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Abstract—We present a robust method to analyze a broad
range of classical queueing models, e.g., the GI/G/1 queue with
renewal arrivals, an AR/G/1 queue with alternating renewals
(AR), as a special class of Semi-Markovian processes, and
Markovian fluids queues. At the core of the method lies a
standard change-of-measure argument to reverse the sign of the
negative drift in the underlying random walks. Combined with a
suitable representation of the overshoot, we obtain exact results
in terms of series. Closed-form and computationally fast bounds
follow by taking the series’ first terms, which are the dominant
ones because of the positive drift under the new probability
measure. The obtained bounds generalize the state-of-the-art
class of martingale bounds and can be much sharper by orders
of magnitude.

I. INTRODUCTION

The steady-state waiting time W in the GI/G/1 queue is
the maximal value of a random walk, i.e.,

W = max
n≥0

{X1 + · · ·+Xn}

whose expected increment Xn = Sn−Tn satisfies E[Xn] < 0
for stability; Tn are the (renewal) inter-arrival times and Sn

are the corresponding service times. In general, there do not
exist exact and closed-form solutions for the distribution of W .
Existing (exact) approaches involve inversion techniques and
numerical methods, which are themselves very challenging
due to dealing with Wiener-Hopf type of integral equations
(e.g., Cohen [11]).

The SM/SM/1 queue generalizes the GI/G/1 queue by
relaxing the underlying renewal assumption, i.e., the arrival
and service processes follow some Semi-Markovian structures.
Studying such models is not only driven by measurement
studies (e.g., Crovella and Bestavros [12] or Mi et al. [20]) but
also by the fundamentally different queueing behavior when
compared to the baseline renewal models (e.g., Tin [28] or
Patuwo et al. [22]). The standard analysis of SM/SM/1
models is computational in nature involving, e.g., transform
methods (e.g., Çinlar [7] or Adan and Kulakarni [1]) or matrix
analytical methods (e.g., Neuts [21] or Akar and Sohraby [3]).

The Markovian fluid queue is another classical model in
which the arrival process is driven by a Markovian structure
whereas the service is fluid. The Markov-Modulated Fluid
model appeared in the seminal paper of Anick, Mitra, and
Sondhi [4]: the arrival processes consists of several mul-
tiplexed On-Off sources and the queueing model can be
exactly analyzed using matrix analysis and ordinary differ-
ential equations. The more general case requires however
more advanced techniques, e.g., spectral decomposition (Akar
and Sohraby [2]) or Wiener-Hopf factorization (Rogers [24]).

The numerical complexity of such techniques becomes how-
ever prohibitive when a large number of sources are multi-
plexed (Shroff and Schwartz [26]).

A robust alternative to computational techniques for such
queueing models is Effective Bandwidth, which enables an
asymptotically exact analysis, e.g.,

P(W > σ) ≈ γ1e
−θσ ,

for some asymptotic constant γ1 and some asymptotic decay
rate θ; see the standard review on the topic by Kelly [17]. The
asymptotically exact representation f(σ) ≈ g(σ) means that
limσ→∞

f(σ)
g(σ) = 1.

Another robust analytical alternative is to represent the tail
probability P(W > σ) in terms of rigorous stochastic bounds,
i.e.,

P(W > σ) ≤ γ2e
−θσ ∀σ ≥ 0 ,

for some asymptotic constant γ2. Such results can be obtained
using martingale-based techniques starting with the work of
Kingman [18] and stochastic network calculus (Jiang and
Liu [16]), which is the probabilistic extension of the deter-
ministic network calculus conceived by Cruz [13].

There are very few studies investigating the accuracy of
effective bandwidth approximations or stochastic bounds ob-
tained using either martingale techniques or stochastic network
calculus. Using Markovian sources, Choudhury et al. [8]
showed that effective bandwidth approximations can either
overestimate or underestimate the corresponding exact results,
in finite regimes, by orders of magnitude; the underlying
reason is that while the asymptotic decay rate θ is exact,
the corresponding asymptotic constant γ1 can be extremely
inaccurate, especially when many sources are multiplexed.
For similar traffic sources, Ciucu et al. [10] showed that
stochastic network calculus bounds overestimate exact results
by orders of magnitude; moreover, related martingale bounds
can be very sharp in heavy-traffic. The accuracy of martingale
bounds does decay however at low utilizations or depending
on the burstiness nature of the arrival processes (Poloczek and
Ciucu [23], [9]).

In this paper we explore a new class of stochastic bounds for
the three queueing models outlined above. The main idea rests
on an exponential change-of-measure – a technique employed
in several fields such as importance sampling or sequential
hypothesis testing facing with similar technical problems as
in queueing analysis. In our context, the crucial benefit of the
exponential change-of-measure is reversing the sign of the drift
in the underlying random walk: from negative in the original



(probability) space to positive in the transformed space. In this
way, a fundamental technical difficulty in the original space
can be addressed in a rather straightforwad manner in the
new space. Furthermore, using an elementary representation
of the overshoot of a point process, we obtain exact results on
P(W > σ) in terms of an infinite sum with positive terms, each
involving an integral; closed-form bounds could be obtained
by solving for any number of terms/integrals.

In their simplest form, the proposed bounds recover King-
man’s martingale-based bounds. They could be further arbi-
trarily sharpened, and yet retain a closed-form, but at the
expense of solving for standard integrals. In other words, the
proposed class of bounds is subject to an inherent tradeoff
between simplicity/expressiveness and accuracy.

