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ABSTRACT
We construct a continuous-time martingale to analyze two queue-

ing systems: One is the 𝐺𝐼X/𝑀/1 queue with light-tailed batch

arrivals for which we obtain an exact result in closed-form when 𝑋

has a Geometric distribution, and stochastic bounds otherwise. The

second application concerns queues with Semi-Markovian (SM)

inter-arrival times; of particular interest is the scenario with multi-

plexed SM sources whose aggregate loses the SM property. Unlike

existing exact but implicit solutions which rely on numerical trans-

form methods, even in the𝑀r/𝑀/1 case, our stochastic bounds are
in closed-form and shown to be (mostly) numerically accurate.
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1 INTRODUCTION
Martingale-based methods can address many challenging queues in

terms of closed-form stochastic bounds; these are numerically accu-

rate especially in heavy-traffic and significantly improve upon alter-

native bounds obtained using large-deviations or network calculus

approaches. Starting with the𝐺𝐼/𝐺/1 analysis by Kingman [16], in

terms of exponential bounds, recent studies addressed diverse sce-

narios with Markovian arrival processes [4, 7, 9, 13, 14, 21], various

scheduling algorithms [23], or multiple-access protocols [24].

In this paper we construct a continuous-time martingale which

is structurally similar to existing martingales but is formulated

in terms of the counting processes corresponding to arrivals and

services, as opposed to using compound arrival processes as in [9].

This simple twist enables our main result in queues with batch

arrivals, which are a natural abstraction in a variety of scenarios in-

cluding sensor networks, cloud computing, or even cognitive radio

networks [25]. Concretely, we provide an exact result in closed-

form for the𝐺𝐼X/𝑀/1 queue, whereby the arrivals follow a renewal
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process but occur in batches/bulks of a (Geometric) random size

𝑋 1
. In the more general case, when 𝑋 has a light-tailed distribution,

our results are expressed as stochastic bounds. We note that the

classical 𝐺𝐼X/𝑀/1 analysis rests on transform methods; these are

numerically challenging even in the𝑀𝑟 /𝑀/1 case with determinis-

tic 𝑋 = 𝑟 (see § 3).

The second application is in queues with Semi-Markovian arrival

processes (SMPs), which jointly generalize renewal and Markov

processes: the inter-arrival times not only can have general distribu-

tions but can also be correlated. Studying these models is motivated

both by measurements (e.g., [5, 10, 19, 30, 33]) and analytical studies

demonstrating a wide variability in the queue size as a function of

the autocorrelation. For a specific queue with Markov-dependent

interarrivals and exponential service times, the queue size can grow

by as much as a factor of 9 at high utilizations depending on the

lag-1 autocorrelation 𝑟 (i.e., the correlation coefficient between two

consecutive inter-arrivals) [31]; the baseline (renewal) case is 𝑟 = 0.

Significantly larger differences have been reported in [22], in the

case of a queuewithMarkov renewals inter-arrivals (themodulating

Markov chain has two states only) and exponential inter-arrivals.

In the case of high utilizations (around 0.9), the queue size can

grow by a factor of 100 by increasing the lag-1 autocorrelation from

𝑟 = 0.1 to 0.7. Other extraordinary queueing effects when injecting

autocorrelation in the interarrival times were reported in [18].

There are several computational/algorithmic methods to exactly

analyze SM queues: One of the earliest works used transform meth-

ods for 𝑆𝑀/𝑀/1 [6]. Wiener-Hopf factorization was considered

in [11] for 𝑆𝑀/𝑆𝑀/1; explicit factorizations are available in special

cases, e.g., the 𝑆𝑀/𝑀/1 queue, subject to some technical conditions

(see also [12]). An iterative procedure was proposed in [29] for

the 𝑆𝑀/𝑃𝐻/1 queue. Transform methods are used in [1, 3] for the

analysis of the 𝑆𝑀/𝑆𝑀/1 queue, additionally subject to correla-

tion between arrivals and service (there is a single Markov chain

modulating both arrivals and service times); a related more general

model is analyzed in [2] using matrix-analytical methods. Earlier

applications of matrix-analytical methods were considered for the

𝑆𝑀/𝑃𝐻/1 queue in the classical text [20], p. 159. As pointed out

in [11], some of these methods are insufficiently understood from

a numerical/computational point of view.

Using the newly constructed martingale, the 𝑆𝑀/𝑀/1 analysis
proceeds similarly as for the 𝐺𝐼X/𝑀/1 queue. While an identical

analysis could be obtained using a (discrete-time) martingale, for

suitable random embedding points (see § 4.1), the key advantage of

the proposed (continuous-time) martingale is that it also applies to

the ΣSM/M/1 queue involving a superposition (the ‘Σ’) of multiple

SM arrivals. The key challenge arising in these systems is that the

superposed arrival process is not stationary, let alone SM. The same

idea has recently been used for Σ𝐺𝐼/𝐺/1 [9] but using a different

1
This model corresponds to a𝐺𝐼/𝑀/1 queue given that a geometric sum of iid expo-

nential random variables yields an exponential random variable.
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(continuous-time) martingale, which does however not lend itself

to the 𝐺𝐼X/𝑀/1 exact solutions herein.
In the following, we first introduce the model and present two

key Lemmas for the construction of continuous-time martingales.

Nextwe analyze the𝐺𝐼X/𝑀/1 and then the 𝑆𝑀/𝑀/1 and Σ𝑆𝑀/𝑀/1
queues, along with some numerical comparisons of the bounds

against simulations. Some conclusions and an Appendix including

some helpful auxiliary results conclude the paper.

2 MODEL AND TWO LEMMAS
Jobs arrive in the order 𝑛+𝑘 −1, 𝑛+𝑘 −2, . . . , 0 with the convention

that job 0 is the last before time 0. For 𝑖 ≥ 1, the inter-arrival

time between jobs 𝑖 and 𝑖 − 1 is denoted by 𝑇𝑖 ; job 0 arrives 𝑇0
time units before time 0. The service time of job 𝑖 is denoted by

𝑆𝑖 . The sequences (𝑇𝑛)𝑛∈N and (𝑆𝑛)𝑛∈N∪{0} are stationary and

independent of each other. Let 𝐸 [𝑇𝑛] = 1

𝜆
, 𝑛 ≥ 1, 𝐸 [𝑆𝑛] = 1

𝜇 , 𝑛 ≥ 0,

and assume for stability that the intensity 𝜌 := 𝜆
𝜇 < 1.

We are interested in the number of jobs𝑄 in the system (queue +

service) at time 0, whose steady-state distribution can be written as

P(𝑄 ≥ 𝑘) = lim

𝑛→∞
P
©­« max

𝑘≤ 𝑗≤𝑛+𝑘
©­«
𝑛+𝑘−1∑︁
𝑙=𝑗

𝑇𝑙 +
𝑗−1∑︁
𝑙=𝑘−1

𝑆𝑙
ª®¬ >

𝑛+𝑘−1∑︁
𝑙=0

𝑇𝑙
ª®¬ .

By changing the subscript in 𝑆𝑙 from 𝑙 to 𝑙 − 𝑘 + 2 this can be

rewritten as

P(𝑄 ≥ 𝑘) = P(∃𝑚 ≥ 1 : 𝑆1 + · · · + 𝑆𝑚 > 𝑇0 + · · · +𝑇𝑚+𝑘−2)

= P

(
sup

𝑡 ≥0
{𝐴(𝑡) − 𝑆 (𝑡)} ≥ 𝑘

)
,

where 𝐴(𝑡) is the number of arrival points within the interval

[−𝑡, 0) and

𝑆 (𝑡) := inf{𝑛 ≥ 0 : 𝑆1 + · · · + 𝑆𝑛+1 > 𝑡}

is the other counting process corresponding to the service times’

process. By abuse of notation, let

𝑄 := sup

𝑡 ≥0
{𝐴(𝑡) − 𝑆 (𝑡)} . (1)

Besides P(𝑄 ≥ 𝑘), we also consider the corresponding Palm

distribution conditional of an arrival at time 0, i.e.,

P𝑎 (𝑄 ≥ 𝑘) := lim

𝛿↓0
P(𝑄 ≥ 𝑘 | 𝐴(𝛿) > 0) ,

where 𝐴(𝛿) denotes, with abuse of notation, the number of arrival

points in (0, 𝛿]; the limit is the right-limit. The Palm probability

P𝑎 (·) is to be understood as the probability of an event just before

an arrival; denote also by E𝑎 the corresponding expectation.

2.1 Two Lemmas
Our technique relies on the construction of (continuous-time) mar-

tingales from the counting processes 𝐴(𝑡) and 𝑆 (𝑡). The next two
lemmas offer the technical support.

Let (Ω, F , P) be a common probability space and L1
the class of

integrable random variables (i.e, E[|𝑋 |] < ∞). Let X = (𝑋𝑡 )𝑡 ≥0 be
a (continuous-time) stochastic process in L1

and F𝑡 := 𝜎 (𝑋𝑠 , 0 ≤

𝑠 ≤ 𝑡) be the corresponding natural filtration. By definition, 𝑋𝑡 is a

(continuous-time) martingale if 𝑋𝑡 ∈ L1
and

E[𝑋𝑡 | F𝑠 ] = 𝑋𝑠 ∀0 ≤ 𝑠 ≤ 𝑡 .
Define the auxiliary (random) functions ∀𝑡 ≥ 0

𝑓𝑡 (𝑠) := E [𝑋𝑡+𝑠 | F𝑡 ] ∀𝑠 ≥ 0 and

𝑔𝑡 (𝑠) :=
𝑓𝑡 (𝑠) − 𝑓𝑡 (0)

𝑠
=
E [𝑋𝑡+𝑠 − 𝑋𝑡 | F𝑡 ]

𝑠
∀𝑠 > 0 a.s.

