above. The other way is to describe its frequency content, in frequency domain. The
cosine wave,s(t), has a single frequency,ω = 2πf .

This representation is quite general. In fact we have the following theorem due to Fourier.

Theorem 1 Any signalx(t) of periodT can be represented as the sum of a set of cosinusoidal and
sinusoidal waves of different frequencies and phases.

Mathematically

x(t) = A0 +
∞∑

n=1

An cos(ωnt) +
∞∑

n=1

Bn sin(ωnt) (2.8)
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where 



A0 =
1

T

∫ T/2

−T/2

x(t)dt

An =
2

T

∫ T/2

−T/2

x(t) cos(ωnt)dt

Bn =
2

T

∫ T/2

−T/2

x(t) sin(ωnt)dt

ω =
2π

T

(2.9)

whereA0 is the d.c. term, andT is the period of the signal. The description of a signal in terms of
its constituent frequencies is called its frequency spectrum.

Example 1 As an example, consider the square wave (Fig. 4)

s(t) = 1, 0 < t < π, 2π < t < 3π, ... (2.10)

and zero otherwise. This has the Fourier series:

s(t) =
1

2
+

2

π
[sin(t) +

1

3
sin(3t) +

1

5
sin(5t) + · · · ] (2.11)

A graph of the spectrum has a line at the odd harmonic frequencies, 1,3,5,9, ..., whose respec-
tive amplitudes decay as2/π, 2/3π, · · · . The spectrum of a signal is usually shown as a two-sided
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spectrum with positive and negative frequency components. The coefficients are obtained accord-
ing to

A0 =
1

2π

∫ π

0

1dt

=
1

2

An =
2

2π

∫ π

0

1 cos(nt)dt

=
1

nπ
sin(nπ)

= 0

Bn =
2

2π

∫ π

0

1 sin(nt)dt

=
1

nπ
(1− cos(nπ))

(2.12)

which givesB1 = 2/π, B2 = 0, B3 = 2/3π, ....
A periodic signal is uniquely decided by its coefficientsAn, Bn. For example, in the Example

1, we have

x(t)
||

{· · · , B−n, · · · , B−2, B−1, B0 , B1, B2, · · · , Bn, · · · , }
(2.13)

If we truncate the series into finite terms, the signal can be approximated by a finite series as shown
in Fig. 5.
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In general, a signal can be represented as follows (see Appendix 6.7)

x(t) = A0 +
∑∞

n=1 An cos(ωnt) +
∑∞

n=1 Bn sin(ωnt)
= A0 +

∑∞
n=1 An[exp(jωnt) + exp(−jωnt)]/2

+
∑∞

n=1 Bn[exp(jωnt)− exp(−jωnt)]/2j
=

∑∞
n=−∞ cn exp(jωnt)

(2.14)

which is the exponential form of the Fourier series. In this expression, the valuescn are complex
and so|cn| andarg(cn) are the magnitude and the phase of the spectral component respectively,

cn =
1

T

∫ T/2

−T/2

x(t) exp(−jωnt)dt (2.15)

whereω = 2π/T .
Signals whose spectra consist of isolated lines are periodic, i.e. they represent themselves

indefinitely. The lines in this spectrum are infinitely thin, i.e. they have zero bandwidth. The
Hartley-Shannon law tells us that the maximum information rate of a zero bandwidth channel is
zero. Thus zero bandwidth signals carry no information. To permit the signal to carry information
we must introduce the capacity for aperiodic change. The consequence of an aperiodic change is
to introduce a spread of frequencies into the signal.

If the square wave signal discussed in the previous example is replaced with an aperiodic
sequence, the spectrum changes substantially.





X(F ) = FT{x(t)} =

∫ ∞

−∞
x(t) exp(−j2πFt)dt

x(t) = IFT{X(t)} =

∫ ∞

−∞
X(t) exp(j2πFt)dt

(2.16)

Example 2 Consider the case of a rectangular pulse. In particular define the signal

x(t) =

{
1, if − 0.5 ≤ t < 0.5
0, otherwise

This is shown in Fig. 6 and its Fourier transform can be readily computed from the definition, as

X(F ) =

∫ 0.5

−0.5

x(t) exp(−j2πFt)dt =
sin(πF )

πF

and is plotted in Fig. 6.

There are a number of features to note:

1. The bandwidth of the signal is only approximately finite. Most of the energy is contained in
a limited region called the main-lobe. However, some energy is found at all frequencies.

2. The spectrum has positive and negative frequencies. These are symmetric about the origin.
This may seem non-intuitive but can be seen from equations above.

The bandwidth of a communication channel is limited by the physical construction of the chan-
nel.
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Figure 6:A square wave and its Fourier transform.

2.2.2 Digital modulation: ASK, FSK and PSK

There are three ways in which the bandwidth of the channel carrier may be altered simply. These
are the altering of the amplitude, frequency and phase of the carrier wave. These techniques give
rise to amplitude-shift-keying (ASK), frequency-shift-keying (FSK) and phase-shift-keying (PSK),
respectively.

ASK describes the technique by which a carrier wave is multiplied by the digital signalf(t).
Mathematically the modulated carrier signals(t) is (Fig. 7)

s(t) = f(t) cos(ωct + φ) (2.17)

ASK is a special case of amplitude modulation (AM). Amplitude modulation has the property
of translating the spectrum of the modulationf(t) to the carrier frequency. The bandwidth of the
signal remains unchanged. This can be seen if we examine a simple case whenf(t) = cos(ωt)
and we use the identities:

cos(A + B) = cos(A) cos(B)− sin(A) sin(B)
cos(A−B) = cos(A) cos(B) + sin(A) sin(B)

(2.18)

then
s(t) = cos(ωt) cos(ωct) = 1/2[cos((ω + ωc)t) + cos((ω − ωc)t)

See fig. 8.
FSK describes the modulation of a carrier (or two carriers) by using a different frequency for

a 1 or 0. The resultant modulated signal may be regarded as the sum of two amplitude modulated
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signals of different carrier frequency

s(t) = f0(t) cos(ω0t + φ) + f1(t) cos(ω1t + φ)

FSK is classified as wide-band if the separation between the two carrier frequencies is larger
than the bandwidth of the spectrums off0 andf1. In this case the spectrum of the modulated signal
appears as two separate ASK signals.

PSK describes the modulation technique that alters the phase of the carrier. Mathematically

s(t) = cos(ωct + φ(t))

Binary phase-shift-keying (BPSK) has only two phases, 0 andπ. It is therefore a type of ASK
with f(t) taking he values−1 and 1, and its bandwidth is the same as that of ASK (Fig. 11).
Phase-shift keying offers a simple way of increasing the number of levels in the transmission
without increasing the bandwidth by introducing smaller phase shifts. Quadrature phase-shift-
keying (QPSK) has four phases, 0,π/2, π, 3π/2. M-ary PSK hasM phases.

2.2.3 Spread spectrum techniques

Spread-spectrum techniques are methods in which energy generated at a single frequency is de-
liberately spread over a wide band of frequencies. This is done for a variety of reasons, including
increasing resistance to natural interference or jamming and to prevent hostile detection.

We shall not delve deeply into mechanisms, but shall look at one particular technique that is
used calledfrequency hopping, as shown in Fig. 12. In frequency hopping, the bandwidth is
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effectively split into frequency channels. The signal is then spread across the channels. The hop
set (channel hopping sequence) is not arbitrary, but determined by the use of a pseudo random
sequence. The receiver can reproduce the identical hop set and so decode the signal. The hop rate
(the rate at which the signal switches channels) can be thousands of times a second, so the dwell
time (time spent on one channel) is very short. If the hop set is generated by a pseudo random
number generator then the seed to that generator is effectively a key decoding the transmitted
message, and so this technique has obvious security applications, for instance military use or in
mobile phone systems.

2.2.4 Digital demodulation

From the discussion above it might appear that QPSK offers advantages over both ASK, FSK and
PSK. However, the demodulation of these signals requires various degrees of difficulty and hence
expense. The method of demodulation is an important factor in determining the selection of a
modulation scheme. There are two types of demodulation which are distinguished by the need
to provide knowledge of the phase of the carrier. Demodulation schemes requiring the carrier
phase are termed coherent. Those that do not need knowledge of the carrier phase are termed
incoherent. Incoherent demodulation can be applied to ASK and wide-band FSK. It describes
demodulation schemes that are sensitive only to the power in the signal. With ASK, the power is
either present, or it is not. With wide-band FSK, the power is either present at one frequency, or the
other. Incoherent modulation is inexpensive but has poorer performance. Coherent demodulation
requires more complex circuity, but has better performance.

In ASK incoherent demodulation, the signal is passed to an envelope detector. This is a device
that produces as output the outline of the signal. A decision is made as to whether the signal is
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present or not. Envelope detection is the simplest and cheapest method of demodulation. In optical
communications, phase modulation is technically very difficult, and ASK is the only option. In
the electrical and microwave context, however, it is considered crude. In addition, systems where
the signal amplitude may vary unpredictably, such as microwave links, are not suitable for ASK
modulation.

Incoherent demodulation can also be used for wide-band FSK. Here the signals are passed to
two circuits, each sensitive to one of the two carrier frequencies. Circuits whose output depends on
the frequency of the input are called discriminators or filters. The outputs of the two discriminators
are interrogated to determine the signal. Incoherent FSK demodulation is simple and cheap, but
very wasteful of bandwidth. The signal must be wide-band FSK to ensure the two signalsf0(t) and
f1(t) are distinguished. It is used in circumstances where bandwidth is not the primary constraint.

With coherent demodulation systems, the incoming signal is compared with a replica of the
carrier wave. This is obviously necessary with PSK signals, because here the power in the signal is
constant. The difficulty with coherent detection is the need to keep the phase of the replica signal,
termed local oscillator, ‘locked’ to the carrier. This is not easy to do. Oscillators are sensitive to
(among other things) temperature, and a ‘free-running’ oscillator will gradually drift in frequency
and phase.

Another way to demodulate the signal is performed by multiplying the incoming signal with a
replica of the carrier. If the output of this process ish(t), we have that

h(t) = f(t) cos(ωct) cos(ωct) =
f(t)

2
[1 + cos(2ωct)] =

f(t)

2
+

f(t)

2
cos(2ωct)

i.e. the original signal plus a term at twice the carrier frequency. By removing, or filtering out,
the harmonic term, the output of the demodulation is the modulationf(t). Suppose there is some
phase errorφ present in the local oscillator signal. After filtering, the output of a demodulator will
be

h(t) = f(t) cos(ωct) cos(ωct + φ) =
f(t)

2
cos(φ) +

f(t)

2
cos(2ωct + φ)

Clearly the consequence for the correct interpretation of the demodulated signal is catastrophic.
Therefore, some more sophisticated methods such as differential phase-shift-keying (DSPK)

have to be introduced to resolve the issue.

2.2.5 Noise in communication systems: probability and random signals

Noise plays a crucial role in communication systems. In theory, it determines the theoretical ca-
pacity of the channel. In practise it determines the number of errors occurring in a digital commu-
nication. We shall consider how the noise determines the error rates in the next subsection. In this
subsection we shall provide a description of noise.

Noise is a random signal. By this we mean that we cannot predict its value. We can only make
statements about the probability of it taking a particular value, or range of values. The Probability
density function (pdf)p(x) of a random signal, or random variablex is defined to be the probability
that the random variablex takes a value betweenx0 andx0 + δx. We write this as follows:
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p(x0)δx = P (x0 < x < x0 + δx)

The probability that the random variable will take a value lying betweenx1 andx2 is then the
integral of the pdf over the interval[x1x2]:

P (x1 < x < x2) =

∫ x2

x1

p(x)dx

The probabilityP (−∞ < x < ∞) is unity. Thus
∫ ∞

−∞
p(x)dx = 1

a density satisfying the equation above is termed normalized. The cumulative distribution function
(CDF)P (x) is defined to be the probability that a random variable, x is less thanx0

P (x0) = P (x < x0) =

∫ x0

−∞
p(x)dx

From the rules of integration:

P (x1 < x < x2) = P (x2)− P (x1)

Some commonly used distributions are:

1. Continuous distributions. An example of a continuous distribution is the Normal, or Gaus-
sian distribution:

p(x) =
1√
2πσ

exp(
−(x−m)2

2σ2
) (2.19)

wherem is the mean value ofp(x). The constant term ensures that the distribution is normal-
ized. This expression is important as many actually occurring noise source can be described
by it, i.e. white noise. Further, we can simplify the expression by considering the source to
be a zero mean random variable, i.e.m = 0. σ is the standard deviation of the distribution
(see Fig. 13).

How would this be used? If we want to know the probability of, say, the noise signal,n(t),
having the value[−v1, v1], we would evaluate:

P (v1)− P (−v1)

In general to evaluateP (−x1 < x < x1) if we use

u = x/(
√

2σ), dx = duσ
√

2

then we have (m = 0)

P (−x1 < x < x1) =
1√
π

∫ u1

−u1

exp(−u2)du =
2√
π

∫ u1

0

exp(−u2)du
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Figure 13:Gaussian distribution pdf.

whereu1 = x1/(
√

2σ). The distribution functionP (x) is usually written in terms of a
function of the error function erf(x). The complementary error functionerfc is defined by

erfc(x) = 1− erf(x)

2. Discrete distributions. Probability density functions need not be continuous. If a random
variable can only take discrete value, its PDF takes the forms of lines (see Fig. 14). An
example of a discrete distribution is the Poisson distribution

p(n) = P (x = n) =
αn

n!
exp(−α)

wheren = 0, 1, 2, · · · ,.

