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ABSTRACT
A simple bound in GI/G/1 queues was obtained by Kingman using

a discrete martingale transform [30]. We extend this technique to

1) multiclass ΣGI/G/1 queues and 2) Markov Additive Processes

(MAPs) whose background processes can be time-inhomogeneous

or have an uncountable state-space. Both extensions are facilitated

by a necessary and sufficient ordinary differential equation (ODE)

condition for MAPs to admit continuous martingale transforms.

Simulations show that the bounds on waiting time distributions

are almost exact in heavy-traffic, including the cases of 1) hetero-

geneous input, e.g., mixing Weibull and Erlang-k classes and 2)

Generalized Markovian Arrival Processes, a new class extending

the Batch Markovian Arrival Processes to continuous batch sizes.
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1 INTRODUCTION
A milestone in queueing theory was relaxing the often implicit

assumption that interarrival times in GI/G/1 queues are statistically

independent. One such extension, applicable in manufacturing and

production systems, is the multiclass ΣGI/G/1 queue in which mul-

tiple classes of jobs, each with its own arrival (renewal) process, are

merged. Due to the general lack of closure of renewal processes,

let alone the general lack of stationarity of the merged process,

the analysis of the ΣGI/G/1 queue is challenging. Several studies
in heavy-traffic regimes addressed functional central limits (e.g.,

of the waiting times) [27], approximations (e.g., of the workload)

with a one-dimensional reflecting Brownian motion [17], or Laplace

transforms (e.g., of the waiting times) [6].

Another extension also emerging in the 1970s was driven by the

non-renewal traffic characteristics in packet switches [2, 32]. Two

widely studied models accounting for ‘bursty’ traffic are Markov

Modulated Fluid (MMF) and Markov Modulated Poisson Process

(MMPP). The former was proposed in the seminal paper [2] by rep-

resenting traffic as (continuous) ‘fluid’ evolving at some constant

rate, depending on a modulatingMarkov process; queues withMMF

input can be exactly analyzed using ODEs and matrix analysis; re-

lated methods include spectral decomposition [1] or Wiener-Hopf
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factorization [45]. MMPP is a more accurate ‘packetized’ version of

MMF, i.e., traffic evolves as a Poisson process with state dependent

rates according to a modulating Markov process; the typical queue-

ing analysis rests on matrix analytical techniques [25] or spectral

decompositions [1, 20]. A common challenge of analyzing MMF and

MMPP is the underlying numerical complexity, which can become

prohibitive when a large number of sources are multiplexed [48].

For related discussions and more comprehensive reference lists

see [33] and [23].

A popular method to analyze queues with MMF andMMPP input

is effective bandwidth [19]. Advantages include the availability

of exact (asymptotic) results, negligible computational cost when

multiplexing many sources, and simplicity in the sense that many

arrival processes can be analyzed in a unified manner. However, this

method can yield inaccurate (non-asymptotic) results unless the

input is Poisson [13, 48]. A related technique with similar features

is the probabilistic network calculus [34].

In this paper we develop a unified analysis of queues with two

broad classes of non-renewal arrivals: 1) the multiclass ΣGI/G/1
queue and 2) queues with Markov Additive Processes (MAPs). Our

framework provides (non-asymptotic) stochastic bounds (e.g., on

waiting time distributions) by extending an approach of King-

man [30] who obtained such bounds in GI/G/1 queues by first

constructingmartingale transforms and then usingmartingale prop-

erties. While this approach has often been used [4, 18, 40, 41, 46],

our novelty is a link between MAP martingales and a necessary and

sufficient ODE condition. This applies to general MAPs, whereby

the background process can be inhomogeneous or have an un-

countable state-space; moreover, the martingales are constructed in

continuous-time. These three features altogether are instrumental

to the analysis of the ΣGI/G/1 model.

Besides generality, the proposed method can be applied in a

rather straightforward manner. The ODE condition is elementary,

and in particular it immediately lends itself to a MMF martingale

which was obtained in [21] using an involved argument. We inves-

tigate several other scenarios, e.g., ΣWeibull/G/1, ΣErlang-k/G/1,
ΣWeibull + ΣErlang-k/G/1 (a mix of Weibull and Erlang-k classes),

and queueswithMMF,MMPP,MarkovianArrival Processes (MArPs),
1

and Generalized Markovian Arrival Processes (GMArP)
2
. Remark-

ably, the method retains the key advantage of effective bandwidth,

i.e., a straightforward analysis with negligible numerical complex-

ity in multiplexing scenarios. Additionally, the bounds are shown

through simulations to be almost exact in heavy-traffic. The method

can be easily extended to account for non-stationary services and

scheduling.