Lemma 1. The process 𝑋𝑡 ∈ L1 is a martingale if and only if it
satisfies the following conditions for all 𝑡 ≥ 0:

(i) 𝑓𝑡 (𝑠) is continuous in 𝑠 ;
(ii) 𝑓𝑡 (𝑠) is (right-)differentiable at 𝑠 = 0 and 𝑓 ′𝑡 (0) = 0;
(iii) ∃𝛿𝑡 > 0 ∃𝑌𝑡 ∈ L1 such that |𝑔𝑡 (𝑠) | ≤ 𝑌𝑡 ∀𝑠 ∈ (0, 𝛿𝑡 ).

This result generalizes a particular result from [9] for the con-

struction of martingales from MAPs.

Proof. The necessity of the three properties is trivial: The first

two follow from 𝑓𝑡 (𝑠) = 𝑋𝑡 ∀𝑡 ≥ 0; the last follows from 𝑔𝑡 (𝑠) =
0 ∀𝑠 > 0.

For the other direction, fix 𝑡 ≥ 0 and 𝑠 > 0. We can write

𝑓 ′𝑡 (𝑠) = lim

𝛿↓0
𝑓𝑡 (𝑠 + 𝛿) − 𝑓𝑡 (𝑠)

𝛿
= lim

𝛿↓0
E [𝑋𝑡+𝑠+𝛿 − 𝑋𝑡+𝑠 | F𝑡 ]

𝛿

= lim

𝛿↓0
E [E [𝑋𝑡+𝑠+𝛿 − 𝑋𝑡+𝑠 | F𝑡+𝑠 ] | F𝑡 ]

𝛿

= lim

𝛿↓0
E [𝑔𝑡+𝑠 (𝛿) | F𝑡 ] = E

[
lim

𝛿↓0
𝑔𝑡+𝑠 (𝛿) | F𝑡

]
= E

[
lim

𝛿↓0
𝑓𝑡+𝑠 (𝛿) − 𝑓𝑡+𝑠 (0)

𝛿
| F𝑡

]
= E

[
𝑓 ′𝑡+𝑠 (0) | F𝑡

]
= E [0 | F𝑡 ] = 0 .

In the first line we used the Tower Property for conditional expecta-

tions. In the next we applied (𝑖𝑖𝑖) and the Dominated Convergence

Theorem, and lastly we applied (𝑖𝑖). This shows that 𝑓 ′𝑡 (𝑠) is right-
differentiable and 𝑓 ′𝑡 (𝑠) = 0 ∀𝑠 ≥ 0. Using the continuity of 𝑓𝑡 (𝑠)
from (𝑖) it then follows that 𝑓𝑡 (𝑠) is a constant, i.e.,

E [𝑋𝑡+𝑠 | F𝑡 ] = 𝑓𝑡 (𝑠) = 𝑓𝑡 (0) = E [𝑋𝑡 | F𝑡 ] = 𝑋𝑡 ∀𝑠 ≥ 0 .

□

Note that the continuity condition (𝑖) is needed for the last

argument, whereas (𝑖𝑖𝑖) is needed for the interchange of the limit

with the expectation.

We shall use Lemma 1, and more precisely the differentiability

condition (𝑖𝑖), for martingale constructions
2
. Because validating

the condition (𝑖𝑖𝑖) is exceptionally difficult/tedious, we will prove

the martingale property using the next result.

Lemma 2. Let 𝑌𝑡 be a Markov process on a state space 𝐸 with
generator (𝐴, 𝐷 (𝐴)). Assume that there exist a sequence of stopping
times 𝜏𝐾 ↑ ∞, 𝐾 ∈ N, such that {𝑌𝑡∧𝜏𝐾 , 𝑡 ≥ 0} is a stopped Markov
process with state space 𝐸𝐾 ⊆ 𝐸, for each 𝐾 ∈ N. Let 𝑓 : 𝐸 → R be a
measurable function bounded on 𝐸𝐾 , for each 𝐾 ∈ N. If 𝐴𝑓 (𝑌𝑡 ) = 0

2
An example of a stochastic process which does not satisfy (𝑖𝑖) is 𝑋𝑡 = |𝐵𝑡 |, where
𝐵𝑡 is the standard Brownian motion. Indeed 𝑓0 (𝑠) = E [ |𝐵𝑠 | | F0 ] = E [ |𝐵𝑠 | ] =∫ ∞
0

2𝑥 1√
2𝜋𝑠

𝑒
− 𝑥

2

2𝑠 𝑑𝑥 =

√︃
2𝑠
𝜋
, which is not right-differentiable at 0.
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for all 𝑡 < 𝜏𝐾 then {𝑓 (𝑌𝑡∧𝜏𝐾 ), 𝑡 ≥ 0} is a martingale, and hence
{𝑓 (𝑌𝑡 ), 𝑡 ≥ 0} is a local martingale.

This is an application of Dynkin’s Formula (see Appendix §A).

This result along with a careful technical argument (see the proofs

of Corollaries 3 and 5) are particularly needed because Dynkin’s

Formula cannot be directly applied to show that the constructed

processes 𝑋 (𝑡) are martingales, because they are not bounded.

Proof. Fix 𝐾 ∈ N and let 𝑓 |𝐸𝐾 : 𝐸𝐾 → R be a bounded measur-

able function. Applying Dynkin’s Formula for {𝑌𝑡∧𝜏𝐾 , 𝑡 ≥ 0} yields
the martingale

𝑀𝑡 := 𝑓 (𝑌𝑡∧𝜏𝐾 ) −
∫ 𝑡

0

𝐴𝑓 (𝑌𝑠∧𝜏𝐾 )𝑑𝑠 ,

and hence

𝑀𝑡∧𝜏𝐾 := 𝑓 (𝑌𝑡∧𝜏𝐾 ) −
∫ 𝑡∧𝜏𝐾

0

𝐴𝑓 (𝑌𝑠 )𝑑𝑠 = 𝑓 (𝑌𝑡∧𝜏𝐾 )

by using 𝐴𝑓 (𝑌𝑠 ) = 0 for 𝑠 < 𝜏𝐾 . The rest is clear. □

3 GIX/M/1
We can now proceed with the general analysis of the 𝐺𝐼𝑋 /𝑀/1
queue and then consider several special cases.

The arrivals are driven by a renewal process; denote by 𝑓 (𝑡) and
𝐹 (𝑡) the density and distribution, respectively, of the inter-arrivals.

The arrivals occur in bulks/batches following the distribution of

a (non-negative) discrete random variable 𝑋 > 0; the arrival rate

is thus 𝜆E[𝑋 ] and the service rate is scaled to 𝜇 :=
𝜆E[𝑋 ]
𝜌 . Let the

moment generating function (MGF)𝑀𝑋 (𝜃 ) := ∑∞
𝑘=1
P(𝑋 = 𝑘)𝑒𝜃𝑘 ,

for some 𝜃 > 0. Let also 𝛾 (𝑡) := 𝑓 (𝑡 )
1−𝐹 (𝑡 ) be the hazard rate of 𝑇1 and

𝐿(𝜁 ) := 𝐸
[
𝑒−𝜁𝑇1

]
be the corresponding Laplace transform, where

𝜁 := 𝜇 (1 − 𝑒−𝜃 ). Denote also by 𝑅(𝑡) the remaining lifetime of

the arrival process at time −𝑡 ; recall that we are interested in the

steady-state queue size 𝑄 = sup𝑡 ≥0{𝐴(𝑡) − 𝑆 (𝑡)} at time 0.

We assume that the batch size is light-tailed, i.e., it admits finite

moment generating functions. Concretely, we assume that

sup{𝜃 > 0 : E[𝑒𝜃𝑋 ] < ∞} ∈ (0,∞]
and also that there exists 𝜃 > 0 such that

𝑔(𝜃 ) := E[𝑒𝜃𝑋 ]𝐿(𝜁 ) ∈ [1,∞) . (2)

This latter condition prevents 𝑋 from having a ‘thin’ tail; such

a case could be easily treated by our framework by constructing

super-martingales rather thanmartingales, as done next. A certainly

interesting case, but not covered by our framework, is when 𝑋 has

a heavy-tailed distribution.

Corollary 3. (The martingale) The process

𝑋𝑡 := ℎ(𝑅(𝑡))𝑒𝜃 (𝐴(𝑡 )−𝑆 (𝑡 )) , 𝑡 ≥ 0

is a (continuous-time) martingale, where

ℎ(𝑡) =
𝑀𝑋 (𝜃 )

∫ ∞
𝑡
𝑒−𝜁𝑠 𝑓 (𝑠)𝑑𝑠

(1 − 𝐹 (𝑡))𝑒−𝜁𝑡

and 𝜃 > 0 is the largest solution of

𝑀𝑋 (𝜃 )−1 = 𝐿(𝜁 ) . (3)

Moreover, ℎ(𝑡) is bounded.

A key element in the structure of 𝑋𝑡 is the random function ℎ()
which takes as parameter the ‘memory’ 𝑅(𝑡) at time −𝑡 . This is
needed to compute the probability of an arrival within the inter-

val [−(𝑡 + 𝛿),−𝑡) in terms of the corresponding hazard rate, i.e.,

𝛾 (𝑅(𝑡))𝛿 +𝑜 (𝛿) for some small 𝛿 > 0, where lim𝛿→0

𝑜 (𝛿)
𝛿

= 0. Note

that the hazard rate replaces the rate 𝜆, had the arrival process been

a Poisson process.

Proof. Fix 𝑡 ≥ 0. The expressions for 𝜃 and ℎ(𝑡) follow by

invoking condition (𝑖𝑖) from Lemma 1, i.e.,

𝑓 ′𝑡 (0) = 0 ⇔ lim

𝛿↓0
E [𝑋𝑡+𝛿 − 𝑋𝑡 | F𝑡 ]

𝛿
= 0

⇔ lim

𝛿↓0

E
[
ℎ(𝑅(𝑡 + 𝛿))𝑒𝜃 (𝐴(𝑡,𝑡+𝛿)−𝑆 (𝑡,𝑡+𝛿)) − ℎ(𝑅(𝑡)) | F𝑡

]
𝛿

= 0 .

