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Time

» Thursday (L) 13.00 — 14.00 R2 .41

 Friday (L) 12.00 -- 13.00 RO.14
« Monday (Workshop/L) 4.00 —5.00 MBO0.07
(question time on line, team)

« Monday (S) 10.00-11.00 MB3.07

From week 2, seminar starts



My research: {53

* http://dcs.warwick.ac.uk/~feng
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In general, our research is about

« Dealing with big data

* Developing brain-inspired Al algorithms



My research: an example of
dealing with big data
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My research: 4% g

(this 1s Feng’s Brain)
Using MRI to peer into your brain
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* http://dcs.warwick.ac.uk/~feng
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Mind Reading: Find out what is in your dream



Depression

My research: an example of dealing
with big data
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Dementia Prediction: ten years before
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Dementia Prediction:

ten years before
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The UK Biobank-Dementia Risk Prediction (UKB-DRP) tool was established
based on UK Biobank study cohort. The tool was developed on research
purpose and cannot be used as clinical evidence.

for Brain-Inspired
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Risk group stratifications of dementia

The risk to become dementia (> 10 years): 2.39%.
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Risk group stratifications of Alzheimer's Disease
The risk to become AD (> 10 years): 0.94%:

10-year risk: 0.57 %«
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My research: an example of
developing novel Al algorithms



2019 Turing Award for Deep Learning

(Yoshua Bengio)
(Yann LeCun)
(Geoffrey Hinton)




A neuronal network msplredby braln vision systems
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Simulation of 86 B spiking neuron network

DTB:(Digital Twin Brain)

Similarity between BB and DTB: 90%

NSR, 2024, in press




Setting the agendainresearch

Comment

to a single human neuron, called a pyramidal cell.

How Al could lead to abetter
understanding of the brain

Viren Jain

Early machine-learning
systems were inspired by
neural networks —now Al
might allow neuroscientists
to getto grips with the brain’s
unique complexities.

an a computer be programmed to|
simulate a brain? It’s a question|
mathematicians, theoreticians and
experimentalists have long been ask-

ing — whether spurred by a desire to
createartificial intelligence (A1) or by theidea|
that a complex system such as the brain can
be understood only when mathematics or a

At the heart of these developments is a
growing body of data on brains. Starting in
the1970s, but moreintensively since the mid-
2000s, neuroscientists have been producing
connectomes — maps of the connectivity
and morphology of neurons that capture a
static representation of a brain ata particular

A

moment. idesuch

computer canreproduceits! _Totry

ingsimplified models of brain neural networks
since the 1940s". In fact, today’s explosion in
machine learning can be traced back to early
work inspired by biological systems.

However, the fruits of these efforts are now
enabling investigators to ask a slightly differ-
ent question: could machine learning be used
to build computational models that simulate
the activity of brains?

impr hers’ abilities to make
functional recordings, which measure neural
activity over time at the resolution of a single

cell. Meanwhile the field of transcriptomics

2
activity in a tissue sample, and even to map
when and where thatactivity is occurring.

So far, few efforts have been made to con-
nect these different data sources or collect
themsi fromthe inof
the same specimen. But as the level of detail,

Nature | Vol 623 | 9 November 2023 | 247
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COMMENTARY

Simulating the whole brain as an alternative way to

achieve AGI

Jianfeng Feng
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We have all seen the current attention, and even
hype, on big models and artificial general intelligence
(AGI). Indeed, many colleagues are arguing that we
have achieved AGI| with the current version of
ChatGPT. Really? Looking back, it is not surprising to
have a machine, even a normal calculator, which can
outperform us. For example, a calculator can easily
beat most of us on the multiplication of two large
numbers with its speed, while a basic laptop can store
many books, but humans have far weaker means of
recall. So it is something that we have already got
used to, that man-made machines can perform cerfain
tasks far better than us.

This general issue leads us back to the big original
question: how to define intelligence? People have come
up with many different definitions which could serve this
purpose. For example, Stephen Hawking said “intelli-
gence is the ability to adapt to change.” Along a similar
line one of my close colleagues, the most cited psy-
chologist, Trevor Robbins, who also won the Brain
prize, has defined intelligence as *“flexibility.” Others
might argue that complex language might be the carrier
of “intelligence,” which we, as human beings, own
uniquely. | am more in favor of the latter: a chameleon
can adapt to its environment, but does it have intelli-

that this is an over claim. Another, more mechanical
way, to defineftest intelligence is the Turing test. which
has its pros and cons and has been both criticized and
applied widely (Figure 1A).

Hence we have no criterion to really assess intelli-
gence, at least, one which | am happy with. We can
make a direct comparison between the human brain,
the one which we all agree has the intelligence, and
ChatGPT. First let us have a look of what ChatGPT has
achieved. It can (amazingly) generate comprehensive
answers, some of which are completely wrong! It can,
sometimes, outperform an individual human. As we all
know, the mechanism for ChatGPT, or all current ma-
chine learning, is to establish a correlation between
different objects, and with ChatGPT the object is the
word. With such a large model, with more than 1008
parameters, a reasonable argument is that it obeys the
Hegel's law [2]: quantitative changes give rise to qual-
itative differences. It might be a good idea to carry out a
similar analysis in, for example, the Ising model: when
the size increases in ChatGPT, the correlation coeffi-
cient between nodes in the model diverges: a typical
phase transition, which confirms the Hegel's law.