We cannot predict the value a random variable may take on a particular occasion but we can
introduce measures that summarise what we expect to happen on average. The two most important
measures are themean(or expectation) and thestandard deviation.

The meanη of a random variablex is defined to be

η =

∫
xp(x)dx

or, for a discrete distribution:
η =

∑
np(n)

In the examples above we have assumed that the mean of the Gaussian distribution to be 0,
while the mean of the Poisson distribution is found to beα. The mean of a distribution is, in
common sense, the average value taken by the corresponding random variable.
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Figure 14:Discrete distribution pdf (Poisson).

Thevarianceσ2 is defined to be

σ2 =

∫
(x− η)2p(x)dx

or, for a discrete distribution,

σ2 =
∑

(n− η)2p(n)

The square root of the variance is called standard deviation. The standard deviation is a measure
of the spread of the probability distribution around the mean. A small standard deviation means
the distribution is concentrated about the mean. A large value indicates a wide range of possible
outcomes. The Gaussian distribution contains the standard deviation within its definition. The
Poisson distribution has a standard deviation ofα2.

In many cases the noise present in communication signals can be modelled as a zero-mean,
Gaussian random variable. This means that its amplitude at a particular time has a PDF given by
Eq. (2.19) above. The statement that noise is zero mean says that, on average, the noise signal
takes the values zero. We have already seen that the signal to noise ratio is an important quantity
in determining the performance of a communication channel. The noise power referred to in the
definition is the mean noise power. It can therefore be rewritten as

SNR = 10 log10(S/σ2)

If only thermal noise is considered, we haveσ2 = kTmB wherek is the Boltzman’s constant
(k = 1.38× 10−23J/K), Tm is the temperature andB is the receiver bandwidth.
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Figure 15:Schematic of noise on a two level line

2.2.6 Errors in digital communication

We noted earlier that one of the most important advantages of digital communications is that it
permits very high fidelity. In this subsection we shall investigate this more closely. We shall
consider in detail only BPSK systems, and comment on the alternative modulations.

In the absence of noise, the signalV , from a BPSK system can take one of two values±vb. In
the ideal case, if the signal is greater than 0, the value that is read is assigned to 1. If the signal is
less than 0, the value that is read is assigned to 0. When noise is present, this distinction between
±vb (with the threshold at0) becomes blurred. There is a finite probability of the signal dropping
below 0, and thus being assigned 0, even though a 1 was transmitted. When this happens, we say
that a bit-error has occurred. The probability that a bit-error will occur in a given time is referred
to as the bit-error rate (BER) (see Fig. 15).

We suppose that the signalV , which has the signal levels±vb, is combined with noiseN of
varianceσ2. The probability that an error will occur in the transmission of a 1 is

P (N + vb < 0) = P (N < −vb) =
2√
π

∫ −vb

−∞
exp(−u2)du =

1

2
erfc(vb/2σ)

Similarly the probability that an error will occur in the transmission of a 0 is

P (N − vb > 0) = P (N > vb) =
2√
π

∫ ∞

vb

exp(−u2)du =
1

2
erfc(vb/2σ)

It is usual to write these expressions in terms of the ratio ofEb (energy per bit) toEn (noise
power per unit Hz). The powerS in the signal is, on averagev2

b , and the total energy in the
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Figure 16:Expressions for error rates in some modulation schemes

signalling periodT is v2
bT . Using the expressions above, we have

1

2
erfc(vb/2σ) =

1

2
erfc(

√
Eb

2TEnB
)

where we have used the fact thatσ2 = kTmB = EnB for temperatureTm.
For BPSK, the signaling periodT is half the reciprocal of the bandwidthB, i.e. T = 1/2B;

thus

P (error) =
1

2
erfc(

√
Eb/En) (2.20)

All coherent detection schemes give rise to error rates of the form in Eq. (2.20) above. For example,
QPSK has twice the error probability of BPSK, reflecting the fact that with a quadrature scheme,
there are more ways an error can occur. Narrow-band FSK has an error probability rather worse
than QPSK, although its numerical value depends on the exact scheme used. Fig. 17 shows graphs
of P (error) for incoherent ASK, incoherent FSK, BPSK, and DPSK; the expressions are given in
Table 16.

Incoherent demodulation schemes have a higher probability of error than coherent schemes.
Incoherent schemes are forms of power detection, i.e. produce an output proportional to the square
of the input. Power detection always decreases the SNR. It is quite easy to see why this is so.
Suppose the input,X, is of the formX = v + N , as before. The input SNR is

SNRin =
v2

N2

If we square the input, the output is
X2 = (v + N)2
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Figure 17:Comparison of error rates in some modulation schemes

Assuming the SNR is high,vN >> N2, and the SNR of the output is

SNRout ∼ (v2)2

(2vN)2
=

SNRin

4

This decrease in the signal-to-noise ratio causes an increase in the error probability. The detailed
analysis is beyond our scope. Although poorer, however, their performance is good nonetheless.
This explains the widespread use of incoherent ASK and FSK.

Error rates are usually quoted as bit error rates (BER). The conversion from error probability
to BER is numerically simple: BER= P (error). However, this conversion assumes that the prob-
ability of errors from bit-to-bit are independent. This may or may not be a reasonable assumption.
In particular, loss of timing can cause multiple bit failures that can dramatically increase the BER.

When signals travel along the channel, they are being attenuated. As the signal is losing power,
the BER increases with the length of the channel. Regenerators, placed at regular intervals, can
dramatically reduce the error rate over long channels. To determine the BER of the channel with
N regenerators, it is simple to calculate first the probability of no error. This probability is the
probability of no error over one regenerator, raised to the Nth power:

P ( No error over N regenerators) = (1− P (error))N

assuming the regenerators are regularly spaced and the probabilities are independent. The BER is
then determined simply by:

P ( error over N regenerators) = 1− P ( no error over N regenerators)

This avoids having to enumerate all the ways in which the multiple system can fail.
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data

Figure 18:The received signal could be 1001010 or 11000011001100.

2.2.7 Timing control in digital communication

In addition to providing the analogue modulation and demodulation functions, digital communi-
cation also requires timing control. Timing control is required to identify the rate at which bits
are transmitted and to identify the start and end of each bit. This permits the receiver to correctly
identify each bit in the transmitted message. Bits are never sent individually. They are grouped
together in segments, called blocks. A block is the minimum segment of data that can be sent with
each transmission. Usually, a message will contain many such blocks. Each block is framed by
binary characters identifying the start and end of the block.

The type of method used depends on the source of the timing information. If the timing in the
receiver is generated by the receiver, separately from the transmitter, the transmission is termed
asynchronous. If the timing is generated, directly or indirectly, from the transmitter clock the
transmission is termed synchronous.

Asynchronous transmission is used for low data-rate transmission and stand-alone equipment.
We will not discuss it in detail here. Synchronous transmission is used for high data rate trans-
mission. The timing is generated by sending a separate clock signal, or embedding the timing
information into the transmission. This information is used to synchronize the receiver circuitry
to the transmitter clock. The necessity to introduce a clock in signal transmission is obvious if
we look at Fig. 18. Without a clock, would we be able to tell whether it is a 1001010 or a
11000011001100?

Synchronous receivers require a timing signal from the transmitter. An additional channel
may be used in the system to transmit the clock signal. This is wasteful of bandwidth, and it is
more customary to embed the timing signal within the transmitted data stream by use of suitable
encoding (self-clocking encoding).
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Figure 19:Bipolar coding.

In bipolar coding, a binary 0 is encoded as zero volts. A binary 1 is encoded alternately as a
positive voltage and a negative voltage (see Fig. 19). Other systems must synchronize using some
form of out-of-band communication, or add frame synchronization sequences that don’t carry data
to the signal. These alternative approaches require either an additional transmission medium for
the clock signal or a loss of performance due to overhead, respectively. A bipolar encoding is an
often good compromise: runs of ones will not cause a lack of transitions, however long sequences
of zeroes are still an issue. Since the signal doesn’t change for as long as the data to send is a
zero, they will result in no transitions and a loss of synchronization. Where frequent transitions are
a requirement, a self-clocking encoding such as Manchester code discussed below may be more
appropriate.

Manchester code (also known as Phase Encoding, or PE) is a form of data communications in
which each bit of data is signified by at least one voltage level transition. Manchester encoding
is therefore considered to be self-clocking, which means that accurate synchronisation of a data
stream is possible. Manchester coding has been adopted into many efficient and widely used
telecommunications standards, such as Ethernet.

Here is a summary for Manchester code:

• Data and clock signals are combined to form a single self-synchronizing data stream

• each encoded bit contains a transition at the midpoint of a bit period

• the direction of transition determines whether the bit is a ”0” or a ”1,” and

• the first half is the true bit value and the second half is the complement of the true bit value
(see Fig. 20).
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Figure 20:Manchester coding.

Manchester codes always have a transition at the middle of each bit period. The direction of
the mid-bit transition is what carries the data, with a low-to-high transition indicating one binary
value, and a high-to-low transition indicating the other. Transitions that don’t occur mid-bit don’t
carry useful information, and exist only to place the signal in a state where the necessary mid-bit
transition can take place. Though this allows the signal to be self-clocking, it essentially doubles
the bandwidth.

However, there are today many more sophisticated codes (8B/10B encoding) which accomplish
the same aims with less bandwidth overhead, and less synchronisation ambiguity in pathological
cases.
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3 Information and coding theory

Information theory is concerned with the description of information sources, the representation of
the information from a source, and the transmission of this information over channel. This might
be the best example to demonstrate how a deep mathematical theory could be successfully applied
to solving engineering problems.

Information theory is a discipline in applied mathematics involving the quantification of data
with the goal of enabling as much data as possible to be reliably stored on a medium and/or commu-
nicated over a channel. The measure of data, known as information entropy, is usually expressed
by the average number of bits needed for storage or communication.

Applications of fundamental topics of information theory include ZIP files (lossless data com-
pression), MP3s (lossy data compression), and DSL (channel coding). The field is at the crossroads
of mathematics, statistics, computer science, physics, neurobiology, and electrical engineering. Its
impact has been crucial to success of the Voyager missions to deep space, the invention of the CD,
the feasibility of mobile phones, the development of the Internet, the study of linguistics and of
human perception, the understanding of black holes, and numerous other fields.

Information theory is generally considered to have been founded in 1948 by Claude Shannon in
his seminal work,A Mathematical Theory of Communication. The central paradigm of classic
information theory is the engineering problem of the transmission of information over a noisy
channel. The most fundamental results of this theory are Shannon’ssource coding theorem, which
establishes that, on average, the number of bits needed to represent the result of an uncertain event
is given by its entropy; and Shannon’s noisy-channel coding theorem, which states that reliable
communication is possible over noisy channels provided that the rate of communication is below
a certain threshold called thechannel capacity. The channel capacity can be approached by using
appropriate encoding and decoding systems.

Information theory is closely associated with a collection of pure and applied disciplines that
have been investigated and reduced to engineering practice under a variety of rubrics throughout
the world over the past half century or more: adaptive systems, anticipatory systems, artificial intel-
ligence, complex systems, complexity science, cybernetics, informatics, machine learning, along
with systems sciences of many descriptions. Information theory is a broad and deep mathematical
theory, with equally broad and deep applications, amongst which is the vital field of coding theory
which is the main focus of our course.

Coding theory is concerned with finding explicit methods, called codes, of increasing the effi-
ciency and reducing the net error rate of data communication over a noisy channel to near the limit
that Shannon proved is the maximum possible for that channel. These codes can be roughly sub-
divided into data compression (source coding) and error-correction (channel coding) techniques.
In the latter case, it took many years to find the methods Shannon’s work proved were possible.
A third class of information theory codes are cryptographic algorithms (both codes and ciphers).
Concepts, methods and results from coding theory and information theory are widely used in cryp-
tography and cryptanalysis.
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3.1 Information sources and entropy

We start our examination of information theory by way of an example.
Consider predicting the activity of Prime Minister tomorrow. This prediction is an information

source. Assume such information source has two outcomes:

• The Prime Minister will be in his office,

• The Prime Minister will be naked and run 10 miles in London.

Clearly, the outcome ‘in office’ contains little information; it is a highly probable outcome. The
outcome ’naked run’, however contains considerable information; it is a highly improbable event.

In information theory, an information source is a probability distribution, i.e. a set of proba-
bilities assigned to a set of outcomes. This reflects the fact that the information contained in an
outcome is determined not only by the outcome, but by how uncertain it is. An almost certain
outcome contains little information.

A measure of the information contained in an outcome was introduced by Hartley in 1927. He
defined the information contained in an outcomexi as

I(xi) = − log2 p(xi)

This measure satisfied our requirement that the information contained in an outcome is propor-
tional to its uncertainty. IfP (xi) = 1, thenI(xi) = 0, telling us that a certain event contains no
information.