Expanding the expectation yields

lim

𝛿↓0
1

𝛿

(
𝛾 (𝑅(𝑡))𝛿 (1 − 𝜇𝛿)ℎ(0)𝑀𝑋 (𝜃 )

+(1 − 𝛾 (𝑅(𝑡))𝛿) (1 − 𝜇𝛿)ℎ(𝑅(𝑡) + 𝛿)

+(1 − 𝛾 (𝑅(𝑡))𝛿)𝜇𝛿ℎ(𝑅(𝑡) + 𝛿)𝑒−𝜃 − ℎ(𝑅(𝑡)) + 𝑜 (𝛿)
)
= 0 .(4)

We note that on an arrival 𝑅(𝑡 + 𝛿) = 0, i.e., the residual lifetime

resets itself, whence the term ℎ(0) in the first line; we also used the

conditional independence of 𝐴 and 𝑆 . Denoting for convenience

𝑅(𝑡) = 𝑡 and rearranging terms we obtain

ℎ′(𝑡) = (𝛾 (𝑡) + 𝜁 )ℎ(𝑡) − 𝛾 (𝑡)ℎ(0)𝑀𝑋 (𝜃 ) .
Setting the initial value problem with ℎ(0) = 1 (note that ℎ(𝑡) can
be arbitrarily scaled) yields

ℎ(𝑡) =
1 −𝑀𝑋 (𝜃 )

∫ 𝑡
0
𝑒−𝜁𝑠 𝑓 (𝑠)𝑑𝑠

(1 − 𝐹 (𝑡))𝑒−𝜁𝑡
.

Imposing that ℎ(𝑡) is to be bounded,𝑀𝑋 (𝜃 )
∫ ∞
0
𝑒−𝜁𝑠 𝑓 (𝑠)𝑑𝑠 = 1

must necessarily hold because (1 − 𝐹 (𝑡))𝑒−𝜁𝑡 −−−−→
𝑡→∞

0. This yields

the expression of ℎ(𝑡) and the condition on 𝜃 from the Corollary.

To show the existence of 𝜃 we need to show that there exists a

solution to 𝑔(𝜃 ) = 1. Using 𝑔(0) = 1, the assumption from (2), and

the stability condition 𝑔′(0) = E[𝑋 ] − 𝜇E[𝑇𝑛+1] < 0 the existence

of 𝜃 is proved. We take 𝜃 := max{𝑟 : 𝑔(𝑟 ) = 1}.
Next, to show that ℎ(𝑡) is bounded we integrate by parts:

ℎ(𝑡) = 𝑀𝑋 (𝜃 )
(
1 +

𝜁
∫ ∞
𝑡
𝑒−𝜁𝑠𝐹 (𝑠)𝑑𝑠 − 𝑒−𝜁𝑡

(1 − 𝐹 (𝑡))𝑒−𝜁𝑡

)
≤ 𝑀𝑋 (𝜃 )

(
1 +

𝜁
∫ ∞
𝑡
𝑒−𝜁𝑠𝑑𝑠 − 𝑒−𝜁𝑡

(1 − 𝐹 (𝑡))𝑒−𝜁𝑡

)
= 𝑀𝑋 (𝜃 ) .

Finally, to prove that 𝑋𝑡 is a martingale, let the Markov process

𝑌𝑡 := (𝐴(𝑡) − 𝑆 (𝑡), 𝑅(𝑡)), 𝑡 ≥ 0 and define

𝜏𝐾 := inf{𝑡 ≥ 0 : 𝐴(𝑡) − 𝑆 (𝑡) ≥ 𝐾}
for all 𝐾 ∈ N, with the convention that inf ∅ = ∞, and

𝑓 (𝑁, 𝑡) := ℎ(𝑡)𝑒𝜃𝑁 ,



Conference’17, July 2017, Washington, DC, USA Sima Mehri and Florin Ciucu

for all 𝑁 ∈ N and 𝑡 ≥ 0. Consider the stopped Markov process

𝑌𝑡∧𝜏𝐾 . We have for 𝑁 ≤ 𝐾 − 1

𝐴𝑓 (𝑁, 𝑡) = lim

𝛿→0

1

𝛿
E[𝑓 (𝑌𝛿 ) − 𝑓 (𝑁, 𝑡) | 𝑌0 = (𝑁, 𝑡)]

= lim

𝛿→0

1

𝛿
E

[
ℎ(𝑡 + 𝛿)𝑒𝜃𝑁 (1 − 𝛾 (𝑡)𝛿 − 𝜇𝛿)

+ ℎ(0)𝑒𝜃𝑋 𝑒𝜃𝑁𝛾 (𝑡)𝛿 + ℎ(𝑡 + 𝛿)𝑒𝜃 (𝑁−1) 𝜇𝛿 + 𝑜 (𝛿)
]

= 𝑒𝜃𝑁
[
ℎ′(𝑡) − (𝜁 + 𝛾 (𝑡))ℎ(𝑡) + 𝛾 (𝑡)ℎ(0)E[𝑒𝜃𝑋 ]

]
.

Therefore 𝐴𝑓 (𝑁, 𝑡) = 0 if and only if

ℎ′(𝑡) − (𝜁 + 𝛾 (𝑡))ℎ(𝑡) + 𝛾 (𝑡)E[𝑒𝜃𝑋 ]ℎ(0) = 0 ,

which holds by construction. Hence, by Lemma 2, 𝑓 (𝑌𝑡 ) = 𝑋𝑡 is

a local martingale. According to Theorem 9, the local martingale

𝑓 (𝑌𝑡 ) is a martingale if and only if it is of class DL, i.e, for every 𝑡 ≥ 0

the set {𝑓 (𝑌𝜏 ), stopping time 𝜏 ≤ 𝑡 a.s.} is uniformly integrable.

We have for 𝜏 ≤ 𝑡

|𝑓 (𝑌𝜏 ) | ≤ |ℎ |∞𝑒𝜃𝐴(𝑡 )

and

E[𝑒𝜃𝐴(𝑡 ) ] =
∞∑︁
𝑘=1

E[𝑒𝜃𝑋 ]𝑘P(𝐴1 (𝑡) = 𝑘)

where 𝐴1 (𝑡) := inf{𝑛 ≥ 0 : 𝑇0 + 𝑇1 + · · · + 𝑇𝑛 > 𝑡}. By applying

Lemma 12 for𝐴1 we get E[𝑒𝜃𝐴(𝑡 ) ] < ∞. Therefore, 𝑓 (𝑌𝑡 ) = 𝑋𝑡 , 𝑡 ≥
0 is a martingale. □

Theorem 4. (Queue Distribution) Let

𝐾𝑋 (𝑖) := E[𝑒𝜃 (𝑋−𝑖) | 𝑋 ≥ 𝑖], 𝑖 ∈ N .

Then for all 𝑘 ≥ 1

𝑒−𝜃𝑘

sup𝑖∈N 𝐾𝑋 (𝑖) ≤ P𝑎 (𝑄 ≥ 𝑘) ≤ 𝑒−𝜃𝑘

inf𝑖∈N 𝐾𝑋 (𝑖)
and

𝜌

E[𝑋 ]
E[𝑒𝜃𝑋 ] − 1

sup𝑖∈N 𝐾𝑋 (𝑖) (1 − 𝑒−𝜃 )
𝑒−𝜃𝑘 ≤ P(𝑄 ≥ 𝑘)

≤ 𝜌

E[𝑋 ]
E[𝑒𝜃𝑋 ] − 1

inf𝑖∈N 𝐾𝑋 (𝑖) (1 − 𝑒−𝜃 )
𝑒−𝜃𝑘 ,

with 𝜃 and ℎ(𝑡) from Corollary 3.

Proof. Fix 𝑘 ≥ 0 and let the stopping time

𝑇 := inf{𝑡 : 𝐴(𝑡) − 𝑆 (𝑡) ≥ 𝑘} .

For some 𝑡 ≥ 0, applying the Optional Stopping Theorem to the

martingale 𝑋𝑡 from Corollary 3 yields:

E𝑎 [𝑋0] = E𝑎 [𝑋𝑇∧𝑡 ] = E𝑎 [𝑋𝑇 1l𝑇 ≤𝑡 ] + E𝑎 [𝑋𝑡1l𝑇>𝑡 ]

= E𝑎

[
ℎ(𝑅(𝑇 ))𝑒𝜃 (𝐴(𝑇 )−𝑆 (𝑇 ))

1l𝑇 ≤𝑡
]
+ E𝑎 [𝑋𝑡1l𝑇>𝑡 ] ,

where 1l· denotes the indicator function. A key observation is that

ℎ(𝑅(𝑇 )) = ℎ(0) = 1, because 𝑇 must happen at an arrival point

(of a batch). Moreover, E𝑎 [𝑋0] = E𝑎 [ℎ(𝑅(0))] = 1 because 𝑅(0) =
0 (there is an arrival right after 0). Taking 𝑡 → ∞ the second

term in the derivation above vanishes according to Lemma 11 (see

Appendix §A) and hence

1 = E𝑎

[
𝑒𝜃 (𝐴(𝑇 )−𝑆 (𝑇 ))

1l𝑇<∞
]
. (5)

For small 𝛿 > 0 we can write

E𝑎

[
𝑒𝜃 (𝐴(𝑇 )−𝑆 (𝑇 ))

1l𝑡<𝑇 ≤𝑡+𝛿
]
= E𝑎

[
𝑒𝜃 (𝐴( (𝑡,𝑡+𝛿 ])−𝑆 ( (𝑡,𝑡+𝛿 ]))

𝑒𝜃 (𝐴(𝑡 )−𝑆 (𝑡 ))
1l𝑡<𝑇 1l𝐴( (𝑡,𝑡+𝛿 ])−𝑆 ( (𝑡,𝑡+𝛿 ]) ≥𝑘−𝐴(𝑡 )+𝑆 (𝑡 )