The highlights of this paper are:

1
We adopt the acronymsMAP andMArP for Markov Additive and Arrival, respectively,

Processes; see [4], p. 302.

2
GMArP is our own generalization of Batch Markovian Arrival Processes (BMArPs),

whereby batch sizes can be real numbers.
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• A key result enabling continuous martingale constructions

from general MAPs by solving ODEs (Lemmas 5 and 6).

• Providing (almost) explicit and closed-form bounds on wait-

ing time distributions in multiclass ΣGI/G/1 queues, includ-
ing heterogeneous scenarios (Examples 1-3 in § 4).

• Several simulations illustrating almost exact bounds in heavy-

traffic.

• Linear time computational complexity in analyzing queues

with a superposition of GMArPs (§ 5.3). Effective bandwidth

achieves the same complexity but with very poor numerical

accuracy, whereas exact results are typically subject to an

exponential complexity.

• The overall method extends to random and possibly non-

stationary service, using roughly the same underlying re-

sults.

An important auxiliary result for future studies is

• Isolating a single source for numerical inaccuracies in King-

man’s technique (Lemma 2).

In the rest of the paper we first summarize Kingman’s technique

and give new insight into the bounds’ (in)accuracy. In § 3 we pro-

vide the main technical result of the paper. Several applications to

multiclass ΣGI/G/1 and Markov Additive Processes (MAPs) queues

are considered in § 4 and § 5. In § 6 we provide a more compre-

hensive discussion on related work, and also comment on possible

extensions of the proposed technique. We conclude the paper in § 7.

Appendices §A and § B provide detailed proofs and additional nu-

merical results.

2 KINGMAN’S BOUND IN SPACE AND TIME
DOMAIN QUEUEING MODELS

In this section we summarize Kingman’s [30] martingale-based

technique in two queueing models:

• Queueing models in the space domain, i.e., GI/G/1 queues

(the model originally solved in [30]) and discuss their ex-

tension to multiclass ΣGI/G/1 queues (whose input is not

GI due to the lack of closure of renewal processes under

multiplexing, unless Poisson);

• Queueing models in the time domain, i.e., queues with gen-

eral Markov Additive Processes (MAPs) comprising many

arrival models subject to correlation such as Markov Fluids

(MFs), Markov Modulated Poisson Processes (MMPPs), or

Markovian Arrival Processes (MArPs).

The purpose of this summary is to illustrate the key ideas and

similarities in the two models, relative to Kingman’s technique, and

to thus justify the development of a “unified" analysis.

2.1 Space Domain
The classical queueing model consists of two sequences of iden-

tically distributed interarrival times (Ti )i ∈N (when do jobs arrive

at some queueing server/station?) and service times (Si )i ∈N (how

long does each job take to being served?). A typical assumption is

that (Ti )i and (Si )i are mutually independent. This is the GI/G/1
queue.

2.1.1 Kingman’s Bound. While an exact and computationally

tractable analysis of queues with general distributions is hard, an

approximate solution (in terms of stochastic bounds) can be quickly

given. Focusing on the waiting timeWn (how long does the nth job

wait in the queue prior to being served?), its distribution converges

to that of

W := sup

n≥0
{U1 +U2 + · · · +Un } , (1)

whereUn := Sn −Tn for n ≥ 1 and subject to the stability condition

E [Un ] < 0 (by convention, when n = 0, the corresponding element

in the ‘sup’ is 0) (see, e.g., Proposition 2.1 in [44]).