The definition above also satisfies the requirement that the total information in independent
events should add. Clearly, our Prime Minister prediction for two days contains twice as much
information as that for one day. For two independent outcomesxi andxj,

I(xi andxj) = log2 P (xi andxj) = log2 P (xi)P (xj) = I(xi) + I(xj)

Hartley’s measure defines the information in a single outcome. The measure entropyH(X) defines
the information content of the sourceX as a whole. It is the mean information provided by the
source. We have

H(X) =
∑

i

P (xi)I(xi) = −
∑

i

P (xi) log2 P (xi)

A binary symmetric source (BSS) is a source with two outputs whose probabilities arep and
1− p respectively. The prime minister discussed is a BSS. The entropy of the source is

H(X) = −p log2 p− (1− p) log2(1− p)

The function (Fig. 21) takes the value zero whenp = 0. When one outcome is certain, so is the
other, and the entropy is zero. Asp increases, so too does the entropy, until it reaches a maximum
whenp = 1 − p = 0.5. Whenp is greater than 0.5, the curve declines symmetrically to zero,
reached whenp = 1. We conclude that the average information in the BSS is maximised when
both outcomes are equally likely. The entropy is measuring the average uncertainty of the source.
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Figure 21:Entropy vs.p

(The term entropy is borrowed from thermodynamics. There too it is a measure of the uncertainty,
or disorder of a system).

Whenp = 0.5, H(X) = 1. The unit of entropy is bits/symbol. An equally probable BSS has
an entropy, or average information content per symbol, of 1 bit per symbol.

By long tradition, engineers have used the word bit to describe both the symbol, and its infor-
mation content. A BSS whose output are 1 or 0 has an output we describe as a bit. The entropy
of source is also measured in bits, so that we might say the equi-probable BSS has an information
rate of 1 bit/bit. The numerator bit refers to the information content, while the denominator bit
refers to the symbol 1 or 0. We can avoid this by writing it as 1 bit/symbol. Whenp 6= 0.5, the
BSS information rate falls. Whenp = 0.1, H(X) = 0.47 bits/symbol. This means that on average,
each symbol (1 or 0) of source output provides 0.47 bits of information.

3.2 Information source coding

It seems intuitively reasonable that an information source of entropyH needs on average only
H binary bits to represent each symbol. Indeed, the equi-probable BSS generate on average 1
information bit per symbol bit. However, consider the prime minister example again. Suppose the
probability of ‘naked run’ is 0.1 (N) and that of ‘office’ is 0.9 (O). We have already noted that this
source has an entropy of 0.47 bits/symbol. Suppose we identify ‘naked run’ with 1 and ‘office’
with zero. This representation uses 1 binary bit per symbol, hence is using more binary bits per
symbol than the entropy suggests is necessary.

The Shannon’s first theorem states that aninstantaneouscode can be found that encodes a
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Sequence OOO OON ONO NOO NNO NON ONN NNN
Probability 0.729 0.081 0.081 0.081 0.009 0.009 0.009 0.001
Codeword 0 1 01 10 11 00 000 111
Codeword Length (in bits) 1 1 2 2 2 2 3 3
Weighted length
Entropy

Table 1: Variable length source coding

source of entropyH(X) with an average number of bits per symbolBs such that

Bs ≥ H(X)

Ordinarily, the longer the sequence of symbols, the closerBs will be to H(X).
The replacement of the symbols naked run/office with a binary representation is termed source

coding. In any coding operation we replace the symbol with a codeword. The purpose of source
coding is to reduce the number of bits required to convey the information provided by the infor-
mation source: minimize the average length of codes.

Central to source coding is the use of sequence. By this, we mean that codewords are not
simply associated to a single outcome, but to a sequence of outcomes. To see why this is useful, let
us return to the problem of the Prime Minister. Suppose we group the outcomes in three, according
to their probability, and assign binary codewords to these grouped outcomes. Table 1 shows such
a code, and the probability of each codeword occurring. It is easy to compute that this code will
on average use 1.4 bits/sequence

0.729∗log2(0.729)+0.081∗log2(0.081)∗3+0.009∗log2(0.009)∗3+0.001∗log2(0.001) = −1.4070

The average length of coding is given by
0.729*1+0.081*1+2*0.081*2+2*0.009*2+3*0.009+3*0.001=1.2
This example shows how using sequences permits us to decrease the average number of bits

per symbol. Moreover, without difficulty, we have found a code that has an average bit usage less
than the source entropy. However, there is a difficulty with the code in Table 1. Before a code can
be decoded, it must be parsed. Parsing describes that activity of breaking the message string into
its component codewords. After parsing, each codeword can be decoded into its symbol sequence.
An instantaneously parsable code is one that can be parsed as soon as the last bit of a codeword
is received. An instantaneous code must satisfy the prefix condition: that no codeword may be a
prefix of any other codeword. This condition is not satisfied by the code in Table 1.

3.2.1 Huffman coding

The code in Table 2, however, is an instantaneously parsable code. It satisfies the prefix condition.
As a consequence of Shannon’s Source coding theorem, the entropy is a measure of the smallest

codeword length that is theoretically possible for the given alphabet with associated weights. In
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Sequence A B C D E F G H
Probability 0.729 0.081 0.081 0.081 0.009 0.009 0.009 0.001
Codeword 1 011 010 001 00011 00010 00001 00000
Codeword Length (in bits) 1 3 3 3 5 5 5 5
Weighted length
Entropy

Table 2: OOO=A, OON=B, ONO=C, NOO=D, NNO=E, NON=F, ONN=G, NNN=H

this example, the weighted average codeword length is 1.59, only slightly larger than the calculated
entropy of 1.6 bits per symbol. So not only is this code optimal in the sense that no other feasible
code performs better, but it is very close to the theoretical limit established by Shannon.

The code in Table 2 uses

0.729 ∗ 1 + 0.081 ∗ 3 ∗ 3 + 0.009 ∗ 5 ∗ 3 + 0.001 ∗ 5 = 1.5980

bits per sequence. In fact, this is the Huffman code for the sequence set. We might conclude that
there is little point in expending the effort in finding a code better than the Huffman code. The
codeword for each sequence is found by generating the Huffman code tree for the sequence. A
Huffman code tree is an unbalanced binary tree.
History

In 1951, David Huffman and his MIT information theory classmates were given the choice
of a term paper or a final exam. The professor, Robert M. Fano, assigned a term paper on the
problem of finding the most efficient binary code. Huffman, unable to prove any codes were the
most efficient, was about to give up and start studying for the final when he hit upon the idea of
using a frequency-sorted binary tree and quickly proved this method the most efficient.

In doing so, the student outdid his professor, who had worked with information theory inventor
Claude Shannon to develop a similar code. Huffman avoided the major flaw of the suboptimal
Shannon-Fano coding by building the tree from the bottom up instead of from the top down.
Problem definition

Given a set of symbols and their probabilities, find a prefix-free binary code with minimum
expected codeword length.

The derivation of the Huffman code tree is shown in Fig. 22 and the tree itself is shown in Fig.
23. In both these figures, the letters A to H have been used in place of the sequences in Table 2 to
make them easier to read.

Note that Huffman coding relies on the use of bit patterns of variable length. In most data
communication systems, the data symbols are encoded as bit pattern of a fixed length, i.e. 8 bits.
This is done for technical simplicity. Often, coding scheme such as Huffman coding are used
on a source symbol set to produce variable bit length coding and are referred to as compression
algorithms.

In Fig. 22 the sequences are ordered with respect to the probability of the sequence occurring,
with the highest probability at the top of the list. The tree is derived bottom up, in terms of branch
nodes and leaf nodes by combining probabilities and removing leaf nodes in progressive stages.
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As shown in Fig. 22, the two lowest leaf nodes G and H have their weights added, and the topmost
node is labelled with a 1 and the lower one with a 0. In the next stage the symbol G and H are
represented by that with the lowest weight and the list is rewritten, again in order of the weights.
The two lowest leaf nodes are now E and F, and they are labelled 1 and 0, respectively, and their
weights are added to be taken onto the next stage. This continues until only two nodes remain.
The Huffman tree shown in Fig. 23 is then produced by following backwards along the arrows. To
derive the codewords from the tree, descend from the top node, and list the 1s and 0s in the order
they appear until you reach the leaf node for one of the letters.

We summarize it here.
Creating the tree:

1. Start with as many leaves as there are symbols.

2. Queue all leaf nodes into the first queue (in order).

3. While there is more than one node in the queues:

• Remove two nodes with the lowest weight from the queues.

• Create a new internal node, with the two just-removed nodes as children (either node
can be either child) and the sum of their weights as the new weight.

• Update the parent links in the two just-removed nodes to point to the just-created parent
node.

4. Queue the new node into the second queue.

5. The remaining node is the root node; the tree has now been generated.

3.3 Channel Capacity

One of the most famous results of information theory is Shannon’s channel coding theorem. For a
given channel there exists a code that will permit the error-free transmission across the channel at a
rateR, providedR < C, the channel capacity. Equality is achieved only when the SNR is infinity.

As we have already noted, the astonishing part of the theory is the existence of a channel
capacity. Shannon’s theorem is both tantalizing and frustrating. It offers error-free transmission,
but it makes no statements as to what code is required. In fact, all we may deduce from the proof
of the theorem is that is must be a long one. No none has yet found a code that permits the use of
a channel at its capacity. However, Shannon has thrown down the gauntlet, in as much as he has
proved that the code exists.

We shall not give a description of how the capacity is calculated. However, an example is
instructive. The binary channel is a channel with a binary input and output. Associated with each
output is a probabilityp that the output is correct, and a probability1− p that it is not. For such a
channel, the channel capacity turns out to be:

C = 1 + p log2 p + (1− p) log2(1− p)
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Figure 24:Channel capacity.

Here (Fig. 24),p is the bit error probability. Ifp = 0, thenC = 1. If p = 0.5, thenC = 0. Thus
if there is an equal probability of receiving a 1 or a 0, irrespective of the signal sent, the channel is
completely unreliable and no message can be sent across it.

So defined, the channel capacity is a non-dimensional number. We normally quote the capacity
as a rate, in bits/second. To do this we relate each output to a change in the signal. For a channel
of bandwidthB, we can transmit at most2B changes per second. Thus the capacity in bits/second
in 2BC. For the binary channel we have

C = B[1 + p log2 p + (1− p) log2(1− p)]

For the binary channel the maximum bit rateW is 2B. We note thatC < W , i.e. the capacity is
always less than the bit rate. The data rateD, or information rate, describes the rate of transfer of
data bits across the channel. In theory we have

W > C > D

Shannon’s channel coding theorem applies to the channel, not to the source. If the source is opti-
mally coded, we can rephrase the channel coding theorem: A source of information with entropy
H(X) can be transmitted error free over a channel providedH(x) ≤ C.

3.4 Error detection coding

3.4.1 Hamming distance

The task of source coding is to represent the source information with the minimum number of
symbols. When a code is transmitted over a channel in the presence of noise, errors will occur.
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The task of channel coding is to represent the source information in a manner that minimises the
probability of errors in decoding.

It is apparent that channel coding requires the use of redundancy. If all possible outputs of
the channel correspond uniquely to a source input, there is no possibility of detecting errors in the
transmission. To detect, and possibly correct errors, the channel code sequence must be longer
the the source sequence. The rateR of a channel code is the average ratio of the source sequence
length to the channel code length. ThusR < 1.

A good channel code is designed so that, if a few errors occur in transmission, the output can
still be decoded with the correct input. This is possible because although incorrect, the output is
sufficiently similar to the input to be recognisable. The idea of similarity is made more firm by
the definition of the Hamming distance. Letx andy be two binary sequences of same length. The
Hamming distance between these two codes is the number of symbols that disagree.

For example:

• The Hamming distance between 1011101 and 1001001 is 2.

• The Hamming distance between 2143896 and 2233796 is 3.

• The Hamming distance between ”toned” and ”roses” is 3.

Suppose the codex is transmitted over the channel. Due to error,y is received. The decoder
will assign toy the codex that minimises the Hamming distance betweenx andy. For example,
consider the codewords:

a = (100000), b = (011000), c = (000111)

if the transmitter sends 10000 but there is a signal bit error and the receiver gets 10001, it can be
seen that the nearest codeword is in fact 10000 and so the correct codeword is found.

It can be shown that to detectn bit errors, a coding scheme requires the use of codewords with
a Hamming distance of at leastn + 1. It can be also shown that to correctn bit errors requires a
coding scheme with a least a Hamming distance of2n + 1 between the codewords.

By designing a good code, we try to ensure that the Hamming distance between the possible
codewordsx is larger than the Hamming distance arising from errors.

3.4.2 Parity Check Codes

The theoretical limitations of coding are placed by the results of information theory. These results
are frustrating in that they offer little clue as to how the coding should be performed. Errors occur–
they must, at the very least, be detected.

Error detection coding is designed to permit the detection of errors. Once detected, the receiver
may ask for a retransmission of the erroneous bits, or it may simply inform the recipient that
the transmission was corrupted. In a binary channel, error checking code are calledparity check
codes. Practical codes are normally block codes. A block code converts a fixed length ofK data
bits to a fixed lengthN code word, whereN > K. The rate of the code is the ratioK/N , and
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the redundancy of the code is1 − K/N . Our ability to detect errors depends on the rate. A
low rate has a high detection probability, but a high redundancy. The receiver will assign to the
received codeword the preassigned codeword that minimises the Hamming distance between the
two words. If we wish to identify any pattern ofn or less errors, the Hamming distance between
the preassigned codes must ben + 1 or greater.