]
+ 𝑜 (𝛿)

= E𝑎

[
E𝑎

[
𝑒𝜃 (𝐴( (𝑡,𝑡+𝛿 ])+𝐴(𝑡 )−𝑆 (𝑡 ))

1l𝐴( (𝑡,𝑡+𝛿 ]) ≥𝑘−𝐴(𝑡 )+𝑆 (𝑡 )

| F𝑡 , 𝐴((𝑡, 𝑡 + 𝛿]) > 0

]
1l𝑡<𝑇,𝐴( (𝑡,𝑡+𝛿 ])>0

]
+ 𝑜 (𝛿)

= E𝑎

[
E𝑎

[
𝑒𝜃 (𝑋+𝐴(𝑡 )−𝑆 (𝑡 ))

1l𝑋 ≥𝑘−𝐴(𝑡 )+𝑆 (𝑡 ) | F𝑡 , 𝐴((𝑡, 𝑡 + 𝛿]) > 0

]
1l𝑡<𝑇,𝐴( (𝑡,𝑡+𝛿 ])>0

]
+ 𝑜 (𝛿)

= 𝑒𝜃𝑘E𝑎
[
𝐾𝑋 (𝑘 −𝐴(𝑡) + 𝑆 (𝑡))1l𝑋 ≥𝑘−𝐴(𝑡 )+𝑆 (𝑡 )1l𝑇>𝑡,𝐴( (𝑡,𝑡+𝛿 ])>0

]
+ 𝑜 (𝛿)

= 𝑒𝜃𝑘E𝑎
[
𝐾𝑋 (𝑘 −𝐴(𝑡) + 𝑆 (𝑡))1l𝑡<𝑇 ≤𝑡+𝛿

]
+ 𝑜 (𝛿) ,

immediately implying that

inf

𝑖∈N
𝐾𝑋 (𝑖)P𝑎 (𝑡 < 𝑇 ≤ 𝑡 + 𝛿)𝑒𝑘𝜃 + 𝑜 (𝛿)

≤ E𝑎
[
𝑒𝜃 (𝐴(𝑇 )−𝑆 (𝑇 ))

1l𝑡<𝑇 ≤𝑡+𝛿
]

≤ sup

𝑖∈N
𝐾𝑋 (𝑖)𝑒𝑘𝜃P𝑎 (𝑡 < 𝑇 ≤ 𝑡 + 𝛿) + 𝑜 (𝛿) .

Further integrating over [0,∞) yields

inf

𝑖∈N
𝐾𝑋 (𝑖)P𝑎 (𝑇 < ∞)𝑒𝑘𝜃 ≤ E𝑎

[
𝑒𝜃 (𝐴(𝑇 )−𝑆 (𝑇 ))

1l𝑇<∞
]

≤ sup

𝑖∈N
𝐾𝑋 (𝑖)𝑒𝑘𝜃P𝑎 (𝑇 < ∞) ,

and finally using (5) we obtain

𝑒−𝜃𝑘

sup𝑖∈N 𝐾𝑋 (𝑖) ≤ P𝑎 (𝑄 ≥ 𝑘) = P𝑎 (𝑇 < ∞) ≤ 𝑒−𝜃𝑘

inf𝑖∈N 𝐾𝑋 (𝑖) .

The second result proceeds similarly. Note that ℎ(𝑅(𝑇 )) = 1 for

the same reason as above;the rest follows by immediate integration

E[𝑋0] = E[ℎ(𝑅(0))] =
∫ ∞

0

ℎ(𝑥) 1 − 𝐹 (𝑥)
E[𝑇1]

𝑑𝑥 =
𝜌

E[𝑋 ]
E[𝑒𝜃𝑋 ] − 1

1 − 𝑒−𝜃
.

□

In the literature, the distribution of 𝑄 is available implicitly

in terms of the probability generating function (PGF) of 𝑄 , i.e.,

𝐺 (𝑧) := ∑∞
𝑘=0

𝑞𝑘𝑧
𝑘
, where𝑞𝑘 := P(𝑄 = 𝑘). The PGF𝐺 (𝑧) is implicit

itself in terms of the roots inside the unit circle |𝑧 | = 1 of the

equation 𝐿(𝜇 (1 − 𝑧)) = 𝑧𝑟 , which are guaranteed by Rouché’s

Theorem ([8], p. 118). In the M
r/𝑀/1 case, 𝐺 (𝑧) is explicit ([8], p.

121), i.e.,

𝐺 (𝑧) = (1 − 𝑧) (1 − 𝜌)
(1 − 𝑧) − 𝜌

𝑟 (1 − 𝑧𝑟 )
.

However, the derivation of the 𝑞𝑘 ’s and consequently of P(𝑄 ≥ 𝑘)
requires numerical inversions of𝐺 (𝑧), which is a “reasonable task

when 𝑟 is small" ([15], p. 120).

Therefore, the contribution of Theorem 4 are closed-form (and

transform-free) bounds on 𝑄’s distribution for GI
X/𝑀/1; see also
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below for some cases with exact results. We note that while the pa-

rameter 𝜃 is implicit, it can be obtained using a simple (logarithmic-

time) binary search. For instance, in the M
r/𝑀/1 case, 𝜃 satisfies

𝜆𝑒𝜃𝑟 + 𝜇𝑒−𝜃 − (𝜆 + 𝜇) = 0 .

Denoting 𝑥 = 𝑒𝜃 , this can be rewritten as

𝑥 + · · · + 𝑥𝑟 = E[𝑋 ]
𝜌

, (6)

which has a unique (real) solution when 𝜌 < 1. Some numerical

results will be shown in § 4.2.

3.1 Special Cases:𝑀/𝑀/1, 𝐺𝐼/𝑀/1, 𝐺𝐼Geo/𝑀/1
When the arrival process is Poisson there is no need for tracking

the ‘memory’ 𝑅(𝑡), due to the memoryless property, and hence

ℎ = 1. The martingale process becomes

𝑋𝑡 := 𝑒
𝜃 (𝐴(𝑡 )−𝑆 (𝑡 )) , 𝑡 ≥ 0 ,

where 𝜃 := − ln 𝜌 . Remarkably, the bound on P(𝑄 ≥ 𝑘) becomes

exact, i.e., P(𝑄 ≥ 𝑘) = 𝜌𝑘 ; the reason is that𝐴(𝑇 ) − 𝑆 (𝑇 ) = 𝑘 when

the batch size is 1, as a by-product of using counting processes in
the representation of 𝑋𝑡 . The exact result is also captured using

Kingman’s (discrete-time) martingale

𝑋𝑛 = 𝑒𝜃
∑𝑛
𝑖=1 (𝑆𝑖−𝑇𝑖 ) ∀𝑛 ∈ N .

The 𝐺𝐼/𝑀/1 analysis follows by simply letting 𝑋 = 1. For the

same reason as in the𝑀/𝑀/1 case, i.e., 𝐴(𝑇 ) − 𝑆 (𝑇 ) = 𝑘 , the exact
result (shown in (7) below) is recovered. We point out that both

Kingman’s martingale as well as an alternative recent (continuous-

time) martingale for 𝐺𝐼/𝐺/1 from [9]

𝑋𝑡 = ℎ(𝑅(𝑡))𝑒𝜃 (
∑𝑁 (𝑡 )
𝑖=1

𝑆𝑖−𝑡 ) ∀𝑡 ≥ 0 ,

only yield upper bounds, due to the existence of an overshoot at

time𝑇 ; here, the martingale is built in terms of a compound process

drained at a rate 1 corresponding to the ‘−𝑡 ’ term in the exponent.

An exact result was obtained however earlier by Ross [27] using

an additional stopping time, a neat conditioning argument, and the

memoryless property of the service times.

Lastly, the 𝐺𝐼X/𝑀/1 analysis when 𝑋 has a Geometric distribu-

tion with parameter 𝑝 , i.e., P(𝑋 = 𝑖) = 𝑝 (1 − 𝑝)𝑖−1, 𝑖 ∈ N, follows
by noting that 𝐾𝑋 (𝑖) = 𝑝

1−𝑒𝜃 (1−𝑝) is invariant to 𝑖 (as a by-product

of the memoryless property of 𝑋 ). Applying Theorem 4 we obtain

the exact result for 𝑘 ≥ 1

P(𝑄 ≥ 𝑘) = 𝜌𝑒𝜃 (1−𝑘) . (7)

This is the same result as for 𝐺𝐼/𝑀/1 except for the value of 𝜃

driven by (3) from Corollary 3. We also note that our solution

drastically simplifies the standard 𝐺𝐼/𝑀/1 solution (see, e.g., [15],

p.259), especially concerning the existence of the unique solution

which relies on a much more involved argument based on Rouché’s

Theorem from complex analysis. While only the existence of 𝜃 was

proven in Corollary 3, we note that in both𝐺𝐼/𝑀/1 and𝐺𝐼Geo/𝑀/1
cases unicity is an immediate by-product of the exact result since

lim𝑘→∞ P(𝑄 ≥ 𝑘)1/𝑘 = 𝑒−𝜃 .

4 SM/M/1
A Semi-Markovian Process (SMP), also called Markov Renewal

Process or (discrete) Markov Additive Process [4], is defined by the

kernel

𝐹𝑖, 𝑗 (𝑥) := P (𝑀𝑛+1 = 𝑗,𝑇𝑛+1 ≤ 𝑥 | 𝑀𝑛 = 𝑖)
= P (𝑀𝑛+1 = 𝑗,𝑇𝑛+1 ≤ 𝑥 | 𝑀𝑛 = 𝑖, 𝑀𝑛−1, 𝑀𝑛−2 . . . ,𝑇𝑛,𝑇𝑛−1 . . . ) ,

for all 𝑛 ∈ Z, 𝑖, 𝑗 ∈ S, 𝑥 ≥ 0, where the stationary process 𝑀𝑛
denotes the state after 𝑛 transitions and 𝑇𝑛 denotes the sojourn

time in the 𝑛 − 1
th
state; the state space S is finite and denote the

number of states by |S|. The stochastic process (𝑀𝑛,𝑇𝑛)𝑛 itself is

called a Markov Renewal Process.