The key idea to approximateW ’s distribution is a duality be-

tween stationary distributions and first passage probabilities for

random walks, i.e.,

P (W ≥ σ ) = P (T < ∞) , (2)

where T := inf {n : U1 + · · · +Un ≥ σ } is the first passage time

(also a stopping time)
3
. Let the exponential martingale

Xn := eθ (U1+U2+· · ·+Un ) ,

where θ > 0 satisfies E
[
eθUn

]
= 1 (its existence is guaranteed by

stability). Then, according to the optional sampling theorem for

some finite n

1 = E [X0] =E [XT∧n ] = E [XT∧n1T ≤n ] + E [XT∧n1T >n ]
≥E [XT∧n1T ≤n ] = E [XT 1T ≤n ]

=E
[
eθ (U1+U2+· · ·+UT )

1T ≤n
]

≥eθσE [1T ≤n ] = eθσ P (T ≤ n) .

(3)

The need for the parameter n stems from a technicality of the

optional sampling theorem. By taking n → ∞ the final result is

Theorem 1. (Kingman’s Bound) In the model above

P (W ≥ σ ) ≤ e−θσ . (4)

The result is quite general in terms of the distributions ofTi and
Si ; service times must however have a moment generating function,

otherwise, θ could not be constructed as above. Note also that the

result is (almost) explicit, except for the construction of θ which

generally requires a numerical procedure.

2.1.2 On the Bound’s Accuracy. There are two inequalities in

the derivations of Kingman’s bound from (3). We next show that

the first one holds in the limit as an equality:

Lemma 2. In the model above

lim

n→∞
E [XT∧n1T >n ] = 0 .

Proof. Construct the stopped martingale

Yn := XT∧n

which satisfies Xn1T >n = Yn1T >n . We show next that Yn is uni-

formly integrable.

Fixing ε > 0 and n ≥ 0 we need to find K < ∞, independent of

n, such that

E
[
Yn1Yn>K

]
< ε .

3
The same idea was also used in risk analysis, whereby the right-hand side in (2) has

the interpretation of ‘ruin probability’ [3].
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Let us rewrite

E
[
Yn1Yn>K

]
= E

[
XT∧n1T >n1Yn>K

]
+ E

[
XT∧n1T ≤n1Yn>K

]
= E

[
Xn1T >n1Xn>K

]
+ E

[
XT 1T ≤n1XT >K

]
. (5)

From the definition of T , the first term in the sum is 0 when K >
eθσ . Rewrite the second term as E

[
XT 1T ≤n1XT 1T ≤n>K

]
. From

the second line of (3), with n → ∞, we obtain that XT 1T <∞ is

integrable, and therefore (see, e.g., [50], p. 127) there exists a K < ∞
such that

E
[
XT 1T <∞1XT 1T <∞>K

]
< ε .

Since XT 1T ≤n1XT 1T ≤n>K ≤ XT 1T <∞1XT 1T <∞>K it then follows

that the second term in (5) can be made arbitrarily small. Hence,

Yn is uniformly integrable.

According to the martingale convergence theorem (see, e.g., [50],

p. 134), Y := limn Yn exists a.s. (and also in L1
).

We finally obtain that

lim

n→∞
E [XT∧n1T >n ] = lim

n→∞
E [Xn1T >n ] = E

[
lim

n
Xn1T >n

]
= E

[
lim

n
Yn1T >n

]
= E

[
lim

n
Yn limn

1T >n

]
= E

[
lim

n
Yn1T=∞

]
= E

[
lim

n
Xn1T=∞

]
≤ E

[
lim

n
Xn

]
= 0 .

In the first line we could exchange the limit with the expectation

from the bounded convergence theorem (the definition ofT implies

that XT∧n1T >n ≤ eθσ ). In the second line we could split the limit

of a product in the product of limits due to the a.s. convergence
of Yn . In the last line we used the fact thatU1 +U2 + · · · +Un is a

divergent random walk with negative drift. �

The previous result indicates that the accuracy of Kingman’s

bound reduces to that of the straightforward bound

E
[
eθ (U1+U2+· · ·+UT )

1T ≤n
]
≥ eθσ P (T ≤ n)

from the last inequality in (3). A refinementwas provided by Ross [46],

i.e.,

sup

y≥0
K(y)eθσ P (T ≤ n) ≥ E

[
eθ (U1+U2+· · ·+UT )

1T ≤n
]

≥ inf

y≥0
K(y)eθσ P (T ≤ n) , (6)

where

K(y) = E
[
eθ (U1−y) | U1 ≥ y

]
.