A very common code is the single parity check code. This code appends to eachK data bits an
additional bit whose value is taken to make theK + 1 word even or odd. Such a choice is said to
have even (odd) parity. With even (odd) parity, a single bit error will make the received word odd
(even). The preassigned code words are always even (odd), and hence are separated by a Hamming
distance of 2 or more.

To see how the addition of a parity bit can improve error performance, consider the following
example. A common choice ofK is eight. Suppose that BER isp = 10−4. Then

P ( single bit error) = p
P ( no error in single bit) = 1− p

P ( no error in 8 bits) = (1− p)8

P ( unseen error in 8 bits) = 1− (1− p)8 = 7.9× 10−4

So, the probability of a transmission with an error is as above. With the additional of a parity
error bit we can detect any single bit error. So:

P ( no error single bit) = 1− p
P ( no error in 9 bits) = (1− p)9

P ( single error in 9 bits) = 9[P ( single bit error)P (no error in other 8 bits)]
= 9p(1− p)8

P ( unseen error in 9 bits) = 1− P (no error in 9 bits)− P (single error in 9 bits)
= 1− (1− p)9 − 9p(1− p)8

= 3.6× 10−7

As can be seen the addition of a parity bit has reduced the uncorrected error rate by three orders
or magnitude.

Single parity bits are common in asynchronous, character oriented transmission. Where syn-
chronous transmission is used, additional parity symbols are added that check not only the parity
of each 8 bit row, but also the parity of each 8 bit column. The column is formed by listing each
successive 8 bit word one beneath the other. This type of parity checking is called block sum
checking, and it can correct any single 2 bit error in the transmitted block of rows and columns.
However, there are some combinations of errors that will go undetected in such a scheme (see
Table. 3 )

Parity checking in this way provides good protection against single and multiple errors when
the probability of the errors are independent. However, in many circumstances, errors occur in
groups, or bursts. Parity checking of the kind just described then provides little protection. In
these circumstances, a polynomial code is used.
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p1 B6 B5 B4 B3 B2 B1 B0
0 1 0 0 0 0 0 0
1 0 1 0 1 0 0 0
0 1 0 (*) 0 0 1 (*) 1 0
0 0 1 0 0 0 0 0
1 0 1 0 1 1 0 1
0 1 0 0 0 0 0 0
1 1 1 (*) 0 0 0 (*) 1 1
1 0 0 0 0 0 1 1

p2 1 1 0 0 0 0 0 1

Table 3: p1 is odd parity for rows; p2 is even parity for columns (*) mark undetected error combi-
nation.

The mechanism of polynomial codes is beyond the scope of this course. We shall not discuss
it in details.

Error correction coding is more sophisticated than error detection coding. Its aim is to detect
and locate errors in transmission. Once located, the correction is trivial: the bit is inverted. Error
correction coding requires lower rate codes than error detection, often markedly so. It is there-
fore uncommon in terrestrial communication, where better performance is usually obtained with
error detection and retransmission. However, in satellite communication, the propagation delay
often means that many frames are transmitted before an instruction to retransmit is received. This
can make the task of data handling very complex. Real-time transmission often precludes retrans-
mission. It is necessary to get it right first time. In these special circumstances, the additional
bandwidth required for the redundant check-bits is an acceptable price. There are two principle
types: Hamming codes and convolutional codes. Again we will not discuss them in details here.

3.5 Encryption

In all our discussion of coding, we have not mentioned what is popularly supposed to be the
purpose of coding: security. We have only considered coding as a mechanism for improving the
integrity of the communication system in the presence of noise. The use of coding for security has
a different name: encryption. The use of digital computers has made highly secure communication
a normal occurrence. The basis for key based encryption is that is very much easier to encrypt with
knowledge of the key than it is to decipher without knowledge of the key. The principle is just that
of a combination lock. With a computer the number of the digits in the lock can be very large. Of
course, one still has to keep the combination secure.

The most commonly used encryption algorithms are block ciphers. This means that the al-
gorithm splits the plain text (message to be encrypted) into (usually) fixed size blocks which are
then subjected to various functions to produce a block of cipher text. The most common functions
are permutations based on expansion and compression and straight shuffling transformations. In a
straight permutation, the bits of ann bit block are simply reordered. In expansion, as well as being
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Figure 25:Examples of block cipher permutations.

reordered, the grouped ofn bits is converted tom bits (m > n), with some bits being duplicated.
In compression, then bit block in converted to ap bits (p < n), with some of the original bits
unused (see Fig. 25).

The most widely used form of encryption is defined by the National Bureau of Standards and
is known as the data encryption standard (DES). The DES is a block cipher, splitting the data
stream into 64-bit blocks that are enciphered separately. A unique key of 56 bits is then used to
perform a succession of transposition and substitution operations. A 56 bit key has7.216 possible
combinations. Assuming a powerful computer could attempt108 a combinations per second, it
would still take over 20 years to break the code. If the code is changed once per year, there is
little possibility of it being broken, unless the code breaker had additional information. The DES
converts 64 bits of of plain text into 64 bits of cipher text. The receiver uses the same key to
decipher the cipher text into plain text.

The difficulty with this method is that each block is independent. This permits an interceptor in
possession of the key to introduce additional blocks without the recipient being aware of this fact.

Like the combination of a lock, the system is only secure if the key is secure. If the key is
changed often, the security of the key becomes a problem, because the transfer of the key between
sender and receiver may not be secure. This is avoided by the use of matched keys. In a matched
key scheme, the encryption is not reversible with the same key. The message is encrypted using one
key, and decrypted with a second, matched key. The receiver makes available the first, public key.
This key is use by the sender to encrypt the message. This message is unintelligible to anyone not
in possession of the second, private key. In this way the private key needs not be transferred. The
most famous of such scheme is the Public Key mechanism using the work of Rivest, Shamir and
Adleman (RSA). It is based on the use of multiplying extremely large numbers and, with current
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technology, is computationally very expensive.
RSA numbers are composite numbers having exactly two prime factors that have been listed

in the Factoring Challenge of RSA Security? and have been particularly chosen to be difficult to
factor. While RSA numbers are much smaller than the largest known primes, their factorization is
significant because of the curious property of numbers that proving or disproving a number to be
prime (primality testing) seems to be much easier than actually identifying the factors of a number
(prime factorization).

Thus, while it is trivial to multiply two large numbers and together, it can be extremely difficult
to determine the factors if only their product is given.

With some ingenuity, this property can be used to create practical and efficient encryption
systems for electronic data. RSA Laboratories sponsors the RSA Factoring Challenge to encourage
research into computational number theory and the practical difficulty of factoring large integers,
and because it can be helpful for users of the RSA encryption public-key cryptography algorithm
for choosing suitable key lengths for an appropriate level of security.

A cash prize is awarded to the first person to factor each challenge number.RSA numbers were
originally spaced at intervals of 10 decimal digits between 100 and 500 digits, and prizes were
awarded according to a complicated formula.

A list of the open Challenge numbers may be downloaded from RSA homepage.

Number digits prize (USD) factored (references)
RSA− 100 100 Apr. 1991
RSA− 110 110 Apr. 1992
RSA− 120 120 Jun. 1993
RSA− 129 129 Apr. 1994 (Leutwyler 1994, Cipra 1995)
RSA− 130 130 Apr. 10, 1996
RSA− 140 140 Feb. 2, 1999 (te Riele 1999)
RSA− 150 150 Apr. 6, 2004 (Aoki 2004)
RSA− 155 155 Aug. 22, 1999 (te Riele 1999, Peterson 1999)
RSA− 160 160 Apr. 1, 2003 (Bahr et al. 2003)
RSA− 200 200 May 9, 2005 (Weisstein 2005)
RSA− 576 10000 Dec. 3, 2003 (Franke 2003; Weisstein 2003)
RSA− 640 20000 Nov. 4, 2005 (Weisstein 2005)
RSA− 704 30000 open
RSA− 768 50000 open
RSA− 896 75000 open
RSA− 102 100000 open
RSA− 153 150000 open
RSA− 204 200000 open

Example 3 In order to see all this in action, we want to stick with numbers that we can actually
work with.



41

Finding RSA numbers
So we have 7 for P, our public key, and 23 for Q, our private key (RSA number, very small).

Encoding
We create the following character set:

2 3 4 6 7 8 9 12 13 14 16 17 18
A B C D E F G H I J K L M
19 21 23 24 26 27 28 29 31 32 34 36 37
N O P Q R S T U V W X Y Z
38 39 41 42 43 46 47 48 49 51 52 53
sp 0 1 2 3 4 5 6 7 8 9 ?

The message we will encrypt is ”VENIO” (Latin for ”I come”):

V E N I O
31 7 19 13 21

To encode it, we simply need to raise each number to the power of P modulo R=55.

V : 317(mod55) = 27512614111(mod55) = 26
E : 77(mod55) = 823543(mod55) = 28
N : 197(mod55) = 893871739(mod55) = 24
I : 137(mod55) = 62748517(mod55) = 7
O : 217(mod55) = 1801088541(mod55) = 21

So, our encrypted message is26, 28, 24, 7, 21 – or RTQEO in our personalized character set. When
the message ”RTQEO” arrives on the other end of our insecure phone line, we can decrypt it simply
by repeating the process – this time using Q, our private key, in place of P.

R : 2623(mod55) = 350257144982200575261531309080576(mod55) = 31
T : 2823(mod55) = 1925904380037276068854119113162752(mod55) = 7
Q : 2423(mod55) = 55572324035428505185378394701824(mod55) = 19
E : 723(mod55) = 27368747340080916343(mod55) = 13
O : 2123(mod55) = 2576580875108218291929075869661(mod55) = 21

The result is 31,7,19,13,21 – or ”VENIO”, our original message.
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4 Signal Representation

In this Chapter, we are going to present a detailed discussion on Sampling theorem mentioned
before: how fast to sample an analogous signal so that we could recover the signal perfectly. We
will also introduce some basic tools which are essential for our later part of the module, including
z transform, discrete time Fourier transform (DTFT) and discrete Fourier transform (DFT).

4.1 Sequences and their representation

A sequence is an infinite series of real numbers{x(n)}, which is written

{x(n)} = {· · · , x(−1), x(0), x(1), x(2), · · · , x(n) · · · }

This can be used to represent a sampled signal, i.e.x(n) = x(nT ), wherex(t) is the original
(continuous) function of time. Sometimes sequence elements are subscripted,xn being used in
place ofx(n).

The most basic tool in DCSP is the Z transform (ZT), which is related to the generating function
used in the analysis of series. In mathematics and signal processing, the Z-transform converts a
discrete time domain signal, which is a sequence of real numbers, into a complex frequency domain
representation. The ZT of{x(n)} is

X(z) =
∑

x(n)z−n

where the variablez is a complex number in general and
∑

is
∑∞

n=−∞. The first point to note
about ZT’s is that some sequences have simple rational ZT’s.

Example 4
{x(n)} = {1, r, r2, · · · }, n ≥ 0 andx(n) = 0, n < 0

has ZT
X(z) =

∑
rnz−n

which can be simplified ifr/z < 1 to give

X(z) = 1/(1− rz−1)

To check that this is correct, we simply invert the ZT by long division

X(z) = 1 + rz−1 + rz−2 + · · ·

which obviously corresponds to the original sequence.

The ZT’s main property concerns the effects of a shift of the original sequence. Consider the
ZT

Y (z) =
∑

x(n)z−(m+n)
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which can be written
Y (z) = z−mX(z)

This obviously corresponds to the sequence{y(n)} = {x(n−m)}.
Now if we add sequences{a(n)}, {b(n)}, we get a sequence

{c(n)} = {· · · , a(−1) + b(−1), a(0) + b(0), a(1) + b(1), · · · }
with ZT

C(z) =
∑

(a(n) + b(n))z−n = A(z) + B(z)

which is just the sum of the ZT’s of{a(n)}, {b(n)}, i.e. the ZT is linear.
Now consider the product of two ZT’s

C(z) = A(z)B(z)

for example. The question arises as to what sequence this represents. If we write it out in full

C(z) =
∑

a(n)z−n
∑

b(m)z−m

which can be rewritten
C(z) =

∑
a(n)b(m)z−(m+n)

which is the ZT of the sequence

{c(n)} =
∑

a(m)b(n−m)

Sequences{c(n)} of this form are called the convolution of the two component sequences
a(n), b(n), and are sometimes written as

c(n) = a(n) ∗ b(n)

Convolution describes the operation of a digital filter, as we shall see in due course. The fundamen-
tal reason why we use ZT is that convolution is reduced to multiplication and this is a consequence
of the even more basic shift property expressed in the equation above.