In the following, we first present the main ideas and results
for the GI/G/1 renewal case, along with a numerical example
illustrating the ability of the proposed bounds to gradually
improve upon state-of-the-art martingale-based bounds. Then
we present several extensions, first to the AR/G/1 queue,
with an alternating renewal (AR) arrival process, and then to
a Markovian fluid queue. We will particularly consider the
cases of multiplexing both homogeneous and heterogeneous
processes, and also the cases when the individual sources are
either more or less bursty than Poisson; numerical evaluations
against simulations confirm that the proposed bounds can be
made arbitrarily sharp.

II. THE GI/G/1 QUEUE

First we give some background from Sequential Analysis
[29], [27] on ‘change-of-measure’. Then, using an elementary
observation on the overshoot of a renewal process, a new
class of GI/G/1 bounds will be presented along with some
numerical comparisons against the state-of-the-art.

Consider a stationary stochastic process X = (Xn)n, its
natural filtration Fn = σ(X1, . . . , Xn), and F := F∞. For a
probability space (Ω,F ,P) denote by Pn the restriction of P
on Fn.

Assume for some θ > 0 that the moment generating
function (MGF) ϕ(θ) = E[eθX ] is finite (X has the same
law as X1). For each n ∈ N and A ∈ Fn define

Pn,θ(A) := E
[
eθ(X1+···+Xn)

ϕ(θ)n
1A

]
=

∫
A

eθ(X1+···+Xn)

ϕ(θ)n
dPn ,

(1)
where 1A denotes the indicator function. Pn,θ is a probability
measure on (Ω,Fn) and has the absolute continuity properties
Pn,θ << Pn and Pn << Pn,θ. The corresponding Radon-
Nikodym derivatives are

dPn,θ

dPn
=

eθ(X1+···+Xn)

ϕ(θ)n
and

dPn

dPn,θ
=

ϕ(θ)n

eθ(X1+···+Xn)
,

respectively. Moreover, based on Kolmogorov’s Extension
Theorem, there exists a probability measure Pθ on (Ω,F) such
that Pn,θ is the restriction of Pθ on Fn; denote by Eθ the
corresponding expectation.

A key result which we will use throughout is Wald’s
Fundamental Identity (WFI): for a stopping time T and a non-
negative random variable Y ≥ 0 which is prior to T (i.e.,
Y 1T=n is measurable Fn) the following holds

Eθ [Y 1T<∞] = E
[
Y eθ(X1+···+XT )ϕ(θ)−T 1T<∞

]
. (2)

Note that, in particular, if T = n and Y is measurable Fn,
then

Eθ [Y ] = E
[
Y eθ(X1+···+Xn)ϕ(θ)−n

]
and

E [Y ] = Eθ

[
Y e−θ(X1+···+Xn)ϕ(θ)n

]
. (3)

A. GI/G/1: State-of-the-Art Bounds

Consider now the GI/G/1 queue. The inter-arrival and
service times are denoted by the iid (independent and iden-
tically distributed) sequences (Tn)n and (Sn)n, respectively.
We assume that the service times are light-tailed in the sense
that there exists θ > 0 such that ϕ(θ) = 1; note that such a
condition depends on the inter-arrival times as well. Denote
Xn := Sn − Tn and assume for stability that E[X1] < 0. In
steady-state, the waiting time W of an arbitrary job is

W = max
n≥0

{X1 + · · ·+Xn} .

We shall focus on the tail P(W > σ), for some σ ≥ 0,
which is subject to the duality

P(W > σ) = P(T < ∞) ,

where T is the stopping time

T := min{n : X1 + · · ·+Xn > σ} .

By convention, the minimum of the empty set is denoted by ∞
and sums with no terms are set to zero; an important remark
is that P(T = ∞) > 0 because E[X1] < 0.

Kingman [18] proposed a method to bound P(W > σ) by
first constructing the martingale1

Mn := eθ(X1+···+Xn) ,

where θ > 0 satisfies ϕ(θ) = 1. It then follows from the
Optional Sampling Theorem (see Mehri and Ciucu [19] for
more details) that

1 = E [M0] = E [MT 1T<∞] = E
[
eθ(X1+···+XT )1T<∞

]
≥ eθσP(T < ∞) = eθσP(W > σ) , (4)

and consequently the Kingman bound

P(W > σ) ≤ e−θσ .

The inequality in (4) can be refined as

E
[
eθ(X1+···+XT )1T<∞

]
≥ inf

x≥0
K(x)eθσP(T < ∞) ,

1Briefly, an integrable stochastic process Mn is a martingale if its condi-
tional expected increment is zero, i.e., E [Mn+1 −Mn | Fn] = 0 ∀n, where
Fn = σ(M1, . . . ,Mn).



where K(x) := E
[
eθ(X1−x) | X1 ≥ x

]
, which leads to the

Ross [25] bound

P(W > σ) ≤ 1

infx≥0 K(x)
e−θσ ,

which is sharper than Kingman’s bound because K(x) ≥
1 ∀x ≥ 0.

B. A New Class of Bounds

The weakness of the Kingman and Ross bounds
lies in the coarse treatment of the dependency inside
E
[
eθ(X1+···+XT )1T<∞

]
; in particular, Kingman’s bound sim-

ply resorts to bounding the first term by the non-random
quantity eθσ.