These bounds immediately lend themselves to bounds on the wait-

ing time distribution:

Lemma 3. (Ross’ Bounds) In the model above
1

supy≥0 K(y)
e−θσ ≤ P (W ≥ σ ) ≤ 1

infy≥0 K(y)
e−θσ . (7)

Remarkably, these bounds are exact for the GI/M/1 queue (see [46]).

As a side remark, the proof for the lower bound in (6) uses an in-

genious argument involving an additional stopping time. Using

Lemma 2, however, the lower bound can be derived exactly as the

upper bound, except for replacing the ‘inf ’ with ‘sup’.

We give an alternative proof of Lemma 3 in Appendix §A which

can be immediately extended to generalize Ross bound from (6) to

the case when (Un )n is a homogeneous Markov chain.

2.1.3 OpenQuestion: ΣGI/G/1. Consider the multiclass ΣGI/G/1
queue, whereby the arrivals are driven by multiple renewal se-

quences (T ki )i with k = 1, 2, . . . Unless the individual sequences

are exponentially distributed, the aggregate interarrival process

(essentially the spacings of order statistics) is not a renewal pro-

cess. Consequently, the corresponding process Xn is no longer a

martingale and the above method fails. An additional complication

is that, in general, the aggregate interarrival process is not even

stationary, and hence the existence of a steady-state forWn is not

guaranteed by Loynes’ condition for G/G/1 queues (which requires

the stationarity of the sequence (Ti , Si )i and E[Si ] < E[Ti ]).
Obtaining queueing bounds inmulticlass ΣGI/G/1 queues, alike (4),

is open. The related literature include exact results in terms of

Laplace transforms (see Theorem 4 in [6]) and approximations on

the expected waiting timeW in heavy-traffic (see Proposition 1

in [6]). Our contribution is the derivation of closed-form stochastic

bounds on the distribution of W, alike in the GI/G/1 case.

2.2 Time Domain
The other common queueing model consists of a compound arrival

process A(t) (how many jobs arrived by time t?) and a server pro-

cessing the arrivals at some rate (either constant or random). The

index t represents ‘time’, whereas the index n in the previous model

represents ‘space’ (i.e., job number).

Assume a continuous-time model, a constant rate C > 0 for the

server, and a stability condition lim supt
A(t )
t < C . Focusing on

the backlog process Q(t) (how many jobs are in the queue at time

t ), under certain stationarity and ergodicity conditions, a limiting

distribution of Q(t) exists, and that is equal to that of

Q := sup

t ≥0
{A(t) −Ct} . (8)

(we assume that A(t) is a reversible process to simplify notation).

To compute stochastic bounds on the distribution of Q , King-
man’s technique can be extended from the space to the time domain.

One has to first construct an appropriate martingale, e.g.,

Xt := eθ (A(t )−Ct ) ,

in the case when A(t) has independent increments, under an appro-

priate condition on θ . Following the same steps as before, the same

elegant approximation can be obtained

P (Q ≥ σ ) ≤ e−θσ .

(For a complete proof in the general case with not necessarily

independent increments see Theorem 7.)

An important observation about the technique is that it does

not require the existence of a steady-state (non-ergodic Markovian

arrival processes can be addressed). The explanation is that the

produced backlog bounds are transient, i.e., they hold for P(Q(t) ≥
σ ) for any time t ; the same observation holds in the space domain.

An advantage of the time domain model is its suitability to en-

code the correlation structure in the arrivals (e.g., driven by some

Markov process). Moreover, analyzing queues with multiplexed

arrivals Ai (t) is very convenient. Indeed, by assuming the statisti-

cal independence of Ai (t) and a constant rate server, one can let

A(t) := ∑
i Ai (t) in the representation of Q from (8) and apply the

same steps as above to obtain a bound on Q’s distribution.
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Based on this last observation, we will analyze the multiclass

ΣGI/G/1 queue by framing the model in the time domain where

multiplexing is seemingly ‘easy’ (see § 4).What is noteworthy is that

the martingale construction in the transformed domain is driven

by the same general/unified result which provides conditions for

the martingale construction from pure time-domain based arrivals.