Example 5 (Discrete time unit impulse)
The unit impulse (Fig. 26)δ(n) is the most elementary signal, and it provides the simplest

expansion. It is defined as

δ(n) =

{
1 if n = 0
0 otherwise

(4.1)

Any discrete signal can be expanded into the superposition of elementary shifted impulse, each
one representing each of the samples. This is expressed as

x(n) =
∑

x(k)δ(n− k)

where each termx(k)δ(n− k) in the summation expresses thenth sample of the sequence.
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Figure 26:An impulseδ(n) and a shifted impulseδ(n− k)

4.2 Discrete Time Fourier Transform (DTFT)

The basic tool of signal analysis is the Fourier transform, which is treated in detail in a number of
references and revisited before. Although the Fourier transform is not the only transform, it is the
one most widely used as a tool in signal analysis. Most likely, you have seen the Fourier transform
in its symbolic formulation applied to signals expressed mathematically. For example, we know
what the Fourier transform of a rectangular pulse, of a sinusoid, or of a decaying exponential is.
However, in most applications of interest, the goal is to determine the frequency content of a signal
from a finite set of samples stored on a disk or a tape.

The discrete Fourier transform (DFT), is the algorithm we use for numerical computation.
With the DFT we compute and estimate of the frequency spectrum of any sort of data set stored
as an array of numerical entries. In this chapter we quickly review the Fourier transform for
discrete time signal (the DTFT, discrete time Fourier transform) and present the DFT in detail. In
particular, we will be concentrating on two classes of applications: (1) spectral estimation, and
(2) compression. The latter involves a variant of the DFT called the discrete cosine transform (or
DCT), which is particularly well behaved when applied to approximation problems.

Definition and properties:

The DTFT gives the frequency representation of a discrete time sequence with infinite length.
By definition
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X(ω) = DTFT{x(n)} =
∞∑

n=−∞
x(n) exp(−jωn), π ≤ ω < π

x(n) = IDTFT (X(ω)) =
1

2π

∫ π

−π

X(ω) exp(jωn)dω, −∞ < n < ∞
(4.2)

The inverse discrete time Fourier transform (IDTFT) can be easily determined by substituting the
expression of the DTFT, which yields

1

2π

∫ π

−π

X(ω) exp(jωn)dω =
∞∑

m=−∞
x(m)

(
1

2π

∫ π

−π

exp(jω(n−m))dω

)
= x(n)

where we used the fact that the term in brackets in the expression above is 1 whenn = m and 0
for all other cases.

By definition,X(ω) is always periodic with period2π, since

X(ω + 2π) = X(ω)

and this is the reason why all the information is included within one period, say in the interval
−π ≤ ω < π, as shown in Fig. (27)

Example 6 (Fig. 28) consider the signalx(n) = 0.5n, n = 0, 1, 2, · · · then

X(ω) =
∞∑

n=−∞
0.5n exp(−jωn) =

1

1− 0.5 exp(−jω)
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Figure 29:Sinusoid and its DTFT

Example 7 Consider the signalx(n) = δ(n) then

X(ω) =
∞∑

n=−∞
δ(n) exp(−jωn) = 1

4.2.1 Computation of the DTFT

It is well known that the whole Fourier approach to signal analysis is based on the expansion
of a signal in terms of sinusoids or, more precisely complex exponentials. In this approach we
begin analyzing a signal by determining the frequencies contributing to its spectrum in terms of
magnitudes and phases.

For example, if a sequence is a sinusoidx(n) = cos(ω0n) of infinite length, its DTFT yields
two ‘delta’ functions,X(ω) = πδ(ω − ω0) + πδ(ω + ω0), as in Fig. 29 where we assume all
frequenciesω andω0 to be within the intervals[−π, π). This shows that the DTFT gives perfect
frequency localization as an exact concentration of energy at±ω0 provided (a) the sequence lasts
from−∞ to∞ and we have an infinite amount of memory to actually collect all the data points,
and (b) we computeX(ω) for all possible frequenciesω in the interval[−π, π), again requiring an
infinite amount of memory and an infinite computational time.

In practice, we do not have infinite memory, we do not have infinite time, and also any signal we
want to analyze does not have infinite duration. In addition, the spectrum of the signal changes with
time, just as music is composed of different notes that change with time. Consequently, the DTFT
generally is not computable unless we have an analytical expression for the signal we analyze, in
which case we can compute it symbolically. But most of the time this is not the case, especially
when we want to determine the frequency spectrum of a signal measured from an experiment. In
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this situation, we do not have an analytical expression for the signal, and we need to develop an
algorithm that can be computed numerically in a finite number of steps, such as the discrete Fourier
transform (DFT).

4.3 Discrete Fourier Transform (DFT)

Definition
The discrete Fourier transform (DFT) and its own inverse discrete Fourier transform (IDFT),

associate a vectorX = (X(0), X(1), · · · , X(N − 1)) to a vectorx = (x(0), x(1), · · · , x(N − 1))
of N data points, as follows,





X(k) = DFT{x(n)} =
N−1∑
n=0

x(n) exp(−j2πkn/N), k = 0, 1, · · · , N − 1

x(n) = IDFT{X(k)} =
1

N

N−1∑

k=0

X(k) exp(jπkn/N), n = 0, · · · , N − 1

(4.3)

If we definewN = exp(−j2πk/N), then

X(k) = DFT{x(n)} =
N−1∑
n=0

x(n)(wN)n

which implies thatX(k) is a weighted summation of(WN)n (basis).

Example 8 (see Appendix 6.8) Letx = [1, 2,−1,−1] be a data vector of lengthN = 4. Then
applying the definition,w4 = exp(−j2π/4) = −j, and therefore

X(k) = 1 + 2(−j)k − 1(−j)2k − 1(−j)3k

for k = 0, 1, 2, 3. This yields the DFT vector

X = DFT{x} = [1, 2− 3j,−1, 2 + 3j]

4.3.1 The relationship between DFT and DTFT

In spite of their similarities, the DFT and DTFT are two quite different operations. Whereas the
DFT is a numerical operation, which computers a finite number of coefficientsX(0), · · · , X(N −
1) from a finite set of datax(0), · · · , x(N − 1), the DTFT is not computable numerically because
it yields a continuous function,X(ω), based on an infinite sequencex(n).

In this section we address the problem of estimatingX(ω) = DTFT{x(n)} based on the
DFT of a sample of finite lengthN . The finite sample can be given in terms of either an analytic
expression or a set of observations stored in memory, such as a vector.
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Before going any further, let us see how we can reconcile the fact that we defined the DFT for
data in the formx(0), · · · , x(N − 1), while in reality we might have data starting at any point in
time, such asx(n0), · · · , x(n0 +N−1). To simplify the arguments to follow, we assume the initial
time to ben0 = −N/2, with any choice of rounding for odd values of the data lengthN . Then we
can write the DFT in terms of the finite sum

X̂N(ω) =

N/2−1∑

n=−N/2

x(n) exp(−jωn)

andX(k) = X̂N(k2π/N). Also recall the DTFT as an infinite sum

X(ω) =
∞∑
−∞

x(n) exp(−jωn)

Now the question is, willX̂N → X asN → ∞ for each value of the frequency variableω?. If
the answer is positive, the approximation makes sense and we can say that we can estimate the
frequency spectrum of the whole signal based on a set of samples. The more data(i.e. the largerN
is), the better the approximation.

What decides the convergence is how the signalx(n) behaves as the indexn →∞. In order to
fully understand the arguments presented, recall that the infinite series

∑
1/nL, with L an integer,

is divergent forL = 1 and convergent forL ≥ 2. In particular, we distinguish three different cases,
all illustrated in Fig. 30.

• Absolutely summable signals. These signals are such that

∞∑
n=−∞

|x(n)| < ∞

For these signals the DTFT always exists, is finite, and converges for everyω, as

lim
N→∞

X̂N(ω) = X(ω) < ∞

The fact thatX(ω) is finite comes from the following inequality

|X(ω)| = |
∑

x(n) exp(−jωn)| ≤
∑

|x(n)| < ∞

These are the best-behaved sequences, in terms of convergence. This means that for every
ω, we can approximatedX(ω) infinitely closely by the finite sequencêXN(ω), with N
sufficiently large.

Typical examples in this class are signals decaying as1/n2 for which |x(n)| ≤ C/n2, for n
sufficiently large. In particular, signals decaying exponentially fast.
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Figure 30:Three cases.
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• Signals with Finite Energy (not infinitely summable). There are signals such that

∑
|x(n)|2 < ∞

For these signals we do not have pointwise convergence as in the preceding case, but we can
say that

lim
N→∞

∫
|X(ω)− X̂N(ω)|2dω → 0

• This is one of the more important issues in DSP and we will treat the third case in the next
subsection.

Example 9 Consider the sequence

x(n) =
sin(0.25πn)

πn

We want to estimateX(ω) = DTFT (x(n)) using the DFT. Choose for example, finite sequences
x(n) for −L ≤ n ≤ L, of lengthN = 2L + 1. The plots ofX̂N(k) for several values ofL are
shown in Fig. 31, and the lack of convergence at the discontinuities (ω = ±π/4) is evident.

Example 10 Consider the sequence

x(n) =
sin2(0.25πn)

(πn)2

Again we want to estimateX(ω) = DTFT (x(n) using the DFT. Fig. 32 shows convergence for
all values ofω by comparing two cases withL = 32 andL = 1024. This is expected because the
signal is absolutely summable.

4.3.2 DFT for spectral estimation

One of the uses of the DFT is to estimate the frequency spectrum of a signal. In particular, given
a continuous time signalx(t), the goal is to determine its frequency components by taking a finite
set of samples as a vector,x(0), x(1), · · · , x(N − 1), and computing its DFT as in the previous
section. This is shown in Fig 33.

The fact that we window the signalx(n) (i.e. we take a finite set of data) will have an effect on
the frequency spectrum we compute, and we have to be aware of that when we interpret the results
of the DFT. This can be seen by defining a window sequence

w(n) =

{
1 if n = 0, 1, · · · , N − 1
0 otherwise
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and the DTFT of the windowed signal

Xw(ω) = DTFT (w(n)x(n)) =
N−1∑
n=0

x(n) exp(−jωn)

Now notice that we can relate the right-hand side of the preceding expression to the DFT of the
finite sequencex(0), · · · , x(N − 1) as

X(k) = Xw(ω)|ω=k2π/N

In other words, by the DFT we compute samples of the frequency spectrum of the windowed signal
x(n)w(n). To see the effect of the windowing operation on the frequency spectrum, let us examine
the case when the signalx(n) is a complex exponential, such asx(n) = exp(jω0n). Then

Xw(ω) =
∞∑
−∞

w(n) exp(jω0n) exp(−jωn) = W (ω − ω0)

where the rightmost term is the frequency spectrum of the window function

W (ω) = DTFT (w(n)) =
N−1∑
n=0

1− exp(−jωN)

1− exp(jω)

This expression can be easily manipulated to simpler form and we can write

W (ω) = exp(−jω(N − 1)/2)
sin(ωN/2)

sin(ω/2)

The magnitude of this expression is shown in Fig. 34; it repeats periodically with period2π. As a
result, the DTFT of the windowed complex exponential is given by

|Xw(ω)| = |W (ω − ω0)| = | sin[(ω − ω0)N/2]|
| sin[(ω − ω0)/2]|

Fig. 34 compares the frequency spectra of the complex exponential before and after the win-
dowing operations. Without windowing, the complex exponential is perfectly localized in fre-
quency, since

DTFT (exp(jω0n)) = 2πδ(ω − ω0)

Once we window the signal, its frequency spectrum is not perfectly localized any more. The
energy spreads around the frequencyω0 within the mainlobe and trickles to other frequencies by
the sidelobes of the sinc function.

A number of windows currently used are shown in Fig. 35. In all cases, they are designed
with a smoother transition between the two regions (inside and outside the window), and as a
consequence the sidelobes are lower. The drawback is that they all have a wider mainlobe. Given
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Figure 34:Left, sin(jω0n) andcos(j ∗ ω0n). Right: the spectrum ofexp(jω0n) with n = 1, 2, · · · , 10
(N=10) andω0 = 0.5.

a fixed set of data points, we have to accept a compromise between frequency resolution (width of
the mainlobe) and sidelobes.

As we have seen, the DFT is the basis of a number of applications, and is one of the most
important tools in digital signal processing. The problem with this algorithm is that a brute-force
implementation would hardly be feasible in real time, even for a data set of modest length. For-
tunately, the DFT can be computed in a very efficient way, exploiting the very structure of the
algorithm we have presented by using the fast Fourier transform (FFT), which is an efficient way
of computing he DFT. It is know that for a data set of lengthN , the complexity of the FFT grows
asN log2 N , the complexity of the DFT computed by brute force grow asN2. FFT is widely used
in many applications.

4.4 *Sampling and reconstruction*

We have assumed so far that the sequence of samples on which we are to operate is given to us. In
practice, we shall totally have to obtain this by sampling a continuous time (or space) signalx(t),
say. The question we consider here is under what conditions we can completely reconstruct the
original signalx(t) from its discretely sampled signalx(n).

To this end, let us introduce more notation. Consider a signalx(t) and its samplesx(n) =
x(nTs), with Ts being the sampling interval andFs = 1/Ts the sampling frequency.