A more effective method is to apply WFI from (2) with
Y = 1, i.e.,

E [1T<∞] = Eθ

[
e−θ(X1+···+XT )1T<∞

]
. (5)

The crucial observation is that T < ∞ a.s. on (Ω,F ,Pθ).
Indeed, since ϕ(θ) is convex and ϕ(0) = ϕ(θ) = 1, it follows
that ϕ′(θ) = E[XeθX ] > 0 and hence

Eθ[X] = E
[
XeθX

]
> 0 .

Thus Pθ(T < ∞) = 1 and (5) becomes

P(W > σ) = Eθ

[
e−θ(X1+···+XT )

]
= e−θσEθ

[
e−θRσ

]
,

where
Rσ := X1 + · · ·+XT − σ (6)

is the overshoot. Note that Kingman’s bound (aka Lundberg
inequality in Financial Mathematics) simply follows from
Rσ ≥ 0. A standard approach to continue is to express the
overshoot Rσ as the remaining lifetime relative to a new
renewal process constructed in terms of the (positive) ladder
heights of the original (and not necessarily positive) process
Xn; finding the distribution of the ladder heights is however
an open problem in the general case. The classical related
result is the so-called Cramér-Lundberg approximation when
σ → ∞ [5].

Because our main target are non-asymptotic regimes (i.e.,
finite values of σ), we will rely on the following elementary
expansion of the overshoot’s tail

{Rσ > x} = ∪n≥1{
n∑

i=1

Xi > σ + x, max
1≤k≤n−1

k∑
i=1

Xi ≤ σ} ,

(7)
for any x > 0, in terms of a union of disjoint events; the
disjointness follows from the fact that the events {

∑k
i=1 Xi ≤

σ} and {
∑k

i=1 Xi > σ + x} are disjoint themselves for all
k ≥ 1 and x > 0. Using this expansion we obtain the following
exact result on the tail P(W > σ).

Theorem 1. The waiting time distribution satisfies

P(W > σ) = e−θσ

(
1−

∞∑
n=1

gn(σ)

)
(8)

for all σ > 0, where

gn(σ) := E
[(

eθ
∑n

i=1 Xi − eθσ
)
1T=n

]
∀n ≥ 1 .

Note that, according to (3), gn(σ) can be rewritten as

gn(σ) := Eθ

[(
1− eθ(σ−

∑n
i=1 Xi)

)
1T=n

]
∀n ≥ 1 . (9)

Since gn(σ) ≥ 0, upper bounds on P(W > σ) follow by
taking any number of terms gn(σ) in the sum from (12). These
can be written recursively for n ≥ 2 as

gn(σ) = E
[
E
[(

eθ
∑n

i=1 Xi − eθσ
)
1{T=n}1X1≤σ | X1

]]
= E

[
eθX11X1≤σE

[(
eθ(X2+···+Xn) − eθ(σ−X1)

)
1A | X1

]]
= E

[
eθX11X1≤σgn−1(σ −X1)

]
(10)

and g1(σ) = E
[(
eθX1 − eθσ

)
1X1>σ

]
, where A is the event

{
∑n

i=2 Xi > σ −X1,max2≤k≤n−1

∑k
i=2 Xi ≤ σ −X1}.

Proof. Fixing σ ≥ 0 we can write

Eθ

[
e−θRσ

]
=

∫ 1

0

Pθ

(
e−θRσ > y

)
dy

= 1−
∫ 1

0

Pθ

(
Rσ > − ln y

θ

)
dy

= 1−
∫ ∞

0

Pθ(Rσ > z)θe−θzdz

= 1− Pθ(Rσ > Z) = 1−
∞∑

n=1

gn(σ) ,

where Z is an exponential random variable with parameter
θ, and independent of F := F∞, whereas the terms gn(σ)
follow from the expansion (7) by first denoting for convenience
U :=

∑n
i=1 Xi and V := max1≤k≤n−1

∑k
i=1 Xi, i.e.,

gn(σ) = Pθ

(
n∑

i=1

Xi > σ + Z, max
1≤k≤n−1

k∑
i=1

Xi ≤ σ

)
= E

[
eθU1{U>σ+Z,V≤σ}

]
= E

[
E
[
eθU1{U>σ+Z,V≤σ} | Fn

]]
= E

[
1V≤σE

[
eθU1U>σ+Z | Fn

]]
.

In the second line we rewrote Eθ in terms of E according to
(1), and in the last line we used the measurability of 1V≤σ

with respect to Fn. Denoting U :=
∑n

i=1 Xi we can expand
the inner conditional expectation as

E
[
eθU1U>σ+Z | Fn

]
= E

[
eθU1U>σ1U>σ+Z | U

]
= eθU1U>σE [1U>σ+Z | U ]

= eθU1U>σP (Z < U − σ | U)

= eθU1U>σ

(
1− e−θ(U−σ)

)
= 1U>σ

(
eθU − eθσ

)
.

Therefore

gn(σ) = E
[(

eθ
∑n

i=1 Xi − eθσ
)
1{U>σ,V≤σ}

]
= E

[(
eθ

∑n
i=1 Xi − eθσ

)
1T=n

]
.



C. Example: M/D/1

For numerical illustration we consider the M/D/1 queue
with Tn ∼ Exp(λ) and deterministic service time S. For σ <
S, we obtain by elementary integration the following bound
when using only the term g1(σ) in the sum from (12)

P(W > σ) ≤ 1− θ

λ+ θ
e−λ(S−σ) ,

where ρ := λS < 1 denotes the utilization factor. In turn, by
only using the first two terms, g1(σ) and g2(σ) we obtain

P(W > σ) ≤ 1−
(
1 + θSe−θS − e−2θS

)
e−λ(2S−σ) .