3 A MARTINGALE TRANSFORM VIA ODE
Here we present the main result of this paper, i.e., a necessary and

sufficient condition for Markov Additive Processes (MAPs) to admit

martingale representations. In a continuous-time model, we adopt

a simplified definition of a MAP by Pacheco and Prabhu [39] (for a

more general version see [14]):

Definition 4. A bivariate process (A(t),Mt )t is a Markov Addi-

tive Process if and only if
(1) the pair (A(t),Mt ) is a Markov process in R2,
(2) A(0) = 0 and A(t) is nondecreasing,
(3) the (joint and conditional) distribution of

(A(s, t),Mt | A(s),Ms )
depends only onMs .

Mt is a background process and A(t) is an additive processes

counting arrivals up to time t ; we write A(s, t) := A(t) −A(s). Note
thatMt is a Markov process andA(t) has conditionally independent
increments (conditioning on the states ofMt ).

Next we give the main result, first in the (time) homogenous

case, i.e., the law P (A(s + τ , t + τ ) ≤ x ,Mt+τ = y | Ms+τ = z) is in-
variant under the time shift τ . First, denote by ‘Im’ the image of a
function, e.g., Im(Mt ) is the set of states ofMt .

Lemma 5. (Time-Homogeneous Case)Consider a time-homogenous
Markov Additive Process (A(t),Mt ), a random function h : Im(M) →
R+, the parameters y ∈ Im(M), C,θ > 0, and define for s ≥ 0

φy (s) := E
[
h(Ms )eθ (A(s)−Cs)

��� M0 = y
]
.

Then d
ds φy (s)

���
s=0
= 0 for all y ∈ Im(M) if and only if the process

h(Mt )eθ (A(t )−Ct ) (9)

is a martingale relative to the natural filtration.

An explicit exponential martingale for MAPs is given in As-

mussen [4] (see Proposition 2.4, p. 312) by solving for an eigen-

value/vector problem. In connection to this result, Lemma 5 is

more general in that the state-space of Mt can be uncountable

(e.g., R); moreover, the lemma can be immediately extended to the

time-inhomogeneous case (see Lemma 6). These two features are

instrumental for the later applications. An additional advantage

of Lemma 5 is that the necessity of the differentiability condition

ensures the uniqueness of exponential martingales of the form from

Eq. (9) for several MAP examples treated in § 5.

We remark that the sufficiency of the differentiability condi-

tion is trivial. Indeed, let a time-continuous martingale Xt and

φX0
(s) := E [Xs | X0]. Then d

ds φX0
(s) = 0 because φX0

(s) = X0,

i.e., a constant, by definition. The key result in Lemma 5 is thus

the necessary condition, which critically relies on the underlying

Markov structure.

Proof. Let (Ft )t be the natural filtration generated by (A(t),Mt ).
Note first that, by homogeneity, for any t ≥ 0:

E
[
h(Mt+s )eθ (A(t,t+s)−Cs)

��� Mt = y
]
= φy (s) .

The martingale property is equivalent to

E
[
h(Mt+s )eθ (A(t,t+s)−Cs)

��� Ft ] = h(Mt ) ,

for any s, t ≥ 0. However, it suffices to show that for any s ≥ 0

φM0
(s) = E

[
h(Ms )eθ (A(s)−Cs)

��� M0

]
= h(M0) ,

due to the time-homogeneity and the Markov property. By assump-

tion, the derivative of φM0
(s) vanishes at s = 0. Next, we show that

the derivative also vanishes for arbitrary s > 0, i.e.,
d
ds φM0

(s) ≡ 0:

d

ds
φM0

(s) = lim

∆s→0

1

∆s
E
[
h(Ms+∆s )eθ (A(s+∆s)−C(s+∆s))

−h(Ms )eθ (A(s)−Cs)
���M0

]
= lim

∆s→0

1

∆s
E
[
E
[
h(Ms+∆s )eθ (A(s+∆s)−C(s+∆s))

−h(Ms )eθ (A(s)−Cs)
���Fs ] ���M0

]
= lim

∆s→0

1

∆s
E
[
eθ (A(s)−Cs)E

[
h(Ms+∆s )eθ (A(s,s+∆s)−C∆s)

−h(Ms )
���Fs ] ���M0

]
= lim

∆s→0

1

∆s
E
[
eθ (A(s)−Cs)E

[
h(Ms+∆s )eθ (A(s,s+∆s)−C∆s)

−h(Ms )
���Ms

] ���M0

]
= lim

∆s→0

E

[
eθ (A(s)−Cs)

1

∆s

(
φMs (∆s) − φMs (0)

) ���� M0

]
= E

[
eθ (A(s)−Cs) lim

∆s→0

1

∆s

(
φMs (∆s) − φMs (0)

) ���� M0

]
= E

[
eθ (A(s)−Cs)

d

ds
φMs (0)

���� M0

]
= 0 .