Now the question is how we can relateX(ω) = DTFT (x(n)) to X(F ) = FT (x(t)). In
particular, we want to identify conditions under which we can determineX(F ) from X(ω), or in
other words, if we can reconstruct the analog signalx(t) form its samplesx(n).
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Figure 35:Various window. Created from Matlab demos: Signal Processing: transforms: DFT.
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To achieve this goal, define

xs(t) =
∞∑

n=−∞
x(nTs)δ(t− nTs) = x(t)

∑
δ(t− nTs)

This signal shows the sampling operation; all the information within the sampling interval is lost
but at the same time the signal is still defined in continuous time. Therefor we can take the Fourier
transform, using both expressions on the right hand side, to obtain

Xs(F ) = FT (xs(t)) =
∞∑

n=−∞
x(n) exp(−j2π(F/F )s)/n) = X(F ) ∗ Fs

∞∑
−∞

δ(t− nTs)

from the fact tat
FT (

∑
δ(t− nTs)) = Fs

∑
δ(F − kFs)

. The convolution with a delta function yields just a shift of the variable, so we can write

Xs(F ) = X(ω)|ω=2π(F/Fs) = Fs

∑
X(F − kFs)

whereX(ω) = DTFT (x(n)). In other words, when a signalx(t) is sampled in time, its frequency
spectrumX(F ) is repeated in frequency.

We can see that if the signalx(t) is bandlimited, in the sense thatX(F ) = 0 for |F | > FB, for
some frequencyFB called the bandwidth of the signal, and we sample at a frequencyFs > 2FB,
then there is no overlapping between the repetitions on the frequency spectrum. In other words, if
Fs > 2FB,

Xs(F ) = FsX(F )

in the interval−Fs/2 < F < Fs/2 andX(F ) can be fully recovered fromXs(F ). This is very
important because it states that the signalx(t) can be fully recovered from its samplesx(n) =
x(nTs), provided we sample fast enough,Fs > 2FB.

The way to recover the continuous time signalx(t) from its samplesx(nTs) is by an interpo-
lating functiong(t). In fact, definêx(t)

x̂(t) =
∑

x(nTs)g(t− nTs)

Its Fourier transform is determined using simple properties

X̂(F ) =
∑

x(n) exp(−j2πFTs)G(F )

whereG(F ) = FG(g(t), the interpolating function. As we have seen, the summation is just
Xs(F ). Therefore, ifG(F ) is such that

G(F ) = Tsrect(
F

Fs

=

{
T, if − Fs/2 < F < Fs/2
0 otherwise
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ThenX̂(F ) = X(F ) andx̂(t) = x(t). This implies that the ideal interpolating function is given
by

g(t) = IFT

(
Tsrect

(
F

Fs

))
= sinc(t/Ts)

and we can perfectly reconstruct the continuous time signalx(t) from its samplesx(n):

X(t) =
∑

x(n)sinc

(
t− nTs

Ts

)

In summary, we have the following Nyquist–Shannon sampling theorem.

Theorem 2 Exact reconstruction of a continuous-time baseband signal from its samples is possi-
ble if the signal is bandlimited and the sampling frequency is greater than twice the signal band-
width.
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Figure 36:Multiplier, adder and delay units

5 Digital Filters

A digital filter is any electronic filter that works by performing digital mathematical operations
on an intermediate form of a signal. Digital filters can achieve virtually any filtering effect that
can be expressed as a mathematical function or algorithm. The two primary limitations of digital
filters are their speed (the filter can’t operate any faster than the computer at the heart of the filter),
and their cost. However as the cost of integrated circuits has continued to drop over time, digital
filters have become increasingly commonplace and are now an essential element of many everyday
objects such as radios, cellphones, and stereo receivers.

A well-known signal processing wizard is said to have remarked, “When you think about it,
everything is a filter.”

5.1 Operations on Sequences

Digital filtering is all based on a small set of very simple linear shift invariant operation on se-
quence. These are

1. Multiplication by a constant coefficient. If{x(n)} is the input sequence, the output is

{y(n)} = a{x(n)} = {· · · , ax(−1), ax(0), a(x), · · · , ax(n) · · · }
. Multipliers are normally depicted graphically by a triangle as in Fig. 36.

2. Adders do the obvious thing: if{x1(n)}, {x2(n)} are the input sequences, the output is just

{y(n)} = {· · · , x1(−1) + x2(−1), x1(0) + x2(0), x1(1) + x2(1), · · · }
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3. The other component is a delay unit, i.e. a single memory element. This operates on the
input sequence{x(n)} to give the output

{y(n)} = D{x(n)} = {x(n− 1)}

Note that you must regard this as chning the sequence, rather than acting independently on
the elements.

5.2 Filters

The commonly used digital filters are all based on combinations of these three operations. The
general filter can be described by the operational equation

{y(n)} =
N∑

m=0

a(m)Dm{x(n)}+
N∑

m=1

b(m)Dm{y(n)}

Note that the sum over the outputs starts at a delay of 1, not 0. If we use the ZT, with{x(n)} ↔
X(z),{y(n)} ↔ Y (z), we must first note that the operatorD has a ZT representationz−1, from
the shift result we established before. This mean that the filter above can be rewritten in ZT form

Y (z)(1−
N∑

m=1

b(m)z−m) =
N∑

m=0

a(m)z−mX(z)

No the ratio

H(z) = Y (z)/X(z)

is known as the ZT transfer function of the filter

H(z) =

∑N
m=0 a(m)z−m

1−∑N
m=1 b(m)z−m

Now the transfer functionH(z) is the ZT of the filter output sequence when the input sequence
has ZTX(z) = 1. This is the ZT of the unit impulse sequence

{x(n)} = {1, 0, · · · , · · · }

Thus the other way to characterise the filter is in terms of its impulse response since the re-
sponse to any sequence is just the sum of the responses to the individual impulses of the sequence
components.
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Figure 37:Direct nonrecursive filter implementation

5.3 Nonrecursive Filters

5.3.1 Operational Definition

When a filter is nonrecursive, its operational equation can be written

{y(n)} =
N∑

m=0

h(m)Dm{x(n)}

Such filters are also called finite impulse response filters, for the obvious reason that their IR
contain only finitely many nonzero terms. Correspondingly, the ZT of a nonrecursive filter can be
written as

H(z) =
N∑

m=0

h(m)z−m

and the impulse response is just

{h(n)} = {h(0), h(1), · · · }

Such a filter obviously has finite memory, in the sense that its response to a particular input element
is zero after N time steps. This can also be seen from the block diagram of a direct implementation
of the filter, Fig 37, which is a canonical form. FIR filters are all called moving average (MA)
filters.
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5.3.2 Zeros

Trying to figure out how an FIR filter will behave, given its IR, is note always so simple. Another
way of looking at it is through its frequency domain behaviors. We can make a start on this by
examining the zeros of its transfer functionH(z), i.e. those values ofz for which

H(z) = 0

SinceH(z) is a polynomial of order N with real coefficients, it follows that the equation hasN
roots, which are either real or occur in complex conjugate pairs. We can expressH(z) in terms of
the roots by writing

zNH(z) =
N∏

m=1

(z − zm)

where in generalzm = |zm| exp(j arg[zm]] is the mth root, or zero of the transfer function. The
zeros of a transfer function are usually denoted graphically in the complex z-plane by circles, as
shown in Fig. 38.

The factorisation ofH(z) implies thatH(z) can be written as a product of quadratic polyno-
mials inz−1 with real coefficients

H(z) =
M∏

m=1

(hm(0) + hm(1)z−1 + hm(2)z−2)

This is effectively a series implementation of the transfer function. Series implementations have
advantage in terms of both hardware and software modularity and sensitively to coefficient quan-
tization. They are often sued in practice.
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Figure 39:Block diagram of an ARMA filter.

5.4 Recursive Filters

5.4.1 Operational Definition

Of the many filter transfer function which are not FIR, the most commonly use in DSP are the
recursive filters, so called because their current output depends not only on the last N inputs but
also on the last N outputs. They have operational equation which are written as

(1−
N∑

m=1

b(m)Dm){y(n)} =
N∑

m=1

a(m)Dm){x(n)}

and a ZT transfer function

H(z) =
A(z)

B(z)

where

A(z) =
N∑

m=0

a(m)z−m, B(z) = 1−
N∑

m=1

b(m)z−m

and ifB(z) 6= 1, then their impulse response in infinity-they are IIR.

{h(n)} = {h(0), h(1), · · · }

The block diagram (Fig. 39) of such a filter is an obvious generalisation of that for the nonrecursive
Nth order filter. If the numerator coefficienta(m) = 0, then the filter is called an all pole filter(or
sometimes an autoregressive (AR) filter).
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5.4.2 Poles and Zeros

Writing he numerator and denominator ofH(z) in factors we get

H(z) =
A(z)

B(z)
= (

N∏
n=1

(z − αn))/(
N∏

n=1

(z − βn))

We know that the rootsαn are the zeros of the transfer function. The roots of the equationB(z) = 0
are called the poles of the transfer function. They have greater significance for the behaviour of
H(z): it is singular at the pointsz = βn. Poles are drawn on the z-plane as crosses, as shown in
Fig. 40.

ON this figure, the unit circle has been shown on the z-plane. In order for a recursive filter to
be bounded input bounded output stable, all of the poles of its transfer function must lie inside the
unit circle. A filter is BIBO stable if any bounded input sequence gives rise to a bounded output
sequence. Now if the pole of the transfer lie insider the unit circle, then they represent geometric
series with a coefficient whose magnitude|βm| < 1, i.e. a sequence{1, βm, β2

m, · · · } which is
convergent. Consequently, the filter output, which is a sum of such sequences weighted by the
appropriate input terms, is bounded if the input is. If, on the other hand,βm| > 1, the geometric
series diverges and the filter output will grow without bound asn → ∞. If βm| = 1, the filter
is said to be conditionally stable: some input sequence will lead to bounded output sequence and
some will not.

Since FR filters have no poles, they are always BIBO stable: zeros have no effect on stability.
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5.5 Frequency and digital filters

5.5.1 Poles, Zeros and Frequency Response

Now suppose we have the ZT transfer function of a filter

H(z) =
A(z)

B(z)

We can formally represent the frequency response of the filter by substitutingz = exp(jω) and
obtain

H(ω) =
A(ω)

B(ω)

Obviously,H(ω) depends on the locations of the poles and zeros of the transfer function, a fact
which ca n be made more explicit by factoring the numerator and denominator polynomials to
write

H(ω) = K

∏N
n=1(exp(jω)− αn)∏N
n=1(exp(jω)− βn)

whereK is a constant,αn, βn are respectively the nth zero and pole of the transfer function. Each
factor in the numerator or denominator is a complex function of frequency, which has a graphical
interpretation in the rms of the location of the corresponding root in relation to the unit circle This
is illustrated in Fig. 41. The factors are simply the difference vectors between the root location and
the point on the unit circle at angleω. This is true for any stable filter (i.e poles inside unit circle).

Writing, for example, the nth zero as

αn = |αn| exp(jθn)

we find that it makes a contribution with magnitude

|An(ω)|2 = 1 + |αn|2 − 2|αn| · (ω − θn)

to the overall frequency response. This has a minimum atω = θn and a maximum atω = θn + π.
In other words, the contribution of a zero to the filter frequency response is a minimum at the angle
of the zero and a maximum at the diametrically opposite frequency. Similarly, the contribution
from a pole is a maximum at eh angle of the pole and a minimum at the opposite angle. Thus we
can make a reasonable guess about the filter frequency response imply by looking at the pole-zero
diagram: lowpass filters have poles near the originalω = 0 and zeros at high frequencies and so
on.

To get a more detailed picture of the frequency response, it is always useful to calculate it at
frequenciesω = 0, π/2, π, which are simple to calculate, but even with these few points and the
locations of poles and zeros, we can get a good idea of how the response will look. Note also that,
because they are in the denominator, the contribution of a pole to the response grows as|βn| → 1,
while a zero on the unit circle implies a null in the response at that frequency.
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Figure 41:The contribution of a pole or zero to a filter frequency response

To make matters more concrete, Fig. 42 shows what effect varying the magnitude and angle of
a simple zero has on the frequency response magnitude, while Fig. 43 does the same thing for a
pole. A significant point to note in comparing to the diagrams is how even a single pole can give a
sharp peak in the frequency response magnitude, where a zero inevitable gives a rather broad one.
This is a consequence of the poles belonging to the denominator of the transfer function, of course.
It is primarily for this reason that recursive designs are preferred in many applications.

5.5.2 Filter Types

There are four main classes of filter in widespread use: lowpass, highpass, bandpass and bandstop
filters. The name are self-explanatory, but he extent to which the ideal frequency responses can be
achieved in practice is limited. This four types are shown in Fig. 44.

In practice, these ideal shapes require IIR filters which do not have a good approximation in
terms of a rational transfer function. To achieve a given magnitude response, a recursive filter
of a given order is generally better than a nonrecursive one, but this is often at the expense of
an unpleasant (nonlinear) phase response: linear phase implies the filter simply delays the input
signals, as well as shaping its frequency content. The resulting filter will be inadequate in several
respects compared with the ideal:

1. Finite stopband attenuation. A practical filter will not have a null response to frequency
outside its passband: this would require zeros at all such frequencies.