Similar bounds can be obtained for S ≤ σ < 2S; these are not
shown here for brevity. Fig. 1 shows the two sets of bounds
against the standard Ross bound and also simulations based
on 107 independent runs; we note that M/D/1 has an exact
result, yet it is subject to significant numerical complications
due to an underlying sum with nearly cancelling very-large
terms (see Iversen and Staalhagen [15]).
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Fig. 1: Waiting-time CCDF for M/D/1; λ = 0.02, S = 5,
ρ = 0.1

Besides the obvious improvement of Ross’ bound, the
crucial observation is that the gradual improvements appear
to decay exponentially. This is supported by the recursive
representation of gn(σ) from (10). Moreover, from the alter-
native representation from (9), the dominant terms in the sum∑

n gn(σ) are seemingly the first ones, given the positive drift
Eθ[X1] > 0. A fundamental open question is whether there
exists k ≥ 0 such that

∑
n≥k gn(σ) is an analytic series; if so,

then the first k terms from the sum would be largely sufficient
to shed most of numerical inaccuracies in Ross’ bound.

III. THE AR/G/1 QUEUE

Here we extend the GI/G/1 results to a queue with
non-renewal arrivals. We consider the case of an alternating
renewal (AR) process driven by a deterministic Markov chain
an with two states 1 and 2, i.e.,

P(an = 3− j | an−1 = j) = 1 ∀n ≥ 1, j ∈ {1, 2} .

In state j, the inter-arrivals form an iid sequence
(
T

(j)
n

)
n

with the same law as T (j); denote by Tn := T
(a(n))
n the inter-

arrival time at time n. The service times are denoted by the iid

sequence (Sn)n with the same law as S. Assume that P(a0 =
1) = .5 and the stability condition E[Xn] < 0 where Xn :=
Sn − Tn.

Denoting the MGFs ϕj(θ) = E
[
eθ(S−T (j))

]
for j ∈ {1, 2},

the light-tailed condition of the service times is slightly more
involved than in the GI/G/1 case. Indeed, assume that there
exist θj such that ϕj(θj) = 1 for j ∈ {1, 2}. Assuming without
loss of generality that θ1 ≤ θ2, we additionally assume that
ϕ1(θ2) < ∞. Using the continuity and convexity of ϕj(θ),
along with ϕj(0) = 0, it then follows that there exists θ ∈
[θ1, θ2] such that ϕ1(θ)ϕ2(θ) = 1.

In the following, similarly as in the GI/G/1 case, we seek a
suitable change-of-measure to reverse the sign of the expected
increment E[Xn]. Observe first that the process

Mn := han
eθ(X1+···+Xn)

is a martingale, where θ > 0 satisfies√
E[e−θ(T (1)+T (2))]E[eθS ] = 1

according to the assumption of light-tailed service times, and

h1 := 1 and h2 :=

√
E[e−θT (1)

]

E[e−θT (2)
]
; note that h2 ≥ 1 according

to the earlier assumption that θ1 ≤ θ2. The proof follows
immediately from

E
[
han+1

eθ(Sn+1−Tn+1) | an
]
= han

∀n ≥ 1 .

The change-of-measure

Pn,θ(A) := E
[

Mn

E[M0]
1A

]
for A ∈ Fn = σ(a1, X1, . . . , an, Xn) entails the same prop-
erties as in the renewal case from § II, such as the existence
of Pθ on (Ω,F) and WFI

Eθ [Y 1T<∞] = E
[
Y

MT

E[M0]
1T<∞

]
(11)

for any stopping time T and any non-negative r.v. Y ≥ 0
prior to T ; a key reason is using a normalized martingale
with E

[
Mn

E[M0]

]
= 1 (see Asmussen [5], pp. 358–359).

Theorem 2. Under the above setting, the stationary waiting-
time distribution satisfies for all σ ≥ 0

P(W > σ) = e−θσ

(
h1 + h2

2
−

∞∑
n=1

gn(σ)

)
, (12)

where gn(σ) := Egn(σ, a0) and

gn(σ, j) := E
[(

han
eθ(X1+···+Xn) − eθσ

)
1{T=n} | a0 = j

]
for j ∈ {1, 2} and the standard stopping time

T := inf {n ≥ 1 : X1 + · · ·+Xn > σ} .

Proof. Fixing σ ≥ 0, WFI from (11) yields

P(W > σ) = E[1T<∞] = e−θσEθ

[
e−θRσ

haT

]
E[ha0 ] .



Since e−θRσ

haT
∈ [0, 1], from the definition of θ, we can write

as in the proof of Theorem 1

Eθ

[
e−θRσ

haT

]
=

∫ 1

0

Pθ

(
e−θRσ

haT

> y

)
dy

= 1−
∞∑

n=1

gn(σ)

E[ha0
]
,

where Z is an exponential random variable with parameter
θ independent of F := F∞. Further, using the expansion
from (7), and denoting for convenience U :=

∑n
i=1 Xi and

V := max1≤k≤n−1

∑k
i=1 Xi

gn(σ) = Pθ

(
U >

(
Z − lnhan

θ

)
+

+ σ, V ≤ σ

)
E[h(a0)]

= E
[
E
[
han

eθU1{U>Z− lnhan
θ +σ,U>σ,V≤σ} | Fn

]]
= E

[
han

eθU
(
1− 1

han

eθ(σ−U)

)
1{U>σ,V≤σ}

]
= E

[(
han

eθU − eθσ
)
1{T=n}

]
.