Now let us look at our brain. Massachusetts Institute
of Technology (MIT) neurobiologist Robert Desimone




Algorithms

 Data, computational power and algorithm are three
key elements for Al

e This module is all about

algorithm algorithm Al gO”th M

 This module will enable you to equip with new
skills to deal with data



Algorithms

 Very successful with deep learning
 But it deals with only static data such as faces
« We will deal with dynamic data (language, video etc.)

* ‘Most practical module in our two years’ —
comments from students of previous years



Announcement for Seminars

*DCSP seminars (to cover DCSP tutorial problems)
start in Week 2.



Assignment

« Assignment will be i1ssued in Week 4

« Worth 20% of the module assessment

omission deadline 1s 12 noon on
nursday Week 10 -- 14th March 2024

"he winner will be awarded 100 Pounds)



References

* Any good book about digital communications and
digital signal processing

« Wikipedia, the free encyclopedia or public lectures

e Lecture notes Is available at
http://www.dcs.warwick.ac.uk/~feng/dcsp.html

e Public lectures

« Update my lecture notes every week


http://www.dcs.warwick.ac.uk/~feng/dcsp.html

Outline of today’s lecture

« Digital vs. analog

« Module outline

» Data transmission (sampling)



Signal: video, audio, etc. -- Data




Signal: video, audio, etc. -- Data




Two types of signal

Information carrying signals are divided into two broad classes

Continuous X(t) vs. Digital X[n]

Analog/continuous versus discrete/digital



Continuous (Analog) Signals

* Analog signals: continuous (electrical) signals
that vary in time

 Most of the time, the variations follow that of
the non-electric (original) signal.

* The two are analogous hence the name analog.



Example |
Telephone voice signal is analog.

® The intensity of the voice causes electric current variations.

« At the receiving end, the signal is reproduced in the same proportion.

|cCopper fiber
Base Station —| Switch

copper Ccoax
@ < Switch |« CcO




Example |
Telephone voice signal is analog.

® The intensity of the voice causes electric current variations.

« At the receiving end, the signal is reproduced in the same proportion.
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Example |
Telephone voice signal is analog.

® The intensity of the voice causes electric current variations.

« Atthe receiving end, the signal is reproduced in the same proportion.

lcopper
Base Station —| Switch

Digitized, communication and @
processing

COax

CcO




Example 11

> 10



Digital Signals

Non-continuous, they change in individual steps.
Consist of pulses with discrete levels or values.

Each pulse is constant, but there is an abrupt
change from one digit to the next.



Example |
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Example 11: please meet

* Two-dimensional signal x[n;,n,], n;,n,&Z

* Apoint on a grid — pixel

« Grid is usually regularly spaced

* Values x[n,,n,] refer to the pixel's appearance



Example IIl: Our brain, Neuronal Activities

Vertical white bar: spik

axon

SOma

synapse

Dendrite



Advantages |

a. The abillity to process a digital signal means
that errors caused by random processes can be
detected and corrected.

b. Digital signals can also be sampled
Instead of continuously monitored and multiple
sighals can be multiplexed together to form one
signal.



Advantages ||

c. Advances in wideband communication
channels and solid-state electronics have
allowed scientists to fully realize a and b

digital communications has grown quickly.

d. Digital communications is quickly edging out
analog communication because of the vast
demand to transmit computer data and the
ability of digital communications to do so.



Module Summary |

* One sentence: Deal with digital signals



Module Summary Il

 Data transmission: Channel

characteristics, signalling methods,
Interference and noise,

data compression and encryption;

 Information Sources and Coding:

Information theory, coding of information for
efficiency and error protection;



Module Summary Il

« Data transmission: Channel characteristics, signalling methods,
Interference and noise, synchronisation, data compression and encryption;

* Information Sources and Coding: Information theory, coding
of information for efficiency and error protection;

» Sighal Representation: Representation of
discrete time signals in time and frequency; z
transform and Fourier representations; discrete
approximation of continuous signals; sampling and
guantisation; stochastic signals and noise processes;



Module Summary IV

Data transmission: Channel characteristics, signalling methods, interference and noise,
synchronisation, data compression and encryption;

Information Sources and Coding: Information theory, coding of information for efficiency and
error protection;

Signal Representation: Representation of discrete time signals in time and frequency; z transform
and Fourier representations; discrete approximation of continuous signals; sampling and quantisation;
stochastic signals and noise processes;

* Filtering: Analysis and synthesis of discrete time
filters; finite impulse response and infinite impulse
response filters; frequency response of digital filters;
poles and zeros; filters for correlation and detection;

matched filters;



Module Summary V

« Data transmission: Channel characteristics, signalling methods, interference and noise,
synchronisation, data compression and encryption;

» Information Sources and Coding: Information theory, coding of information for efficiency and
error protection;

. Signal Representation: Representation of discrete time signals in time and frequency; z transform
and Fourier representations; discrete approximation of continuous signals; sampling and quantisation;
stochastic signals and noise processes;

. Filtering: Analysis and synthesis of discrete time filters; finite impulse response and infinite impulse
response filters; frequency response of digital filters; poles and zeros; filters for correlation and detection;
matched filters;

» Digital Signal Processing applications:

Processing of images and sound using digital
techniques.