2. Finite transition bandwidth. Any realisation will not have a discontinuous frequency re-
sponse: there will be a band of frequencies width are neither stopped not passed, but are
transitional.
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Figure 42: The effect of varying (1) the magnitude and (ii) the angle of a simple zero. The squared
magnitude is plotted vs. radial frequency.
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Figure 43: The effect of varying (1) the magnitude and (ii) the angle of a simple pole. The squared
magnitude is plotted vs. radial frequency.
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Figure 44:The common types of digital filter frequency response: (i) lowpass, (ii) highpass, (iii) bandpass,
(iv) bandstop

3. Many filters also have a nonuniform response in the passband: passband ripple

Different designs, such Butterworth, Chebyshev or Elliptic, have different trade-off between
these artifacts. Originally, much digital filter design was based on the transformation of analogue
designs, using a variety of techniques including he impulse-invariant of bilinear transforms.

5.6 Simple Filter Design

In a number of cases, we can design a linear filter almost by inspection, by moving poles and
zeros like pieces on a chessboard. This is not just a simple exercise designed for an introductory
course, for in many cases the use of more sophisticated techniques might not yield a significant
improvement in performance.

In this example consider the audio signals(n), digitized with a sampling frequencyFskHZ.
The signal is affected by a narrowband (i.e., very close to sinusoidal) disturbancew(n). Fig. 45
show the frequency spectrum of the overall signal plus noise,x(n) = s(n) + w(n), which can be
easily determined.

Notice two facts:

1. The signal has a frequency spectrum concentrated within the interval 0 to 20+ kHz.

2. The disturbance is at frequencyF0 kHz.

Now the goal is to design and implement a simple filter that rejects the disturbance without
affecting the signal excessively. We will follow these steps:
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Figure 45:A signal with a disturbance. ’Say it’ by John Coltrane Quartet.

Step 1: Frequency domain specifications. We need to reject the signal at the frequency of the
disturbance. Ideally, we would like to have the following frequency response:

H(ω) =

{
0 if ω = ω0

1 Otherwise

whereω0 = 2π(F0/Fs) (let us say, it isπ/4) radians, the digital frequency of the disturbance.
Recall that the digital frequency is a relative frequency, the therefore has no dimensions.
Step 2: Determine poles and zerosWe need to place two zeros on the unit circlez1 = exp(jω0) =
exp(jπ/4) andz2 = exp(−jω0) = exp(−jπ/4). This would yield the transfer function

H(z) = K(z−1 − z1)(z
−1 − z2) = K(1− 1.414z−1 + z−2)

If we choose, sayK = 1, the frequency response is shown in Fig. 46. As we can see, it rejects the
desired frequencies, as expected, but greatly distorts the signal.

A better choice would be to select the poles close to the zeros, within the unit circle, for
stability. For example, let the poles bep1 = ρ exp(jω0) andp2 = ρ exp(−jω0). With ρ = 0.95,
for example, we obtain the transfer function

H(z) = K
(z − z1)(z − z2)

(z − p1)(z − p2)
= 0.9543

z2 − 1.414z + 1

z2 − 1.343z + 0.9025

and we choose the overall gainK so thatH(z)|z=1 = 1. This yields the frequency response shown
in Fig. 47, which is more selective than the previous choice. The only caveat is that the poles have
to be within the unit circle, even in the presence of numerical uncertainties.
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Figure 46:Frequency response with zeros and actual output of filtered signal.
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Figure 47:Frequency response with poles close to the unit circle

Step 3: Determine the difference equation in the time domainFrom the transfer function, the
difference equation is determined by inspection:

y(n) = 1.343y(n− 1)− 0.9025y(n− 2) + 0.954x(n)− 1.3495x(n− 1) + 0.9543x(n− 2)

The difference equation can be easily implemented as a recursion in a high-level language. The
final result is the signaly(n) with the frequency spectrum shown in Fig. 48, where we notice the
absence of the disturbance.

A Matlab program is available in Appendix.

5.7 Matched Filter

One common problem in signal processing is that of detecting the presence of a known signal
against a background of noise. This has applications in radar, sonar, communications and pattern
recognition. The problem is to choose the filter IR{h(n)} which maximises the filter output
{y(n)}, then we want to maximise the output at time 0

y(0) =
∞∑

n=−∞
h(n)x(−n)

As it stands, however, this is not a well defined problem: if we double all the filter coefficients, the
output will also double. We must therefore constrain the filter coefficients to have finite energy, i.e.

∑
h2(n) = 1
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Figure 48:Frequency spectrum of filtered signal

We can solve this constrained maximisation using the technique of Langrange multipliers, which
tells us to maximise the function

E(h) = y(0)− λ(
∑

h2(n)− 1)

where the second term is the constraint andλ is called the Lagrange multiplier, which is a number
we shall select so that the constraint equation above is satisfied. Differentiating the equation above
with respect toh(n) gives

∂E(h)

∂h(n)
= x(−n) + 2λh(n)

and setting this to 0 gives the solution

h(n) = εx(−n)

where the constantε = 1/2λ is chosen so that the energy is in unity

ε =
1√∑
x2(n)

In other words, the best filter, which is called hte matched filter for the signal, has an IR which is
just the time-reverse of the signal sequence. For this filter, the output at time 0 is

y(n) =
∑

x(−m)x(n−m) =
∑

x(m)x(n + m)

In this case, the sequence{y(n)} is called the autocorrelation sequence of the signal{x(n)} and
is defined as

rx(n) =
∑

x(m)x(n + m)
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The autocorrelation sequence{rx(n)} has two important properties

1. Its is maximum is at time 0,rx(0) > rx(n), n 6= 0

2. It is symmetrical about 0,rx(−n) = rx(n)

The ZT of{rx(n)} is
Rx(z) = X(z)X(z−1)

Similarly, we can define the cross-correlation between two sequence{a(n)}, {b(n)} as

rab(n) =
∑

a(m)b(m− n)

Note that here we have a−, i.e. {b(n)} is delayed with respect to{a(n)}. This is important
because in general cross-correlation is not symmetric. In fact

rab(−n) = rba(n)

unless of course the two sequence are the same,a(n) = b(n), in which case we get the autocorre-
lation.

Among random processes, the most random are the white noise processes, so called because
of their spectral properties. If{x(n)} is a zero mean stationary white noise process with variance
σ2, then it satisfies

Ex(n) = 0, Rx(n) = σ2δn0

5.8 Noise in Communication Systems: Stochastic Processes

The main application for matched filtering techniques is in the detection of known (deterministic)
signals in a background of random disturbances. In order to understand how well they work, it is
necessary to find a way of modelling random noise: a sample from a stochastic processx(t) which
is random variable for each fixedt.

Except the mean and variance we defined before, the third important statical description of a
process is second order: the autocorrelation sequence. Unlike that defined for deterministic signals
in the previous section, this must be defined in an appropriate way for a random process, i.e. as as
expected value.

R(n) = E(x(m)− Ex(m))(x(m− n)− Ex(m− n))

Here we have assumed stationarity, i.e. the quantity above depends on only the difference
m,m−n. Although it is defined in a completely different way from the deterministic autocorrela-
tion before, the autocorrelation for random sequences shares the two properties of the deterministic
autocorrelation: symmetry and a maximum at the origin. Like the process mean, it can also be es-
timated by an appropriate sample average, but getting a reasonable estimate is a complex task,
which is known as spectrum estimation, which we do not have space for. It is essential to be clear
about the distinction between these two types of correlation sequence: one applies to known, finite
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energy signals, the other to random, finite power signals. The ZT of the autocorrelation sequence
is defined as

S(z) =
∑

R(n)z−n

The autocorrelation of a process describes how similar it is to its time shifts: how dependent the
value at a given timen is on that at a different time. If the process has nonzero mean, however, a
large value of the autocorrelation will result even if the variation of the signal is completely random
Consequently, it is generally preferable to remove the mean before calculating the correlation. The
resulting measure is called the autocovariance. Among random processes, the most random are the
white noise processes, so called because of their spectral properties. If{ξ(n)} is a sample from a
zero mean stationary white noise process with varianceσ2, then it satisfies

Eξ(n) = 0, Rξ(n) = σ2δn0

In other words, its autocorrelation sequence is an impulse at the origin. This means that values
ξ(n)ξ(m) taken at different times are completely unrelated. The whiteness of the power spectrum
can be see by considering eitherS(x) or equivalently the Fourier transform

S(ω) = S(exp(jω)) = σ2

which is a constant dependent on the noise power: the spectrum is flat.
By any large, we shall not deal explicitly with the probability densities, but only work with

the expected values, which are a sufficient characterisation of the signal processes for much of
the DCSP used at present, from audio analysis to computer vision or radar. Although various
probability densities are used, the most widespread is the Gaussian or normal density, as we have
discussed before. This has a number of significant features.

1. it is completely characterised by its first and second order statistics. For a single variate, the
normal density is given as in Chapter II.

2. Any linear combination of normal variables is also normal. This means that if we filter a
normal process, we get another normal process (with different mean and correlation).

3. The sum of a large number of independent random variables is generally approximately
normally distributed. This result is called the Central limit Theorem.

Normal processes have been very widely studied and are very useful tool in designing DCSP
algorithms of all sorts.

5.8.1 Detection of known signals in noise

We can now turn to the problem which motivated the above summary of the elements of the theory
of stochastic processes, namely the detection of a known, finite energy signal{x(n)} in noise,
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Figure 49:Model of a typical signal detection application, such as radar or communication

which we shall assume is a sample form a zero mean white noise process{ξ(n)}. The noisy signal
is just

w(n) = x(n) + ξ(n)

with
E(ξ(n)x(m)) = x(m)Eξ(n) = 0, E(ξ(n)ξ(m) = σ2δmn

The overall system is modelled by the example in Fig. 49 in which a sequence of impulse
{i(n)}, which might be at regular or random intervals, drives the transmitter filter, which generates
the signal sequence{x(n)} in response to each impulse. The detector operates on the stream of
signals, corrupted by the channel noise process, using a matched filter, whose output is thresholded
to determine whether the signal is present at a given time. The system output is the binary decision
sequence{d(n)}. I na radar system, of course, the input sequence{i(n)} would represent the
returns from different targets, which would be randomly spaced in time, while in communication
system, the impulses would occur at regular intervals, with data being used to modulate their phase
or amplitude.

Now, according to our previous calculation, the filter which maximises the output in response
to the known signal is just the matched filter for the signal

h(n) = εx(N − n)

but the signal in the present case is corrupted by noise, whose effects we must take into account.
First, suppose that no signal is present, sow(n) = ξ(n). In signal detection theory, this known as
the null hypothesis. In this case, the filter optput at time 0 has statistics

E(y(N) = 0



76

and

Ey2(N) = σ2

N∑
n=0

h2(n)

To proceed, now consider the case where the signal is present. Then

Ey(N) = ε

N∑
n=0

x2(n)

and

Ey2(N) = (ε
N∑

n=0

x2(n))2 + σ2
∑
n=0

Nh2(n)

Since the matched filter maximises the mean output when the signal is present and the mean output
is 0 when the signal is absent, the matched filter is the best filter for detecting the signal when the
noise is white.

5.9 Wiener Filter

If there is a significant amount of noise in the image, then it is better to find a way to deal with the
randomness directly than to rely on methods which are essentially ad hoc. The simple way to deal
with noise is just to lowpass filter the signal, since as we have already seen most of its energy is at
low frequencies. Unfortunately, this will blur the edges too, leading to undesirable results. To do
any better, we must use a signal model.

The statistical approach to the problem is based on stochastic models of the image and noise
processes. The simplest one to describe is Wiener filtering, named after its inventer. To understand
it, we shall start with a very simple problem. Suppose we have a single sampley = x + ξ, where
x is the desired variable andξ is a sample of white noise, independent ofx with varianceσ2. We
assume that the variance ofx is 1 and that both signal and noise have zero mean

Ex = Eξ = Exξ = 0, Ex2 = 1, Eξ2 = σ2

We want to choose a coefficienta so that the difference between the estimatex̂ = ay andx is
as low as possible

min
a

E[x− ay]2

Differentiating the error with respect toa and equating to zero

2E(xy) = 2aEy2

or

a =
E(xy)

Ey2
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at which value the error,x− x̂ is orthogonal to the datay, in the sense that

E(x− x̂)y = Exy − aEy2 = 0

This orthogonality principle can readily be extended to solve the problem of estimating images
distorted by noise.

The Wiener formulation works for any type of noise or signal spectrum and any filter. If it
has a weakness, it is that the AR signal models which typically get used to not do a good job of
representing image features like edges, so that the Wiener filter tends to blur them. This problem
can be solved by using a non-stationary formulation, possibly using a state space model to give an
optimum recursive non-stationary filter. It goes beyond the scope of this note to go into details.

5.10 Having Fun: Contrast Enhancement

Many images are captured in low light conditions, which can cause then to have low contrast
between the darker and lighter regions. This problem can be solved by contrast stretching, in
which a nonlinear function such asf(x) = x2 or f(x) = exp[ax] is used to increase the dynamic
range of the image. The most sophisticated form of contrast enhancement is known as histogram
equalisation, which works by trying to spread out the intensities so that their probability density is
as uniform as possible.

Fig. 50 shows a comparison between two figures. The left one is generated from the positive
Gaussian random variable, the right is from the uniformly distributed random variable. It is clearly
demonstrated that the uniform one has a stronger contrast to us.

It os based on the observation that ifu is a random variable with probability densitypu(x), the
cumulative distribution ofu is defined to be the total probability thatu is less thanx, ie.