Since gn(σ) ≥ 0, upper bounds on P(W > σ) follow by
taking any number of terms gn(σ) in the sum from (12). In
particular, dismissing all terms yields the Kingman bound

P(W > σ) ≤ h1 + h2

2
e−θσ .

The terms gn(σ) can be written recursively for n ≥ 2

gn(σ, j) := E
[(

han
eθ(X1+···+Xn) − eθσ

)
1{T=n} | a0 = j

]
= E

[
eθ(S1−T 3−j

1 )gn−1

(
σ − S1 + T

(3−j)
1 , 3− j

)
1
S1−T

(3−j)
1 ≤σ

]

and g1(σ, j) = E
[(

ha1
eθ(S1−T 3−j

1 ) − eθσ
)
1
S1−T

(3−j)
1 >σ

]
for j ∈ {1, 2}.

For numerical evaluations we consider the extension of the
M/D/1 queue, denoted here by MM/D/1, in which the
alternating renewals are T (j) ∼ Exp(λj) for j ∈ {1, 2} with
λ1 ≥ λ2, and deterministic service times S. The condition on
θ becomes √

(λ1 + θ)(λ2 + θ)

λ1λ2
= eθS

which can be solved numerically under the stability condition
ρ := λ1+λ2

2 S < 1.
For σ < S, Theorem 2 yields the following bound when

using only g1(σ):

P(W > σ) ≤ 1− 1

2

(
1− e−θS

) (
e−λ1(S−σ) − e−λ2(S−σ)

)
+

1

2
e−θS

(
h2e

−λ1(S−σ) − e−λ2(S−σ)
)

,
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Fig. 2: Waiting-time CCDF for MM/D/1; λ1 = 0.03, λ2 =
0.01, S = 5, ρ = 0.1

where h2 =
√

λ1(λ2+θ)
λ2(λ1+θ) .

Fig. 2 illustrates the accuracy of the bounds (see the caption
for the parameters’ values); the expression of the bounds when
accounting for g2(σ) as well is not shown for brevity. Similar
observations as in Fig. 1 can be drawn, i.e., the Kingman/Ross
bounds overestimate by one order of magnitude, whereas the
improvements when using g1(σ) and g2(σ) are drastic and
almost match the simulations.

IV. MARKOVIAN FLUID QUEUES

Here we analyze a queueing model with Markovian arrivals
and fluid service. First we present the main results and then
we consider two examples with multiplexing homogeneous
and heterogeneous sources.

Let an be a stationary and ergodic Markov chain with state
space S = {si | 1 ≤ i ≤ m}. Assume for simplicity that
an is reversible and denote the stationary distribution π(i) =
P(an = si) and the transition matrix P (i, j) = P(an+1 = sj |
an = si).

Consider a queue with instantaneous arrivals an and con-
stant service rate C, and assume the stability condition E[a1] <
C. Because of the fluid service, we next focus on the stationary
queue size which is subject to the convenient expression

Q = max
n≥0

{X1 + · · ·+Xn}

where Xn := an − C, and which is subject to the duality

P(Q > σ) = P(T < ∞) ,

where T is the stopping time

T = min{n ≥ 0 : X1 + · · ·+Xn > σ} . (13)

Similarly as in the GI/G/1 and AR/G/1 cases, we seek a
suitable change-of-measure to reverse the sign of the expected
increment E[a1−C]. For some θ ≥ 0, consider the transformed
transition matrix Pθ(i, j) := Pi,je

θsj and denote by λ(θ)



its spectral radius and by v = (v1, . . . , vm) the correspond-
ing non-negative right eigenvector, according to the Perron-
Frobenius Theorem. From the stability condition, the equation
λ(θ) = eθC has a unique solution and the process

Mn = hane
θ(X1+···+Xn)

is an (arrival) martingale (see, e.g., Duffield [14]), where
hsi := vi.

We use the same change-of-measure as in the AR/G/1
case, i.e.,

Pn,θ(A) := E
[

Mn

E[M0]
1A

]
(14)

for A ∈ Fn = σ(X1, . . . , Xn), entailing the same WFI
from (11).

The next theorem provides an exact result on the distribution
of Q.

Theorem 3. The stationary queue size has the distribution

P(Q > σ) = e−θσ

(
E[ha0 ]

H
−

∞∑
n=1

gn(σ)

)
, (15)

for all σ ≥ 0 where

gn(σ) := E
[(

han

H
eθ

∑n
i=1 Xi − eθσ

)
1{T=n}

]
,

T is the stopping time from (13) and

H := minhaT
= min{han

: an > C} .

Proof. We first need to prove the positivity of the incre-
ments Eθ[X1] under the constructed measure Pθ; unlike in
the GI/G/1 renewal case, the argument is slightly more
compounded. Define first the auxiliary (new) measure

Ẽ[Y ] :=
E[ha1

Y ]

E[ha1
]

,

for some non-negative random variable Y ≥ 0; note that
P̃(A) = Ẽ(1A) for some event A. Because Mn is a martingale
and an is stationary

Ẽ[eθX1 ] =
E[ha1

eθX1 ]

E[ha1
]

= 1 .