At one extreme, if there is a single state (i.e., |S| = 1), then

the point process 𝑇𝑛 (i.e., the collection of points generated by the

intervals 𝑇𝑛) is a renewal process and hence the 𝑆𝑀/𝑀/1 queue
instantiates to the 𝐺𝐼/𝑀/1 queue. At the other extreme, if the

sojourn times in all of the states are exponentially distributed (i.e.,

𝐹𝑖 (𝑥) = 1−𝑒−𝜆𝑖𝑥 ∀𝑖), then the SMP instantiates to a Markov process.

In an SMP, the sojourn times in the states not only follow general

distributions but are not necessarily independent; they are however

conditionally independent on the states, e.g.,

P(𝑇𝑛+1 ≤ 𝑥,𝑇𝑛 ≤ 𝑦 | 𝑀𝑛+1, 𝑀𝑛, 𝑀𝑛−1)
= P(𝑇𝑛+1 ≤ 𝑥 | 𝑀𝑛+1, 𝑀𝑛)P(𝑇𝑛 ≤ 𝑦 | 𝑀𝑛, 𝑀𝑛−1) .

The transition probabilities of the embedded (and assumed er-

godic) Markov chain are

𝑞𝑖, 𝑗 = P (𝑀𝑛+1 = 𝑗 | 𝑀𝑛 = 𝑖) ∀𝑖, 𝑗 = 1, . . . , |S| ,

and the stationary distribution is

𝑞𝑖 = P(𝑀𝑛 = 𝑖) ∀𝑛 ∈ Z, 𝑖 ∈ S ,

i.e., 𝑞𝑄 = 𝑞, where 𝑄 := (𝑞𝑖, 𝑗 )𝑖, 𝑗=1,..., |S | . Therefore,

1

𝜆
=

∑︁
𝑖

𝑞𝑖
1

𝜆𝑖
,

where
1

𝜆𝑖
= E [𝑇𝑛+1 | 𝑀𝑛 = 𝑖] is the expected sojourn time in state 𝑖 .

Due to the representation of 𝑄 from (1), we assume without loss of

generality that the Markov chain 𝑀𝑛 is reversible. Otherwise, one

would need to construct and work with the corresponding reversed

process, and more exactly to replace 𝑄 and 𝐹𝑖, 𝑗 by{
𝑄∗ = 𝐷−1𝑄𝑇𝐷

𝐹 ∗
𝑖, 𝑗

=
𝑞 𝑗
𝑞𝑖
𝐹 𝑗,𝑖 ,

where 𝐷 is a diagonal matrix with the 𝑞𝑖 ’s on its main diagonal.

We also assume that at time 0 the state is𝑀0 such that the asso-

ciated SMP is𝑀 (𝑡) = 𝑀𝐴(𝑡 ) , i.e., the state at time −𝑡 . Its stationary
distribution is ([17], p. 411)

𝜋𝑖 =
𝑞𝑖

1

𝜆𝑖∑
𝑗 𝑞 𝑗

1

𝜆 𝑗

= 𝑞𝑖
𝜆

𝜆𝑖
. (8)

The distribution of the sojourn time in state 𝑖 is denoted by

𝐹𝑖 (𝑥) = P (𝑇𝑛+1 ≤ 𝑥 | 𝑀𝑛 = 𝑖) .
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If this distribution is (absolutely) continuous
3
, the corresponding

density is denoted by 𝑓𝑖 (𝑥) and the hazard rate by

𝛾𝑖 (𝑥) := lim

𝛿↓0
P (𝑥 < 𝑇𝑛+1 ≤ 𝑥 + 𝛿 | 𝑥 < 𝑇𝑛+1, 𝑀𝑛 = 𝑖)

𝛿
=

𝑓𝑖 (𝑥)
1 − 𝐹𝑖 (𝑥)

.

Denoting 𝑓𝑖, 𝑗 (𝑥) = 𝐹 ′𝑖, 𝑗 (𝑥) we also consider the hazard rate

𝛾𝑖, 𝑗 (𝑥) := lim

𝛿↓0
P (𝑥 < 𝑇𝑛+1 ≤ 𝑥 + 𝛿,𝑀𝑛+1 = 𝑗 | 𝑥 < 𝑇𝑛+1, 𝑀𝑛 = 𝑖)

𝛿

=
𝑓𝑖, 𝑗 (𝑥)

1 − 𝐹𝑖 (𝑥)
.

We can now proceed to the construction of an 𝑆𝑀/𝑀/1 mar-

tingale, similarly as in the 𝐺𝐼X/𝑀/1 case. First, let 𝐿𝑖, 𝑗 (𝜁 ) be the
Laplace transform of the sojourn time in state 𝑖 with a transition to

state 𝑗 , i.e., 𝐿𝑖, 𝑗 (𝜁 ) :=
∫ ∞
0
𝑒−𝜁𝑥𝑑𝐹𝑖, 𝑗 (𝑥), where 𝜁 := 𝜇 (1 − 𝑒−𝜃 ) for

some 𝜃 > 0.

Corollary 5. (The martingale - Construction) Let 𝑒−𝜃 , with
𝜃 > 0, and ℎ(0) = (ℎ𝑖 (0))𝑖∈S be respectively the (unique) Perron
eigenvalue (i.e., positive and maximal) and eigenvector of the matrix
[𝐿𝑖 𝑗 (𝜁 )]𝑖, 𝑗 ∈S . The process

𝑋𝑡 := ℎ𝑀 (𝑡 ) (𝑅(𝑡))𝑒𝜃 (𝐴(𝑡 )−𝑆 (𝑡 )) , 𝑡 ≥ 0

is a martingale, where4

ℎ𝑖 (𝑡) =
𝑒𝜃

∑
𝑗 ℎ 𝑗 (0)

∫ ∞
𝑡
𝑒−𝜁𝑠 𝑓𝑖, 𝑗 (𝑠)𝑑𝑠

(1 − 𝐹𝑖 (𝑡))𝑒−𝜁𝑡
∀𝑖

are bounded.

Proof. As in the proof of Corollary 3, we determine 𝜃 and ℎ𝑖 (𝑡)
by applying condition (𝑖𝑖) from Lemma 1. Writing for simplicity

𝑅(𝑡) = 𝑡 the differentiability condition becomes for all 𝑖 ∈ S

lim

𝛿↓0
1

𝛿

(∑︁
𝑗

𝛾𝑖, 𝑗 (𝑡)𝛿 (1 − 𝜇𝛿)ℎ 𝑗 (0)𝑒𝜃 + (1 − 𝛾𝑖 (𝑡)𝛿) (1 − 𝜇𝛿)ℎ𝑖 (𝑡 + 𝛿)

+(1 − 𝛾𝑖 (𝑡)𝛿)𝜇𝛿ℎ𝑖 (𝑡 + 𝛿)𝑒−𝜃 − ℎ𝑖 (𝑡)
)
= 0 ,

which leads to the system of ODEs:

ℎ′𝑖 (𝑡) = (𝛾𝑖 (𝑡) + 𝜁 )ℎ𝑖 (𝑡) − 𝑒𝜃
∑︁
𝑗

𝛾𝑖, 𝑗 (𝑡)ℎ 𝑗 (0) .

Setting the initial value problem with some values ℎ𝑖 (0) yields

ℎ𝑖 (𝑡) =
ℎ𝑖 (0) −

∑
𝑗 ℎ 𝑗 (0)

∫ 𝑡
0
𝑒−𝜁𝑠 𝑓𝑖, 𝑗 (𝑠)𝑒𝜃𝑑𝑠

(1 − 𝐹𝑖 (𝑡))𝑒−𝜁𝑡
.

Because (1 − 𝐹 (𝑡))𝑒−𝜁𝑡 −−−−→
𝑡→∞

0, in order for ℎ𝑖 (𝑡) to be bounded

𝑀𝑋 (𝜃 )
∫ ∞
0
𝑒−𝜁𝑠 𝑓 (𝑠)𝑑𝑠 = 1 necessarily holds, whence the expres-

sions of ℎ𝑖 (𝑡) and the condition on 𝜃 from Corollary 5.

Next we show that the solution to the eigenvalue problem exists

and is unique. By Perron-Frobenius Theorem, for some arbitrary

𝜁 = 𝜇 (1 − 𝑒−𝜃 ) > 0, there exists a unique positive and maximal

eigenvalue 𝑒−𝜅 (𝜁 ) , and a positive vector ℎ (𝜁 ) for the positive matrix

[𝐿𝑖 𝑗 (𝜁 )], i.e.,
[𝐿𝑖 𝑗 (𝜁 )]ℎ (𝜁 ) = 𝑒−𝜅 (𝜁 )ℎ (𝜁 ) .

3
While the construction of martingales require (absolute) continuity, the produce

martingales hold for general distributions.