Data Transmission |: General Form

noise,
distortion,
source (noise) attenuation (noise) siRk
|
modulator transmitter transmission receiver demodulator
channel




Data Transmission |l

* A modulator that takes the source signal and transforms
It so that it is physically suitable for the transmission

channel
noise,
distortion,
si]/u rce (noise) attenuation (noise) siT

| e e transmission . o




Data Transmission |l

* A modulator that takes the source signal and transforms

It so that it is physically suitable for the transmission
channel

« A transmitter that actually introduces the modulated

signal into the channel, usually amplifying the signal as it
does so

noise,
distortion,
si]/u rce (noise) attenuation (noise) sink

N N N




Data Transmission |l

* A modulator that takes the source signal and transforms
It so that it is physically suitable for the transmission
channel

* A transmitter that actually introduces the modulated
signal into the channel, usually amplifying the signal as it
does so

 Atransmission channel that is the physical link between
the communicating parties

noise,
distortion,
S(]/u rce (noise) attenuation (noise) sink

N N N




Data Transmission |l

A modulator that takes the source signal and transforms
It so that it is physically suitable for the transmission
channel

A transmitter that actually introduces the modulated
signal into the channel, usually amplifying the signal as it
does so

A transmission channel that is the physical link between
the communicating parties

a receiver that detects the transmitted signal on the
channel and usually amplifies it (as it will have been
attenuated by its journey through the channel)

noise,
distortion,
S(]/u rce (noise) attenuation (noise) sink

N N N




Data Transmission |l

A modulator that takes the source signal and transforms
It so that it is physically suitable for the transmission
channel

A transmitter that actually introduces the modulated
signal into the channel, usually amplifying the signal as it
does so

A transmission channel that is the physical link between
the communicating parties

a receiver that detects the transmitted signal on the
channel and usually amplifies it (as it will have been
attenuated by its journey through the channel)

A demodulator that receives the original source signal
from the received signal and passes it to the sink



Data Transmission lll

Digital data is universally represented by strings of 1s or 0Os.

Each one or zero iIs referred to as a blt

Often, but not always, these bit strings are interpreted as
numbers In a binary number system.

Thus 101001,=41,,,.

The INfOrmation content of a digital signal is equal
to the number of bits required to represent it.

Thus a signal that may vary between 0 and 7 has an
Information content of 3 bits.



Data Transmission |V

Written as an equation this relationship Is
1= log,(Nn) bits
where n Is the number of levels a signal may take.

It Is Important to appreciate that information is a
measure of the number of different outcomes a value
may take.

The information rate is a measure of the speed with
which information is transferred. It iIs measured In
bits/second or b/s.



Bandwidth

Signal is bandlimited if it contains no energy
at frequencies higher than some bandlimit
or bandwidth B



Examples

Audio signals. An audio signal is an example of an analogue signal.
It occupies a frequency range from about 200 Hz to about 15KHz.
Speech signals occupy a smaller range of frequencies, and telephone
speech typically occupies the range 300 Hz to 3300 Hz..
The range of frequencies occupied by the signal is called its

bandwidth (B = 2 — f1 ~ 2)

time domain

frequency domain

bandwidth

= =

—

f1

time f2 frequency



Examples

Television. A television signal is an analogue signal created by
linearly scanning a two dimensional image.

Typically the signal occupies a bandwidth of about 6 MHz.

Teletext is written (or drawn) communications that are interpreted
visually.

Reproducing cells, in which the daughter cells's DNA contains
information from the parent cells;

A disk drive

Our brain



ADC and DAC

send analogue signals over a digital communication
system, or process them on a digital computer, to
convert analogue signals to digital ones.

preformed by an analogue-to-digital converter (ADC).

The analogue signal is sampled (l.e. measured at
regularly spaced instant)

The converse operation to the ADC is performed by a
digital-to-analogue converter (DAC).



sampled signal

safmpli:ng si:gnalé

error in sampling due to
low sampling frequency
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sampled, quantised signal

quantisation levels

How can we get the original signal back?



How fast we have to sample to
recover the original signal?




Nyquist-ShannonThm

(will be discussed in Chapter 3)

An analogue signal of bandwidth B can be
completely recreated from its sampled from

provided its sampled at a rate equal to at

least twice it bandwidth S>28B




B OStO n Dyn am i CS (find out yourself on what they have evolved)

Boston Dynamics