Then, using Jensen’s inequality for θ̃ < θ

E[ha1e
θ̃X1 ]

E[ha1
]

= Ẽ[eθ̃X1 ] ≤
(
Ẽ[eθX1 ]

) θ̃
θ

= 1 =
E[ha1e

θX1 ]

E[ha1
]

.

Since E[ha1
X1e

θX1 ] < ∞ and

ha1

eθX1 − eθ̃X1

θ − θ̃
≤ ha1

X1e
θX1

from the Mean Value theorem, Fatou’s lemma implies that

Eθ[X1] = E[ha1X1e
θX1 ] ≥ E

[
ha1 lim

θ̃↗θ

eθX1 − eθ̃X1

θ − θ̃

]

≥ lim sup
θ̃↗θ

E

[
ha1

eθX1 − eθ̃X1

θ − θ̃

]
≥ 0 .

Therefore, the overshoot Rσ defined as in (6) exists and is
non-negative.

For the remaining proof fix σ ≥ 0. Because H is non-
random, applying WFI from (11) with Y = E[M0]

MT
yields

P(Q > σ) = E[1T<∞] = e−θσEθ

[
e−θRσH

haT

]
E[ha0 ]

H
.

Since e−θRσH
haT

∈ [0, 1] we can write

Eθ

[
e−θRσH

haT

]
=

∫ 1

0

Pθ

(
e−θRσH

haT

> y

)
dy

= 1−
∫ 1

0

Pθ

(
Rσ >

ln(H)− ln(haT
)

θ
− ln y

θ

)
dy

= 1−
∫ ∞

0

Pθ(Rσ >
ln(H)− ln(haT

)

θ
+ z)θe−θzdz

= 1− Pθ

(
Rσ >

ln(H)− ln(haT
)

θ
+ Z

)
= 1−

∞∑
n=1

gn(σ)H

E[ha0
]

,

where Z is an exponential random variable with parameter θ
independent of F := F∞ and, using the expansion from (7),

gn(σ)H = Pθ

(
U >

(
Z +

ln(H)− ln(han
)

θ

)
+

+ σ,

V ≤ σ

)
E[ha0 ]

= E
[
E
[
han

eθU1{U>Z+
ln(H)−ln(han )

θ +σ,V≤σ,U>σ} | Fn

]]
= E

[
hane

θU

(
1− H

han

eθ(σ−U)

)
1{V≤σ,U>σ}

]
= E

[(
han

eθ
∑n

i=1 Xi −Heθσ
)
1{T=n}

]
,

where U :=
∑n

i=1 Xi and V := max1≤k≤n−1

∑k
i=1 Xi. In

the first equality we used 1U>(z)++σ = 1U>z+σ1U>σ for any
real number z.

Because gn(σ) ≥ 0, upper bounds on P(W > σ) follow
from Theorem 3 by taking any number of terms gn(σ) in the
sum from (15). These could be described recursively for n ≥ 2
in a slightly more complicated manner than in the GI/G/1
case due to necessary conditioning, i.e.,

gn(σ) = E
[
E
[(

han

H
eθ

∑n
i=1 Xi − eθσ

)
1{T=n}

]
| X1

]
= E

[
1X1≤σe

θX1E
[(han

H
eθU − eθ(σ−X1)

)

1V≤σ−X1,U>σ−X1

]
| X1

]
= E

[
1X1≤σe

θX1gn−1(σ −X1, a1)
]
,



where U :=
∑n

i=2 Xi, V := max2≤k≤n−1

∑k
i=1 Xi, and

gn(σ, si) = E
[(

han

H
eθ

∑n
i=1 Xi − eθσ

)
1T=n | a0 = si

]
=
∑
j

Pi,jE
[(

han

H
eθ

∑n
i=1 Xi − eθσ

)
1T=n | a1 = sj

]

=
∑
j

Pi,jE

[
1X1≤σe

θX1

(
han

H
eθU − eθ(σ−X1)

)

1V≤σ−X1,U>σ−X1 | a1 = sj

]
=
∑
j

Pi,jE
[
1X1≤σe

θX1gn−1(σ −X1, sj) | a1 = sj
]

for all states si ∈ S. The initial conditions are

g1(σ, si) = E
[(

ha1

H
eθX1 − eθσ

)
1X1>σ | a0 = si

]
.

A. Example 1: Homogeneous On-Off Processes

As a particular case, consider an aggregate of (indepen-
dent and homogeneous) N On-Off sources/processes a

(s)
n for

s = 1, . . . , N , each with state space {0, 1}. A convenient
interpretation is that a(s)n = 0 if the source is ‘Off’ (or idle)
at time n, and a

(s)
n = 1 if the source is ‘On’ and transmits R

data units in a time unit. The probability transition matrix is

P =

(
1− α α
β 1− β

)
.

The stationary distribution is π0 = β
α+β and π1 = α

α+β (the
index 0 corresponds to the ‘Off’ state). Denoting by c the per-
source capacity the utilization is ρ =

E[a(1)
0 ]
c = π1R

c and the
overall capacity is C = Nc.

Rather than working with the transition matrix for the
aggregate process having the state space {0, 1, . . . , N}, each
corresponding to the number of sources in the ‘On’ state, we
follow a computationally much simpler approach from [23].
Define the spectral radius λ(θ) and the corresponding (non-
negative) right eigenvector h = (h0, h1)

T for a single source
only, relative to the transformed transition matrix Pθ(i, j) :=
Pi,je

θjR for i, j ∈ {0, 1}. Denoting by θ > 0 the unique
solution of λ(θ) = eθc, subject to the stability condition
E[a(1)0 ] < c, the arrival martingale is

Mn = hane
θ(X1+···+Xn) (16)

where an =
∑N

s=1 a
(s)
n , han

=
∏N

s=1 ha
(s)
n

, and Xn = anR−
C.