Pu(x) =

∫ x

−∞
Pu(y)dy

If we define the function
f(u) = Pu(u)

which is just the cumulative distribution ofu, thenf(u) itself has a cumulative distribution

Pf (x) = Pu(P
−1
u (x)) =





x 0 < x < 1
0 x ≤ 0
1 x ≥ 1

which corresponds to a uniform densitypf(x) = 1, 0 ≤ x ≤ 1, as intended. Because the in-
tensities are normally integers, rather than real numbers, this equalisation can only be achieved
approximately in practice, however. In fig. 51, we show another example.
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Figure 51:Another application.

6 Appendix: Mathematics

6.1 Sinusoids

The term sinusoid is used here to designate a waveform of the type

A cos(2πft + φ) = A cos(ωt + φ)

Thus, a sinusoid is defined as a cosine at amplitudeA, frequencyω, and phaseφ. We could
also have defined a sinusoid based on the sine function asA sin(2πft + φ), in which caseφ would
be different by90o (π/2 radians). A sinusoid’s phase is typically denoted byφ, and is in radian
units. The instantaneous frequency of a sinusoid is defined as the derivative of the instantaneous
phase with respect to time:

ω =
d

dt
[ωt + φ]

A discrete-time sinusoid is simply obtained from a continuous-time sinusoid by replacingt by
nT :

A cos(2πfnT + φ) = A cos(ωnT + φ)
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6.2 Complex Numbers

j =
√−1

z = x + jy = r exp(jθ)
x = r cos(θ)
y = r sin(θ)

r = |z| =
√

x2 + y2

θ = ∠z = tan−1(y/x)
|z1z2| = |z1||z2|
|z1/z2| = |z1|/|z2|

| exp(jθ)| = 1
∠r = 0

z1z2 = (x1x2 − y1y2) + j(x1x2 + y1y2)
z1z2 = r1r2 exp(j(θ1 + θ2)

z̄ = x− jy = r exp(−jθ)
zz̄ = |z|2 = x2 + y2 = r2

6.3 The Exponential Function

ex = limn→∞(1 + x/n)n

ex =
∑∞

n=0

xn

n!
ejθ = cos(θ) + j sin(θ)

ejnθ = cos(nθ) + j sin(nθ)

sin(θ) =
ejθ − e−jθ

2j

cos(θ) =
ejθ + e−jθ

2
e = 2.71828182...
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6.4 Trigonometric identities

sin(−θ) = − sin(θ)
cos(−θ) = cos(θ)

sin(A + B) = sin(A) cos(B) + cos(A) sin(B)
cos(A + B) = cos(A) cos(B)− sin(A) sin(B)

sin2(θ) =
1− cos(2θ)

2

cos2(θ) =
1 + cos(2θ)

2

sin(A) sin(B) =
cos(A−B)− cos(A + B)

2

cos(A) cos(B) =
cos(A + B) + cos(A−B)

2

sin(A) cos(B) =
sin(A + B) + sin(A−B)

2

sin(A) + sin(B) = 2 sin

(
A + B

2

)
cos

(
A−B

2

)

cos(A) + cos(B) = −2 cos

(
A + B

2

)
cos

(
A−B

2

)

6.5 Spectrum

In this module, we think of filters primarily in terms of their effect on the spectrum of a signal. This
is appropriate because the ear (to a first approximation) converts the time-waveform at the eardrum
into a neurologically encoded spectrum. Intuitively, a spectrum (a complex function of frequency
ω) gives the amplitude and phase of the sinusoidal signal-component at frequencyω. Mathemat-
ically, the spectrum of a signalx is the Fourier transform of its time-waveform. Equivalently, the
spectrum is thez transform evaluated on the unit circlez = exp(jωT ).

We denote both the spectrum and thez transform of a signal by uppercase letters. For ex-
ample, if the time-waveform is denotedx(n), its z transform is calledX(z) and its spectrum
is thereforeX(exp(jωT )). The time-waveformx(n) is said to “correspond” to its z transform
X(z), meaning they are transform pairs. This correspondence is often denotedx(n) ¿ X(z),
or x(n) ¿ X(exp(jωT ). Both the z transform and its special case, the (discrete-time) Fourier
transform, are said to transform from the time domain to the frequency domain.

We deal most often with discrete timenT (or simplyn) but continuous frequencyf (or ω =
2πf ). This is because the computer can represent only digital signals, and digital time-waveforms
are discrete in time but may have energy at any frequency. On the other hand, if we were going
to talk about FFTs (Fast Fourier Transforms–efficient implementations of the Discrete Fourier
Transform, or DFT), then we would have to discretize the frequency variable also in order to
represent spectra inside the computer. In this book, however, we use spectra only for conceptual
insights into the perceptual effects of digital filtering; therefore, we avoid discrete frequency for
simplicity.
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When we wish to consider an entire signal as a “thing in itself,” we writex(·), meaning the
whole time-waveform (x(n) for all n), or X(·), to mean the entire spectrum taken as a whole.
Imagine, for example, that we have plottedx(n) on a strip of paper that is infinitely long. Then
x(·) refers to the complete picture, whilex(n) refers to the nth sample point on the plot.

6.5.1 Fourier’s Song

Integrate your function times a complex exponential
It’s really not so hard you can do it with your pencil
And when you’re done with this calculation
You’ve got a brand new function - the Fourier Transformation
What a prism does to sunlight, what the ear does to sound
Fourier does to signals, it’s the coolest trick around
Now filtering is easy, you don’t need to convolve
All you do is multiply in order to solve.
From time into frequency–from frequency to time
Every operation in the time domain
Has a Fourier analog - that’s what I claim
Think of a delay, a simple shift in time
It becomes a phase rotation - now that’s truly sublime!
And to differentiate, here’s a simple trick
Just multiply by J omega, ain’t that slick?
Integration is the inverse, what you gonna do?
Divide instead of multiply–you can do it too.
From time into frequency–from frequency to time
Let’s do some examples... consider a sine
It’s mapped to a delta, in frequency - not time
Now take that same delta as a function of time
Mapped into frequency –of course –it’s a sine!
Sine x on x is handy, let’s call it a sinc.
Its Fourier Transform is simpler than you think.
You get a pulse that’s shaped just like a top hat...
Squeeze the pulse thin, and the sinc grows fat.
Or make the pulse wide, and the sinc grows dense,
The uncertainty principle is just common sense.

6.6 Matlab program for simple filter design

(From Enrico Rossoni)
clear all; close all;clc;
Fs = 11025;
Fnoise = Fs/8;
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SNR = -5;
load jazz signal;
samplelength = length(signal);
SAMPLINGFREQUENCY = Fs;
NFFT = min([256, length(signal)]);
NOVERLAP = 0;
WINDOW = HANNING(NFFT);
[Ps,F] = spectrum(signal,NFFT,NOVERLAP,WINDOW,SAMPLINGFREQUENCY);
spectrumsignal = Ps(:,1); Psignal = mean(spectrumsignal);
deltats = 1/Fs;
inoise = min(find(F¿=Fnoise));
fprintf(1,’Signal-to-Noise ratio =
Pnoise = spectrumsignal(inoise) *10−SNR/10;
ampnoise = sqrt(Pnoise);
noise = ampnoise*sin(2*pi*Fnoise*(1:samplelength)’*deltats);
Pn = spectrum(noise,NFFT,NOVERLAP,WINDOW,SAMPLINGFREQUENCY);
spectrumnoise = Pn(:,1); Pnoise = mean(spectrumnoise)
noisy = signal + noise;
Pns = spectrum(noisy, NFFT, NOVERLAP,WINDOW, SAMPLINGFREQUENCY);
a1 = 1.3435; a2 = -0.9025;
b0 = 0.9543; b1 = 0.9543*(-1.4142); b2 = 0.9543;
y = zeros(size(noisy)); y(1) = 0; y(2) = 0;
for ii = 3:samplelength
y(ii) = a1*y(ii-1) + a2*y(ii-2) + b0*noisy(ii) + b1*noisy(ii-1) + b2*noisy(ii-2);
end
Pfiltered = spectrum(y, NFFT, NOVERLAP, WINDOW, SAMPLINGFREQUENCY);
figure(2); plot(F*0.001, Pns(:,1), F*0.001, Pfiltered(:,1), ’r’);
xlabel(’Frequency (kHz)’); ylabel(’—X(F)—’); legend(’Disturbed Signal’,’Filtered Signal’);
fprintf(’Playing filtered audio sample n’); soundsc(y)

6.7 Fourier Transform: From Real to Complex Variables

For a signalx(t) with a periodT , we have

x(t) =
A0

2
+

∞∑
n=1

[An cos(nωt) + Bn sin(nωt)] (6.1)

whereω = (2π)/T andAi, Bi are defined as in Chapter II.
Using the Euler formula as in this Appendix, we have

exp(jnωt) = cos(nωt) + j sin(nωt) (6.2)
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and
exp(−jnωt) = cos(−nωt) + j sin(−nωt)

= cos(nωt)− j sin(nωt)
(6.3)

wherej2 = −1. Eq. (6.2)+Eq. (6.3) gives us

cos(nωt) =
[exp(jnωt) + exp(−jnωt)]

2
(6.4)

Eq. (6.2)-Eq. (6.3) yields

sin(nωt) =
[exp(jnωt)− exp(−jnωt)]

2j
(6.5)

Substituting Eq. (6.4) and Eq. (6.5) into Eq. (6.1), we obtain

x(t) =
A0

2
+

∞∑
n=1

[An cos(nωt) + Bn sin(nωt)]

=
A0

2
+

∞∑
n=1

[
An

[exp(jnωt) + exp(−jnωt)]

2
+ Bn

[exp(jnωt)− exp(−jnωt)]

2j

]

=
A0

2
+

∞∑
n=1

{[
An

exp(jnωt)

2
+ Bn

exp(jnωt)

2j

]
+

[
An

exp(−jnωt)

2
−Bn

exp(−jnωt)]

2j

]}

=
A0

2
+

∞∑
n=1

{[
An

2
+

Bn

2j

]
exp(jnωt) +

[
An

2
− Bn

2j

]
exp(−jnωt)

}

(6.6)
If we define

C0 = A0/2, cn =
An

2
+

Bn

2j
, c−n =

An

2
− Bn

2j

Eq. (6.6) becomes

x(t) = c0 +
∞∑

n=1

cn exp(jnωt) +
∞∑

n=1

c−n exp(−jnωt)

=
∞∑

n=−∞
cn exp(jnωt)

(6.7)

6.8 More Details on Example 8

Given a finite sequencex[n], its Discrete Fourier Transform (DFT)X(k) is defined as

X(k) = DFT{x[n]} =
N−1∑
n=0

x[n] exp [−j(2π/N)kn] , k = 0, . . . , N − 1
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whereN is the lenght of the sequence. Note that by defining the set of angular frequenciesωk =
(2π/N)k, k = 0, . . . , N − 1, we can rewrite Equation 1 as

X(k) =
N−1∑
n=0

x[n] exp [−jωkn] (6.8)

The meaning of this formula is clear if you think that the sequencesek[n] = exp(jωkn),
k = 0, . . . , N − 1, form a ‘basis’ for representing any sequence ofN numbers (you can easily
check theseN sequences are all independent). Therefore, we can interpretX(k) as the ‘projection’
of our original signal onto the kth sequence of our basis. In conclusion, we can regard the Fourier
transform as a simple ‘change of coordinate’ (from time to frequency, from frequency to time..).

Let us consider for example the sequencex[n] = (1, 2,−1,−1). In this case we haveN = 4 and
ωk = (π/2)k. From Eq. (6.8) we then obtain

X(k) =
N−1∑
n=0

x[n] exp [−jωkn]

= x(0) exp(−j(π/2)k · 0) + x(1) exp(−j(π/2)k · 1) +

+ x(2) exp(−j(π/2)k · 2) + x(3) exp(−j(π/2)k · 3)

= 1 + 2 · (−j)k − 1 · (−j)2k − 1 · (−j)3k

where we have used the Euler formula to get

exp(−jπ/2) = cos(−π/2) + j sin(−π/2) = −j,

and the basic property of the exponentialexp(nz) = [exp(z)]n. Finally, from the equation above
we getX[k] = (1, 2− 3j,−1, 2 + 3j).

As we mentioned above, these complex numbers can be though as coordinates to represent our
signal. In fact, for any given finite sequencex[n] we have1

x[n] =
1

N

N−1∑

k=0

X(k)ek[n]

The coefficients in this expansion can be more conveniently rewritten asX(k) = ρk exp(jφk)
whereρk = |X(k)| is the modulus andφk = arg(X(k)) is the phase ofX(k). Thus, in order to
reconstruct our sequence, we just need to scale each basis sequence byρk, rotate its elements by
φk in the complex plane and finally sum all the resulting sequences up together.

In Figure 52 we plot the signalx respectively in the time (top) and in thez domain (right). In
Figure 6.8 we plot the signal in the frequency domain, i.e. the amplitude and the phase of its DFT
coefficientsX(k) are plotted as a function of the frequency indexk. We will usually refer to this
as to thespectrumof x.

1The factor1/N is due to the fact that our basis sequences{ek} are not normalized.
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Figure 52: The signalx plotted in the time domain (top) and in thez-domain (bottom).
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Figure 53: The signalx in the frequency domain.