4
All sums in this (sub-)section are taken over the state-space S of the chain𝑀𝑛 .

We have to show that there exists a unique solution 𝜃 > 0 for

the fixed point equation

𝜅 (𝜇 (1 − 𝑒−𝜃 )) = 𝜃 . (9)

Define the function 𝑓 (𝜃 ) := 𝜅 (𝜇 (1 − 𝑒−𝜃 )) − 𝜃 . Then 𝑓 (0) = 0,

𝑓 (∞) = −∞, and 𝑓 ′(0) = 𝜇𝜅 ′(0) − 1. By Corollary XI.2.9 from [4],

𝜅 ′(0) =
∑︁
𝑖, 𝑗 ∈S

𝑞𝑖𝑞𝑖, 𝑗E[𝑇𝑛+1 | 𝑀𝑛 = 𝑖, 𝑀𝑛+1 = 𝑗]

=
∑︁
𝑖∈S

𝑞𝑖E[𝑇𝑛+1 | 𝑀𝑛 = 𝑖] = 1

𝜆
,

i.e., the inverse of the arrivals’ (stationary) rate. From the stability

condition
𝜇

𝜆
> 1 it follows that 𝑓 ′(0) > 0 and hence there exists

a zero root for the function 𝑓 . This proves the existence of 𝜃 and

ℎ(0). Let us now briefly refer to the follow-up Theorem 6 and note

that lim𝑘→∞ P(𝑄 ≥ 𝑘)1/𝑘 = 𝑒−𝜃 , which proves that 𝜃 is unique. By

Perron-Frobenius theorem, there is no other positive eigenvector

of [𝐿𝑖 𝑗 (𝜁 )] except for positive multiples of ℎ(0).
Showing that ℎ𝑖 (𝑡)’s are bounded follows as in the proof of

Corollary 3, i.e., for all 𝑖 ∈ S

ℎ𝑖 (𝑡) ≤ 𝑒𝜃
∑︁
𝑖

ℎ𝑖 (0) .

Finally, to prove that 𝑋𝑡 is indeed a martingale, let the Markov

process 𝑌𝑡 := (𝐴(𝑡) − 𝑆 (𝑡), 𝑅(𝑡), 𝑀 (𝑡)), 𝑡 ≥ 0 and define

𝜏𝐾 := inf{𝑡 ≥ 0 : 𝐴(𝑡) − 𝑆 (𝑡) = 𝐾} ,

for all 𝐾 ∈ N, with the convention that inf ∅ = ∞, and

𝑓 (𝑁, 𝑡, 𝑖) := ℎ𝑖 (𝑡)𝑒𝜃𝑁 ,

for all 𝑁 ∈ N, 𝑡 ≥ 0, and 𝑖 ∈ S. For the stopped Markov process

𝑌𝑡∧𝜏𝐾 we can write for 𝑁 ≤ 𝐾 − 1

𝐴𝑓 (𝑁, 𝑡, 𝑖) = lim

𝛿→0

1

𝛿
E[𝑓 (𝑌𝛿 ) − 𝑓 (𝑁, 𝑡, 𝑖) | 𝑌0 = (𝑁, 𝑡, 𝑖)]

= lim

𝛿→0

1

𝛿

[
ℎ𝑖 (𝑡 + 𝛿)𝑒𝜃𝑁 (1 − 𝛾 (𝑡)𝛿 − 𝜇𝛿)

+ ©­«
∑︁
𝑗

𝑝𝑖, 𝑗ℎ 𝑗 (0)ª®¬ 𝑒𝜃 (𝑁+1)𝛾 (𝑡)𝛿 + ℎ𝑖 (𝑡 + 𝛿)𝑒𝜃 (𝑁−1) 𝜇𝛿 + 𝑜 (𝛿)
]

= 𝑒𝜃𝑁
ℎ′𝑖 (𝑡) − (𝜇 (1 − 𝑒−𝜃 ) + 𝛾 (𝑡))ℎ𝑖 (𝑡) + 𝛾 (𝑡)𝑒𝜃

∑︁
𝑗

𝑝𝑖, 𝑗ℎ 𝑗 (0)
 .

Note that 𝐴𝑓 (𝑁, 𝑡, 𝑖) = 0 if and only if

ℎ′𝑖 (𝑟 ) − (𝜇 (1 − 𝑒−𝜃 ) + 𝛾 (𝑟 ))ℎ𝑖 (𝑟 ) + 𝛾 (𝑟 )𝑒𝜃
∑︁
𝑗

𝑝𝑖, 𝑗ℎ 𝑗 (0) = 0 ,

which holds by construction. Hence, by Lemma 2, 𝑓 (𝑌𝑡 ) = 𝑋𝑡
is a local martingale; according to Theorem 9, this is further a

martingale if and only if it is of class DL, i.e, for every 𝑡 ≥ 0 the set

{𝑓 (𝑌𝜏 ), stopping time 𝜏 ≤ 𝑡 a.s.} is uniformly integrable. We have

for 𝜏 ≤ 𝑡
|𝑓 (𝑌𝜏 ) | ≤ |ℎ |∞𝑒𝜃𝐴(𝑡 ) .

Because E[𝑒𝜃𝐴(𝑡 ) ] < ∞ from Lemma 12, it finally follows that

𝑓 (𝑌𝑡 ), 𝑡 ≥ 0 is a martingale. □
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Theorem 6. (Queue Distribution) Denote by P𝑎,𝑖 the Palm
probability of an event just before an arrival with state 𝑖 . Then for all
𝑘 ≥ 0

ℎ𝑖 (0)
max𝑖 ℎ𝑖 (0)

𝑒−𝜃𝑘 ≤ P𝑎,𝑖 (𝑄 ≥ 𝑘) ≤ ℎ𝑖 (0)
min𝑖 ℎ𝑖 (0)

𝑒−𝜃𝑘

and

𝜌

∑
𝑖 𝑞𝑖ℎ𝑖 (0)

max𝑖 ℎ𝑖 (0)
𝑒−𝜃 (𝑘−1) ≤ P(𝑄 ≥ 𝑘) ≤ 𝜌

∑
𝑖 𝑞𝑖ℎ𝑖 (0)

min𝑖 ℎ𝑖 (0)
𝑒−𝜃 (𝑘−1) ,

with 𝜃 and ℎ𝑖 (𝑡) from Corollary 5.

Proof. Fix 𝑘 ≥ 0. The Palm distribution proceeds exactly as in

the proof of Theorem 4. For the other we need to compute

𝐸 [𝑋0] = 𝐸 [ℎ𝑀 (0) (𝑅(0))] =
∑︁
𝑖

𝜋𝑖E[ℎ𝑖 (𝑅(0)) | 𝑀 (0) = 𝑖]

=
∑︁
𝑖

𝜆𝑖𝜋𝑖

∫ ∞

0

ℎ𝑖 (𝑥) (1 − 𝐹𝑖 (𝑥))𝑑𝑥

=
∑︁
𝑖

𝜆𝑖𝜋𝑖

∫ ∞

0

𝑒𝜃
∑
𝑗 ℎ 𝑗

∫ ∞
𝑥
𝑒−𝜁 𝑦 𝑓𝑖, 𝑗 (𝑦)𝑑𝑦

(1 − 𝐹𝑖 (𝑥))𝑒−𝜁𝑥
(1 − 𝐹𝑖 (𝑥))𝑑𝑥

=
∑︁
𝑖

𝜆𝑖𝜋𝑖𝑒
𝜃
∑︁
𝑗

ℎ 𝑗 (0)
∫ ∞

0

𝑒−𝜁 𝑦 𝑓𝑖, 𝑗 (𝑦)
∫ 𝑦

0

𝑒𝜁𝑥𝑑𝑥𝑑𝑦

=
∑︁
𝑖

𝜆𝑖𝜋𝑖𝑒
𝜃

𝜁

∑︁
𝑗

ℎ 𝑗 (0) (𝑞𝑖, 𝑗 − 𝐿𝑖 𝑗 (𝜁 )) ,

and the rest follows from (8) and the construction of 𝑒−𝜃 and ℎ 𝑗 (0)
from Corollary 5. □

4.1 ΣSM/M/1
The input is a superposition of two

5
SMP processes. We use the

same notation as earlier except for subscripting the parameters

accordingly (e.g., 𝜆𝑖 for the arrival rates of the SMPs); the overall

service rate is 𝜇 > 𝜆1 + 𝜆2.
The fundamental difficulty of such a system is that the super-

posed input is not stationary, even when the individual inputs are

renewals (unless Poisson). To see why our continuous-time mar-

tingale is particularly suitable to capture this system, consider the

alternative (discrete-time) 𝑆𝑀/𝑀/1 F𝜏𝑛 -martingale

𝑋𝑛 := ℎ𝑀 (𝜏𝑛)𝑒
𝜃 (𝐴(𝜏𝑛)−𝑆 (𝜏𝑛)) , 𝑛 ≥ 1,

where 𝜏𝑛 := inf{𝑡 ≥ 0 : 𝐴(𝑡) = 𝑛} are the arrival points and ℎ𝑖 ≡
ℎ𝑖 (0) for brevity. The proof follows from ([4], Proposition XI.2.4) by

noting that 𝐽𝑛 := 𝑀 (𝜏𝑛) is an F𝜏𝑛 -MAP; it can be shown that this

martingale yields the same results as Theorem 6. The key reason

why this martingale is not suitable for the superposed process is

that the embedding points corresponding to the individual arrivals

are different (i.e., 𝜏1𝑛 and 𝜏2𝑛).

In continuous time, however, multiplexing martingales proceeds

by first building two martingales for two fictitious 𝑆𝑀/𝑀/1 queues
with service rates 𝜇1 and 𝜇2, respectively, such that 𝜇1+𝜇2 = 𝜇; also,
𝜇𝑖 > 𝜆𝑖 for the stability of the two queues. Applying Corollary 5,

the two martingales are

𝑋𝑖,𝑡 := ℎ𝑖,𝑀𝑖 (𝑡 ) (𝑅𝑖 (𝑡))𝑒
𝜃𝑖 (𝐴𝑖 (𝑡 )−𝑆𝑖 (𝑡 )) , 𝑖 = 1, 2, 𝑡 ≥ 0,

5
The general case of multiple processes follow similarly.

where 𝑆𝑖 (𝑡) is a Poisson process with rate 𝜇𝑖 . Recall that 𝜃𝑖 depends

on 𝜇𝑖 , and we write this dependency in terms of the functions

𝜃1 (𝜇1) and 𝜃2 (𝜇2), which are positive (see the argument about the

existence and uniqueness of ‘𝜃 ’ from Corollary 5).

Next we show how to find 𝜇1 to obtain a suitable martingale for

the original ΣSM/M/1 queue from 𝑋1,𝑡 and 𝑋2,𝑡 . First, the stability

conditions yield the following margins for the parameter 𝜇1:

𝜆1 < 𝜇1 < 𝜇 − 𝜆2 .