Bounds on the tail probability P(Q > σ) follow using
the change-of-measure from (14) and applying Theorem 3.
Interestingly, the behavior of P(Q > σ) fundamentally differs
on the value of α+ β relative to 1. Observe first that H from
Theorem 3 is

H = inf haT
=

{
hN
1 if h1 ≤ h0

h
N−⌈C/R⌉
0 h

⌈C/R⌉
1 if h1 > h0

and E[h
a
(1)
0
] = π0h0 + π1h1, where T is the stopping time

defined in (13).
The Kingman bound (see, e.g., Duffield [14]) is

P(Q > σ) ≤
E[h

a
(1)
0
]N

H
e−θσ . (17)

In turn, a Theorem 3 bound when using only g1(σ) becomes

P(Q > σ) ≤ e−θσ

(
E[h

a
(1)
0
]N

H

−
∑

i>C+σ
R

(
hi
1h

N−i
0

H
eθ(iR−C) − eθσ

)(
N

i

)
πN−i
0 πi

1

)
.

The crucial observation is that, if h1 > h0 which is
equivalent to α+ β < 1 (see Buffet and Duffield [6]), then

P(Q > σ) ≈ γNe−θσ ,

for some γ < 1. In turn, if h0 ≥ h1 which is equivalent to
α+ β ≥ 1 ([6]) then

P(Q > σ) ≈ ζNe−θσ ,

but for some ζ ≥ 1! In the former regime, called more bursty
than Poisson, the tail of the queue decays exponentially fast
in the number of sources N , whereas in the latter regime,
called less bursty than Poisson, the tail of the queue grows
exponentially fast in the number of sources N . This behavior
was conjectured by Choudhury et al. [8] and it is precisely
captured by the Kingman bound from (17).

0.5 1 1.5 2 2.5 3

10
-5

10
-4

10
-3

10
-2

10
-1

(a) more bursty: α = 0.1, β = 0.5
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(b) less bursty: α = 0.2, β = 0.9

Fig. 3: Kingman and Theorem 3 bounds on the queue size
CCDF P(Q > σ) for N On-Off Markov processes, for both
more and less bursty than Poisson regimes (N = 5, R = 1,
ρ = 0.25)

Fig. 3 illustrates the Kingman and Theorem 3 bounds,
for several number of terms gn(σ), against simulations2 for
both the more and less bursty than Poisson regimes; the
parameters’ values are given in the caption. (a) indicates
that the Kingman bound overestimates by roughly one order
of magnitude, whereas the bounds from Theorem 2 quickly
become arbitrarily sharp, e.g., by using

∑5
n=1 gn(σ) the match

2Simulation results are obtained from 107 independent runs, each account-
ing for 105 time slots; the running time using a C++ implementation on a
standard CPU is about 2 days.



with simulations is almost perfect. We mention that alterna-
tive effective bandwidth approximations or stochastic network
calculus bounds overestimate themselves the Kingman bounds
by several orders of magnitude (see, e.g., [8], [23]).

In turn, in the less-bursty regime from (b), the Kingman
bound overestimates simulations by roughly three orders of
magnitude; counterintuitively, the effective bandwidth approx-
imation was shown to underestimate by several orders of
magnitude [8]! The bounds from Theorem 3 are very sharp:
using only g1(σ)+ g2(σ) the match with simulations over the
first two ‘steps’ is almost perfect (we observe that simulations
‘stop’ around σ = 1.4 due to using only 107 runs). The further
behavior becomes apparent from using g1(σ)+g2(σ)+g3(σ);
capturing the third ‘step’ of P(Q > σ) using simulations
would require about one year of running time.

B. Example 2: Heterogenous On-Off Processes

Here we generalize the results from § IV-A by considering
Nl On-Off sources of type l = 1, 2, all being independent.
We will use the same notation except for an additional
super(sub)script, e.g., the probability transition matrices are
P (l), and the transition probabilities are αl and βl. Without
loss of generality we assume the same rate R for both source
types; different rates could be considered by suitably scaling
the transition probabilities. The overall capacity is C and
assume the stability condition

N1π1,1R+N2π2,1R < C ,

where πl,1 is the ‘On’ stationary probability for a type l source.
The key difficulty in the heterogeneous case is the construc-

tion of a martingale Mn containing a single exponential, as the
one from (16) in the homogeneous case. To do so, we split
the capacity C into C = C1 + C2, where Cl is the overall
capacity allocated to the sources of type l. We parameterize
C1 = wC where

N1π1,1R

C
< w < 1− N2π2,1R

C
,

such that a stability condition is satisfied for both source types.
As in the homogeneous case, for each source type l, denote

by λl(θ) the spectral radius of the transformed transition
matrix P

(l)
θ (i, j) = P

(l)
i,j e

θRj for i, j ∈ {0, 1}. For each w
in the range above, denote by θl,w the unique solutions of

λl(θ) = e
θCl
Nl (18)

for l = 1, 2; the unicity is guaranteed, as before, from stability.
The crucial observation is that θ1,w = 0 when w → N1π1,1R

C
as the utilization for the type 1 sources would approach 1;
similarly, θ2,w = 0 at the other extreme w → 1− N2π2,1R

C at
which the utilization for the type 2 sources would approach
1. Therefore, from the continuity of the solutions θ in (18),
depending on the (continuous) parameter w, it follows that
there exists a value w ∈

(
N1π1,1R

C , 1− N2π2,1R
C

)
such that

θ := θ1,w = θ2,w .