In the sixth equation we applied the dominated convergence the-

orem, along with the definition of differentiability (the function

1

∆s
(
φMs (∆s) − φMs (0)

)
is bounded within a vicinity of 0), to inter-

change the limit and the expectation. The proof completes by the

observation:

φM0
(s) = φM0

(0) +
∫ s

0

d

du
φM0

(u)du = h(M0) + 0 .

�

Next we present the extension to the time-inhomogeneous case.

Lemma 6. (Time-Inhomogeneous Case) Under the same condi-
tions from Lemma 5, except for allowing the MAP to be inhomoge-
neous, define

φt,y (s) := E
[
h(Mt+s )eθ (A(t,t+s)−Cs)

��� Mt = y
]
.

Then d
ds φt,y (s)

���
s=0
= 0 for all y ∈ Im(M) and t ≥ 0 if and only if

the process
h(Mt )eθ (A(t )−Ct )

is a martingale.
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We note that Lemmas 5 and 6, as well as their proofs, are al-

most identical, with the difference of specifically accounting for

the starting time t in the latter.

In the analysis of the ΣGI/G/1 queue we shall consider Mt as

the remaining lifetime of a renewal process, in which case the

associated MAP is inhomogeneous; in all other examples from § 5

we shall consider homogeneous MAPs.

3.1 Queueing Metrics
Recalling our goal of developing a unified framework for multiclass

ΣGI/G/1 and MAPs queues, we present such a unified result next.

Theorem 7. Consider an arrival process A(t) being served at rate
C , and suppose that there exists the martingale process

Xt := h(Mt )eθ (A(t )−Ct )

for some parameter θ > 0, random process Mt , and non-negative
function h(). Then the stationary backlog process Q satisfies

P(Q ≥ σ ) ≤ E[h(M0)]
infm∈Im(M ) h(m)e

−θσ .

Moreover, if the sizes of the arrivals’ data units are bounded by ξ ,
then the following lower bound holds:

P(Q ≥ σ ) ≥ E[h(M0)]
supm∈Im(M ) h(m)e

−θ (σ+ξ ) .

We denoted with abuse of notation

Im(M) = {m | ∃t : Mt =m ∧ a(t) ≥ C} ,
where a(t) is the instantaneous arrival process of A(t), i.e., A(t) =∫ t
0
a(s)ds . The clause ‘a(t) ≥ C’ becomes clear in the proof and it

can tighten the bounds significantly. We note that waiting time

bounds are similar.

The parameter θ is exactly the asymptotic decay rate of the back-

log process from the large-deviation limit σ−1
logP(Q ≥ σ ) → −θ ,

as σ → ∞, which is at the basis of the effective bandwidth ap-

proximation P(Q ≥ σ ) ≈ e−θσ [13]; note the exact match between

the decay rates in the upper and lower bounds from the theorem.

Compared to this approximation, the crucial difference in the up-

per bound is the prefactor in front of the exponential. For some

multiplexed arrivals the prefactor is exponential in the number of

multiplexed sources (see, e.g., (13)), as conjectured in [13], which

can make a substantial numerical difference to the effective approx-

imation (see [13, 15] for numerical results).

The random processMt depends on the structure of A(t); in the

case of the GI/G/1 queue,Mt is the remaining lifetime of the arrivals’

renewal process (see § 4); in the case of MAP,Mt is the background

process itself (see § 5). The random function h() captures the cor-
relation structure of the arrivals. In the case of renewal processes,

h() is a constant for discrete-time martingales (see the Kingman’s

martingale from § 2.1); a more general form holds for continuous-

time martingales (see the construction from Corollary 8) to capture

the construction in continuous time. In the MAP case, h() is con-

stant for processes with independent increments, and non-constant

otherwise; see the constructions from § 5.