From the last part of the proof of Corollary 5, involving the existence

of 𝜃 > 0, we obtain that

lim

𝜇1↓𝜆1
𝜃1 (𝜇1) = 𝜃1 (𝜆1) = 0 .

Note that when 𝜇1 = 𝜆1 the first 𝑆𝑀/𝑀/1 queue becomes unstable

and 𝜃 = 0 would be the only solution of the fixed point equation (9).

Similarly,

lim

𝜇1↑𝜇−𝜆2
𝜃2 (𝜇2) = lim

𝜇1↑𝜇−𝜆2
𝜃2 (𝜇 − 𝜇1) = 𝜃2 (𝜆2) = 0 .

From continuity (of the eigenvalue solution), there exists a value

𝜇1 ∈ (𝜆1, 𝜇 − 𝜆2) such that

𝜃1 (𝜇1) = 𝜃2 (𝜇 − 𝜇1) = 𝜃2 (𝜇2) =: 𝜃 .

Using this value of 𝜇1, the product of the two (independent) mar-

tingales 𝑋1,𝑡 and 𝑋2,𝑡 is itself a martingale

𝑋𝑡 = ℎ1,𝑀1 (𝑡 ) (𝑅1 (𝑡))ℎ2,𝑀2 (𝑡 ) (𝑅2 (𝑡))𝑒
𝜃 (𝐴1 (𝑡 )+𝐴2 (𝑡 )−𝑆 (𝑡 )) ,

where 𝑆 (𝑡) = 𝑆1 (𝑡) + 𝑆2 (𝑡) is a Poisson process with rate 𝜇, by the

superposition property of Poisson processes.

The key reason for finding 𝜇1 to guarantee the same 𝜃 for the

individual martingales 𝑋1,𝑡 and 𝑋2,𝑡 is that we could express the

martingale 𝑋𝑡 in terms of 𝐴1 (𝑡) +𝐴2 (𝑡) − 𝑆 (𝑡); this term drives the

queueing process in the original ΣSM/M/1 queue (recall (1)). There-

fore, stochastic bounds on 𝑄 follow immediately as in Theorem 6:

P(𝑄 ≥ 𝑘) ≤ 𝜌1𝜌2

∑
𝑖 𝑞1,𝑖ℎ1,𝑖 (0)

inf𝑡 min𝑖 ℎ1,𝑖 (𝑡)

∑
𝑖 𝑞2,𝑖ℎ2,𝑖 (0)

inf𝑡 min𝑖 ℎ2,𝑖 (𝑡)
𝑒−𝜃 (𝑘−2) ,

and similarly for the lower bound, where 𝜌𝑖 =
𝜆𝑖
𝜇𝑖
; note the exponent

(𝑘 − 2), whereby the ‘−2’ stems from the calculations of E[𝑋𝑖,0]
(see the proof of Theorem 6). Moreover, the additional ‘inf𝑡 ’ (to

be replaced by ‘sup𝑡 ’ for the lower bound) are needed because in

the case of two arrival streams the stopping time 𝑇 can happen

on an arrival from a single stream only, i.e., either 𝑅1 (𝑇 ) = 0 or

𝑅2 (𝑇 ) = 0.

4.2 Numerical Results and Open Problem(s)
Figs. 1.(a-b) illustrate the bounds’ accuracy for𝑀𝑟 /𝑀/1, with the

decay rate 𝜃 obtained from (6). While reasonably accurate, the

exponential upper bounds from Theorem 4 do not capture the

concave-like behavior (on a log-scale) for 𝑘 ∈ {1, . . . , 𝑟 + 1}, as
clearly seen in (b) at 75% utilization

6
.

Moving to 𝑆𝑀/𝑀/1, an intuitive SM but non-renewal process

is an alternating renewals (AR) process with states𝑀 (𝑡) ∈ {1, 2},

6
We observed the same behavior at all the values of 𝑟 we simulated.
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(c) AR: Exponential(𝜆1), Exponential(𝜆2)
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(d) AR: Weibull(2,1), Exponential(𝜆2)

Figure 1:𝑀𝑟 /𝑀/1 and𝐴𝑅/𝑀/1: bounds on the CCDF P(𝑄 ≥ 𝑘)
in (a-b) and P𝑎,2 (𝑄 ≥ 𝑘) in (c-d); 𝜆 = 1 in (a-b) and 𝜆1 = 1,
𝜆2 = 0.1 in (c-d); 𝜌 = 0.75, 0.9

alternating distributions 𝐹1 (𝑡) and 𝐹2 (𝑡), and means
1

𝜆1
and

1

𝜆2
,

respectively. The corresponding kernel is[
0 𝐹1 (𝑥)

𝐹2 (𝑥) 0

]
and the stationary distributions of the chain𝑀𝑛 and SMP𝑀 (𝑡) are

𝑞𝑖 =
1

2

and 𝜋𝑖 =
𝜆3−𝑖
𝜆1 + 𝜆2

, 𝑖 = 1, 2 .

The correlation structure can be explained in an extreme scenario

with small 𝜆1 and large 𝜆2: if an arbitrary interarrival is large then

the next is likely small, and vice-versa.

Fig. 1.(c-d) illustrate the bounds’ accuracy for𝐴𝑅/𝑀/1 scenarios,
the latter with a Weibull(2,1) distribution with shape 2 and scale 1

(i.e., P(𝑇1 ≤ 𝑥) = 1 − 𝑒−𝑥2 ) alternating with an Exponential with

rate 𝜆2. The service rate 𝜇 depends on the intensity 𝜌 . We consider

the bounds P𝑎,2 (𝑄 ≥ 𝑘), i.e., concerning the queue size just before

triggering the Exponential interarrival with rate 𝜆2 (the bounds are

immediate applications of Theorem 6).
7

Fig. 3 illustrates the accuracy of the 𝑆𝑀/𝑀/1 bounds from The-

orem 6. The underlying Markov chain has two states (see Fig. 2)

and the corresponding kernel is detailed in the caption (the dis-

tributions are as in the 𝐴𝑅/𝑀/1 case). We consider two scenarios

depending on which distribution (Weibull or Exponential) is trig-

gered much more frequently than the other: the former in (c), given

that 𝑞1,2 < 𝑞2,1, and the latter in (d).

Lastly, Fig. 4 illustrates the accuracy of the ΣSM/M/1 bounds;

the caption details the precise numerical settings. We only consider

the upper bounds to highlight their crucial challenge. In scenarios

with burstiness, driven by the underlying Markov chains from

Fig. 2.(a,b), the ‘true’ tail of the queue (on a log-scale) is clearly not

a straight line. This behavior has already been apparent in the other

scenarios (including the𝑀r/𝑀/1 case) but it is more pronounced in

7
All simulation results are obtained from 10

6
runs, which is sufficient to yield stable

results; we omit confidence intervals to avoid clutter.
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W(2, 1) Exp(𝜆2)

0.9

0.1 0.9

0.1

(b)

Figure 2: The SMP processes used for the numerical evalu-
ations of the 𝑆𝑀/𝑀/1 and ΣSM/M/1 bounds; the state label
denotes the distribution of the sojourn time in that particu-
lar state;𝑊 (2, 1) stands for Weibull distribution with shape 2
and scale 1; Exp(𝜆2) stands for exponential distribution with
rate 𝜆2; according to the transition probabilities,𝑊 (2, 1) is
the dominating distribution (i.e., triggered more frequently)
in (a), whereas Exp(𝜆2) is the dominating one in (b).
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(a) 𝑞1,2 = 0.1, 𝑞2,1 = 0.9

5 10 15 20

10
-2

10
-1

10
0

(b) 𝑞1,2 = 0.9, 𝑞2,1 = 0.1

Figure 3: SM/M/1: bounds on the CCDF P𝑎,2 (𝑄 ≥ 𝑘); 2-
state Markov chain with transition probabilities (𝑞𝑖, 𝑗 ); 𝐹1, 𝑗 =
𝑞1, 𝑗

(
1 − 𝑒−𝑥2

)
, 𝐹2, 𝑗 = 𝑞2, 𝑗

(
1 − 𝑒−𝜆2𝑥

)
, 𝜆2 = 0.1, 𝜌 = 0.75, 0.9

the current ΣSM/M/1 case, subject to the two SMPs with different

combinations of burstiness and sojourn times distributions.
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Figure 4: ΣSM/M/1: bounds on the CCDF P(𝑄 ≥ 𝑘); the super-
posed SMPs are those from Fig. 2.(a,b); 𝜌 = 0.9

The upper bounds are tight at small 𝑘 (i.e., 𝑘 = 1); however, as

they have an exact asymptotic rate (the ‘𝜃 ’) and their prefactor

is independent of 𝑘 , they follow a straight line which inevitably

deviates from the real behavior. In some scenarios, depending on

burstiness, the lower bounds which also follow straight lines be-

come tight in the tail (see Fig. 3.(b)). In others, they are consistently

loose as apparent from Fig. 3.(a), which is subject to the SMP from

Fig. 2.(a) dominated by the Weibull distribution; the same holds in

the ΣSM/M/1 case, as it accounts for the same SMP from Fig. 2.(a).
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The crucial and arguably remaining challenge for the bounds’

accuracy is to properly capture the initial ‘bend’ characteristic to

the ‘true’ behavior of the tail. From a technical point of view, the

open problem is to more precisely characterize

E
[
ℎ𝑀 (𝑇 ) (𝑅(𝑇 ))1l𝑇<∞

]
,

where 𝑇 is the recurring stopping time from all the proofs. In the

𝐺𝐼/𝑀/1 case, in which there is a single state for the underlying

Markov chain, whereas 𝑇 happens on an arrival (i.e., 𝑅(𝑇 ) = 0),

exact results could be obtained; as a side remark, the assumption

of exponential service times is also crucial for the exact results,

as there is no need for an additional random function ‘ℎ𝑆 ()’ to
capture the remaining lifetime in the service process due to the

memoryless property. In the 𝐴𝑅/𝑀/1 or 𝑆𝑀/𝑀/1 cases, in which

the Markov chains can have more than one state, or in the ΣSM/M/1

case, in which there is more than a single SMP, the current tech-

nique only uses ‘rough’ and deterministic bounds. In particular, the

deterministic nature of these bounds is sufficient to break the above

expectation and capture the key metric E [1l𝑇<∞] = P(𝑄 ≥ 𝑘).