For this value of θ we denote by hl = (hl,0, hl,1)
T the (non-

negative) right eigenvectors corresponding to the spectral radii
λl(θ) for l = 1, 2. We thus obtain the martingales

Ml,n = hl,al,n
eθ(Xl,1+···+Xl,n)

for l = 1, 2, where al,n :=
∑Nl

s=1 a
(s)
l,n, hl,al,n

:=
∏Nl

s=1 hl,a
(s)
l,n

,
and Xl,n := al,nR − Cl. Furthermore, using the sources’
independence, we obtain the single martingale

Mn = h(a1,n,a2,n)e
θ(X1+···+Xn) ,

where h(a1,n,a2,n) := h1,a1,n
h2,a2,n

and Xn := X1,n +X2,n.
The rest follows as in the homogeneous case and Theorem 3.

First, without loss of generality we assume that h1,1

h1,0
≤ h2,1

h2,0
.

Then H = inf h(a1,T ,a2,T ), where T is the stopping time from
(13), can be expressed as

hN1
1,1h

N2
2,1 if

h1,1

h1,0
≤ h2,1

h2,0
< 1

hN1
1,1h

L
2,1h

N2−L
2,0 if

h1,1

h1,0
≤ 1 ≤ h2,1

h2,0

h
N1∧⌈C/R⌉
1,1 h

N1−N1∧⌈C/R⌉
1,0 hL

2,1h
N2−L
2,0 if 1 <

h1,1

h1,0
≤ h2,1

h2,0

where L := (⌈C/R⌉ −N1)+, x+ := max(x, 0), and x∧ y :=
min(x, y) for real numbers x and y.

Observing that

E[ha1,0,a2,0 ] =

(
α1h1,1 + β1h1,0

α1 + β1

)N1
(
α2h2,1 + β2h2,0

α2 + β2

)N2

it follows that the Kingman bound is

P(Q > σ) ≤
E[ha1,0,a2,0

]

H
e−θσ

whereas the exact result is

P(Q > σ) = e−θσ

{
E[ha1,0,a2,0

]

H
−

∞∑
k=1

gk(σ)

}
.

In particular,

g1(σ) =
∑

i+j>C+σ
R

(
hi
1,1h

N1−i
1,0 hj

2,1h
N2−j
2,0

H
eθ(i+j)R−θC − eθσ

)

× q
(1)
i q

(2)
j ,

where

q
(l)
i =

(
Nl

i

)(
βl

αl + βl

)Nl−i(
αl

αl + βl

)i

∀i = 0, . . . , Nl

and l = 1, 2. The general form of gn(σ) is

gn(σ) =
∑

q
(1)
i1

Q
(1)
i1,i2

· · ·Q(1)
1n−1,in

q
(2)
j1

Q
(2)
j1,j2

· · ·Q(2)
jn−1,jn

×

(
hin
1,1h

N1−in
1,0 hjn

2,1h
N2−jn
2,0

H
eθ(i1+j1+···+in+jn)R−nθC − eθσ

)
where Q(l) is the transition matrix of the Markov process al,n,
i.e., Q(l)

k,i = P(al,n+1 = i | al,n = k), and the first sum is
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Fig. 4: Bounds on P(Q > σ) for N1 less bursty than Poisson
On-Off Markov processes and N2 more bursty than Poisson
On-Off Markov processes (N1 = 2, α1 = 0.2, β1 = 0.9,
N2 = 2, α2 = 0.1, β2 = 0.5, R = 1, ρ = 0.25)

jointly taken after max1≤k≤n−1

{∑k
t=1 (it + jt)− kC

R

}
≤ σ

R

and
∑n

t=1 (it + jt)− nC
R > σ

R .
Fig. 4 illustrates the accuracy of the bounds by multiplexing

the less bursty and more bursty than Poisson sources used
in Figs. 3.(a-b). The inaccuracy of the Kingman bounds is
roughly the average of the corresponding inaccuracies from
Figs. 3.(a) and (b), due to multiplexing the same types of
sources. The proposed bounds become very sharp with only
the first four terms gn(σ), whereas simulations stop around
σ = 2.4 due to restricting to 107 runs only. Lastly, as
an overarching conclusion, simple exponential approxima-
tions/bounds are not fit for purpose, given the true behavior
of the exact results apparent from simulations; this is progres-
sively captured by the gn(σ) terms.

V. CONCLUSIONS

We have proposed a new class of exact results for some of
the most popular queueing models, which in their most general
forms are only subject to computationally complex numerical
methods or proverbially inaccurate approximations/bounds.
The new results are expressed as an infinite series with closed-
form terms. Remarkably, for numerical purposes, the first few
terms are the dominant ones, in the sense of being sufficient to
render ultra-sharp queueing bounds; the key reason lies in the
reversal of the drift’s sign from the original queueing model.
Several numerical examples confirm the ultra-sharpness of
the new bounds, including the very challenging scenario
with multiplexing heterogeneous Markovian sources, some of
which being more bursty than Poisson and the others being
less bursty than Poisson.
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