The proof for the upper bound (see Appendix §A) is a straight-

forward adaptation of the proof of Kingman’s bound from (3) to

the given martingale; similar results, and proofs, are available in

the literature (e.g., [9, 15, 40]). The proof for the lower bound is an

immediate extension of the proof for the upper bound by leveraging

Lemma 2; an alternative yet more compounded proof follows by

defining an additional stopping time as in [46] (this ingenious idea

was employed in [9], p. 342, and [16]). For a follow-up discussion

see the Related-Work section § 6.1.

3.2 Multiplexing
An important benefit of themartingale characterization fromLemma 5

is that analyzing queues with multiplexed MAPs is convenient. Let

two independent MAPs (A1(t),M1,t ) and (A2(t),M2,t ) being served
at rateC . One needs a splitC1+C2 = C to construct the martingales

h1(M1,t )eθ (A1(t )−C1t )
and h2(M2,t )eθ (A2(t )−C2t )

, respectively, sub-

ject to the conditions from Lemma 5, and with the same ‘θ ’. Then the
closure property of independent martingales under multiplication

yields the martingale

h1(M1,t )h2(M2,t )eθ (A1(t )+A2(t )−t (C1+C2)) .

In this way the result from Theorem 7 applies directly. We shall

provide several examples in § 4 and § 5.

We also note that the alternative approach of constructing an

aggregate MAP from (A1(t),M1,t ) and (A2(t),M2,t ) can be compu-

tationally very expensive (e.g., exponential explosion in the number

of states) due to Kronecker sums (see [39] and § 5.3.1 for a concrete

example); moreover, constructing martingales with different θ ’s
and then normalizing (e.g., using Jensen’s inequality as in [41]) can

lend itself to numerical accuracy issues.

4 APPLICATION 1: THE ΣGI/G/1 QUEUE
We start with a single (stable) GI/G/1 queue. To focus on the sta-

tionary waiting time distribution, it is convenient to represent the

interarrivals as (Ti )i ∈Z∗ such that Ti ≥ 0 and

· · · < −T−1 −T0 < −T0 ≤ 0 < −T0 +T1 < −T0 +T1 +T2

(note that T0 is used for centering). Let P0(·) = P (· | T0 = 0) be the
Palm (conditional) probability that one job arrives at time 0. In

other words, in the conditional space, the arrival points are

· · · < −T−2 −T−1 < −T−1 < 0 < T1 < T1 +T2 < . . . .

For brevity, we shall drop the superscript in P0 in this section; also,

the expectation E[·] is relative to the same Palm measure.

Denote the service times by (Sj )j ∈Z. As mentioned in § 2.2, we

will analyze the GI/G/1 queue by framing it in a time domain model:

Define the compound arrival process up to time 0 as

A(t) :=
N (t )∑
j=1

S−j

for t > 0 and A(0) := 0, where N (t) is the counting process

N (t) := max

n ∈ N |
n∑
j=1

T−j ≤ t

 .
(again, for brevity, we prefer to write A(t) instead of A(−t), and
similarly for N (t)).
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The stationary waiting time distribution is

P (W ≥ σ ) = P
(
sup

t ≥0
{A(t) − t} ≥ σ

)
. (10)

Recall that P is the Palm measure under having an arrival at time

0. The event in the right-hand side (Palm) probability corresponds

to the waiting time of the arrival at 0; while slightly cumbersome

for a single queue, the Palm representation will be helpful in the

multiclass case.

Let us remark that unless N (t) is Poisson then neither the expo-

nential process

Xt := eθ (A(t )−t ) ,

nor a re-weighed one withA(t) replaced by N (t) can be martingales,

for non-trivial values of θ . To enable martingale constructions suit-

able for Theorem 7, we shall regard N (t) as an inhomogeneous

Poisson process with a random rate λ(R(t)) where

R(t) := t −
N (t )∑
j=1

T−j ,

i.e., the time elapsed from some time −t to the first arrival time (also

called the remaining lifetime in the language of renewal processes),

whereas λ(s) is the hazard rate

λ(s) := lim

∆s→0

P (s < T1 ≤ s + ∆s | s < T1)
∆s

=
f (s)

1 − F (s) ,

and f () and F () are the density and distribution functions of T1
(under the original probability measure); note that the hazard rate

resets itself at the arrival times

∑
j T−j .