5 CONCLUSIONS
We have developed a methodology to construct a wide class of

continuous-time martingales, which were used to derive stochas-

tic bounds in several practically motivated queueing systems. The

overall methodology is not only an intuitive and much simpler

alternative to rediscover the classical 𝐺𝐼/𝑀/1 exact result but it
enables a modular treatment of significantly more complex queues

by manipulating martingales from simpler queues. Several exten-

sions to other even more complex queueing systems are possible,

e.g., 𝑆𝑀X/𝑆𝑀/1 or Σ𝑆𝑀/𝑆𝑀/1. Moreover, our queueing results

retain the expressiveness of the exact 𝐺𝐼/𝑀/1 result, are asymp-

totically optimal, and are also computationally light – essentially

involving an eigenvalue problem in the number of states |S| and
binary searches. Further improving the bounds’ accuracy, including

capturing the non-exponential initial behavior (e.g., for𝑀r/𝑀/1 or
Σ𝑆𝑀/𝑀/1), remains an open problem.
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through all stopping times satisfying P(𝜏 ≤ 𝑡) = 1, is uniformly
integrable.

Theorem 9 (e.g., [26], p. 124). A local martingale is a martingale
if and only if it is of class DL.

Theorem 10 (Dynkin’s Formula (e.g., [32], p. 110). Let 𝑋 be a
homogeneous Markov process with state space 𝐸 with cádlág paths for
all𝜔 ∈ Ω and transition function {𝑃𝑡 (𝑥,𝐴)}. Let {𝑇 (𝑡); 𝑡 ≥ 0} denote
its semigroup 𝑇 (𝑡) 𝑓 (𝑥) =

∫
𝐸
𝑓 (𝑦)𝑃𝑡 (𝑥, 𝑑𝑦), 𝑓 ∈ B𝐸 and (𝐴, 𝐷 (𝐴))

its generator. Then, for any bounded function 𝑔 ∈ 𝐷 (𝐴), the stochastic
process {𝑀𝑡 , 𝑡 ≥ 0} is an {F𝑋𝑡 , 𝑡 ≥ 0} martingale, where

𝑀𝑡 := 𝑔(𝑋𝑡 ) −
∫ 𝑡

0

𝐴𝑔(𝑋𝑠 )𝑑𝑠 .

Next we provide some useful variations of known results con-

cerning the process

𝑋𝑡 = ℎ(𝑡)𝑒𝜃 (𝐴(𝑡 )−𝑆 (𝑡 )) ,

which plays the role of a martingale for the 𝑆𝑀/𝑀/1 queue.𝐴(𝑡) an
𝑆 (𝑡) are counting processes associated to stationary interarrival and
service times, respectively. The function ℎ(𝑡) ≡ ℎ𝑀 (𝑡 ) (𝑅(𝑡)) was
shown to be bounded from above, where𝑀 (𝑡) is the Semi-Markov

Process and 𝑅(𝑡) is the remaining lifetime corresponding to the

arrivals. Recall first the definition of 𝑇 := inf{𝑡 : 𝐴(𝑡) − 𝑆 (𝑡) = 𝑘}.

Lemma 11. The following limit holds

lim

𝑡→∞
E [𝑋𝑡1l𝑡<𝑇 ] = 0 .

This result enables the parallel derivation of both upper and

lower bounds. It first appeared in [9] in a less general setting. We

present a (simpler) proof for completeness.

Proof. If the interarrivals 𝑇𝑛 form a renewal process then as

𝑡 → ∞ (see, e.g., [28], p. 102)

𝐴(𝑡)
𝑡

→ 1

E [𝑇1]
,

as an immediate consequence of the Strong Law of Large Numbers.

The result extends immediately to the (stationary) SMP case, using

Birkhoff’s Ergodic Theorem. Similarly,

𝑆 (𝑡)
𝑡

→ 1

E [𝑆1]
,

and using 𝜌 < 1 we obtain that

𝐴(𝑡) − 𝑆 (𝑡)
𝑡

→ 𝛼 ,

for some 𝛼 < 0. This convergence implies that for any 0 < 𝜀 < |𝛼 |
there exists 𝑇𝜀 such that 𝐴(𝑡) − 𝑆 (𝑡) < 𝑡 (𝛼 + 𝜀) ∀𝑡 > 𝑇𝜀 and hence

𝐴(𝑡) − 𝑆 (𝑡) → −∞ a.s.

Because 𝜃 > 0 it immediately follows that 𝑋𝑡1l𝑡<𝑇 → 0. Also,

|𝑋𝑡1l𝑡<𝑇 | ≤ ∥ℎ∥∞𝑒𝜃𝑘 , where the infinite norm ∥ℎ∥∞ := sup𝑡 ℎ(𝑡)
is finite. We can now apply the Dominated Convergence Theorem

and conclude that lim𝑡 E [𝑋𝑡1l𝑡<𝑇 ] = E [lim𝑡 𝑋𝑡1l𝑡<𝑇 ] = 0. □

Lemma 12. The moment generating function (MGF) 𝐸
[
𝑒𝜃𝐴(𝑡 )

]
is

bounded for all 𝜃 > 0 and 𝑡 ≥ 0.

Proof. Fix 𝜃 > 0 and 𝑡 ≥ 0, and assume without loss of gener-

ality that there is an arrival at time 0. For clarity, we first give the

proof in the renewal case. We can write

𝐴(𝑡) = min{𝑛 : 𝑇1 +𝑇2 + · · · +𝑇𝑛+1 > 𝑡} .
Construct the renewal process

𝑇𝛼,𝑛 := 𝛼1l𝑇𝑛≥𝛼 ∀𝑛 > 0,

for some 𝛼 > 0 such that 𝑝 := P(𝑇1 ≥ 𝛼) satisfies 𝑏 := 𝑒𝜃 (1−𝑝) < 1.

The corresponding counting process is

𝐴𝛼 (𝑡) := min{𝑛 : 𝑇𝛼,1 +𝑇𝛼,2 + · · · +𝑇𝛼,𝑛+1 > 𝑡} .
Denoting 𝑘 := ⌊ 𝑡𝛼 ⌋ and noting that

P (𝐴𝛼 (𝑡) = 𝑛) = 𝑝𝑘+1 (1 − 𝑝)𝑛−𝑘
(
𝑛

𝑛 − 𝑘

)
∀𝑛 ≥ 𝑘 ,

we obtain that

E
[
𝑒𝜃𝐴𝛼 (𝑡 )

]
= 𝑒𝜃𝑘𝑝𝑘+1

∑︁
𝑛≥0

(
𝑘 + 𝑛
𝑛

)
𝑏𝑛 = 𝑒𝜃𝑘

( 𝑝

1 − 𝑏

)𝑘+1
,

which is bounded.

Finally, 𝑇𝑛 ≥ 𝑇𝛼,𝑛 implies that 𝐴(𝑡) ≤ 𝐴𝛼 (𝑡) and therefore the

MGF of 𝐴(𝑡) is also bounded.

In the SMP case, we ce can write

𝐴(𝑡) = min{𝑛 : 𝑈1 +𝑈2 + · · · +𝑈𝑛+1 > 𝑡} ,
where𝑈𝑛 := 𝑇

𝑀𝑛
𝑣 (𝑀𝑛,𝑛) and 𝑣 (𝑀𝑛, 𝑛) is the number of visits of state

𝑀𝑛 during steps {1, 2, . . . , 𝑛}.
For each 𝑖 ∈ S construct the renewal processes

𝑇 𝑖𝛼,𝑛 := 𝛼1l𝑇 𝑖𝑛≥𝛼 ∀𝑛 > 0,

for some 𝛼 > 0. Denote 𝑝𝑖 := P(𝑇 𝑖𝛼,1 = 𝛼) and assume without loss

of generality that 𝑝1 = min𝑖∈S 𝑝𝑖 .
Let now the counting processes

𝐴𝛼 (𝑡) := min{𝑛 : 𝑈𝛼,1 +𝑈𝛼,2 + · · · +𝑈𝛼,𝑛+1 > 𝑡} ,

where𝑈𝛼,𝑛 := 𝑇
𝑀𝑛
𝛼,𝑣 (𝑀𝑛,𝑛) and

𝐴1

𝛼 (𝑡) := min{𝑛 : 𝑇 1

1
+𝑇 1

2
+ · · · +𝑇 1

𝑛+1 > 𝑡} .
We can now write

P
(
𝐴1

𝛼 (𝑡) ≥ 𝑛
)
= P

(
𝑇 1

𝛼,1 + · · · +𝑇 1

𝛼,𝑛 ≤ 𝑡
)
≥ P

(
𝑈𝛼,1 + · · · +𝑈𝛼,𝑛 ≤ 𝑡

)
= P (𝐴𝛼 (𝑡) ≥ 𝑛) ≥ P (𝐴(𝑡) ≥ 𝑛)

The first inequality follows from the choice of 𝑝1: 𝑇
1

𝛼,𝑛 is stochasti-

cally smaller than𝑈𝛼,𝑛 for all 𝑛. The second follows from𝑇 𝑖𝛼,𝑛 ≤ 𝑇 𝑖𝑛 .
Therefore, the MGF of 𝐴(𝑡) is bounded by the MGF of 𝐴1

𝛼 (𝑡),
which is subject to a renewal structure. The rest follows as in the

renewal case by properly choosing 𝛼 . □
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