We can now apply Lemma 6 to construct a martingale for the

GI/G/1 queue:

Corollary 8. GI/G/1 Martingale (Time Domain) In the sce-
nario above, let θ satisfying E

[
e−θT1

]
E

[
eθS1

]
= 1 and

h(t) :=
1 − E

[
eθS1

] ∫ t
0
e−θ s f (s)ds

e−θ t (1 − F (t))
.

Then the process
h(R(t))eθ (A(t )−t )

is a martingale.

The condition on θ ensures the non-negativity of h().

Proof. Let a time t . Since Ti ’s are independent, the probabil-

ity that a job arrives during (t , t + ∆t] is λ(R(t))∆t + o(∆t) where
limt→0

o(∆t )
∆t = 0. Note that the hazard rate replaces the constant

rate λ in the case of the Poisson process, and that we are in the

context of Lemma 6 withMt = R(t).
Due to the underlying renewal property, we can assume without

loss of generality that t ∈ [0,T1), i.e., R(t) = t . The martingale

condition from Lemma 6 becomes

lim

∆t→0

1

∆t

[
λ(t)∆th(0)E[eθS1 ]e−θ∆t

+(1 − λ(t)∆t)h(t + ∆t)e−θ∆t − h(t)
]
= 0 .

Note that in the first term we do have h(0), and not h(t + ∆t),
because a job arrival “refreshes” the counter R(t). Taking the limit

and applying Taylor’s expansion (i.e., ex∆t = 1+x∆t +o(∆t)) leads
to the ODE

h′(t) = h(t) (λ(t) + θ ) − λ(t)h(0)E[eθS1 ] . (11)

By setting the initial value problem with h(0) = 1 the proof is

complete. �

Next we give three applications of Corollary 8 to ΣGI/G/1 queues.

4.1 Example 1: ΣWeibull/G/1

There are N mutually independent homogeneous classes (indexed

by i) having Weibull distributed interarrivals Ti, j with scale param-

eter 1 and shape parameter 2, i.e., P(T1,1 ≤ t) = 1 − e−t
2

for which

E[T1,1] =
√
π
2
. To have a utilization factor ρ < 1, the service times

of the jobs Si, j satisfy E[S1,1] =
√
π

2N ρ.

Corollary 9. A bound on the waiting time for each class is

P(W ≥ σ ) ≤ K(θ )N−1e−θNσ ,

where

K(θ ) := E
[
eθNS1,1

]
e
θ 2
4 er f c

(
θ

2

)
and θ satisfies E

[
e−θT1

]
E

[
eθNS1,1

]
= 1.

Weuse the standard notation er f (x) := 2√
π

∫ x
0
e−s

2

ds and er f c(x) :=

1 − er f (x); E
[
e−θT1

]
is given in (21).

Recalling that we work with a Palm measure, the (Palm) bound

holds for the arrivals of a particular class. It is important to remark

that in the case of a single class (N = 1), the bound (relying on

a continuous-time martingale) recovers Kingman’s bound from

Theorem 1 (relying on a discrete-time martingale); that is because

R(0) = 0 and thus h() is a constant. In the case of N − 1 additional

classes, we need to keep track of the remaining lifetimes of these

at time 0—when an arrival from the first class happens—which

essentially lend themselves to the prefactor K(θ )N−1
(for more

details see the proof).

4.2 Example 2: ΣErlang-k/G/1
HereTi, j are Erlang-k distributedwith parameter λ, i.e., E[T1,1] = k

λ .

The service times satisfy E[S1,1] = k
λN ρ.

Corollary 10. A bound on the waiting time is the same as in
Corollary 9 except for

K(θ ) := λ

k

E
[
eθNS1,1

]
− 1

θ
,

and θ satisfying
(
1 + θ

λ

)−k
E

[
eθNS1,1

]
= 1.

Figs. 1.(a-d) illustrate upper bounds vs. simulations for the CCDF

of the waiting time in heavy-traffic (ρ = 0.99). In the Erlang-k case,

λ := 2k√
π
such that E

[
T1,1

]
is the same as in the Weibull case. The

simulations are obtained from 10
7
samples, each representing the

waiting time of the 10
5
th job starting from an empty system. The

tail instability is due to the simulation length; note that Θ
(
10

12
)

simulation runtime is insufficient to render stable tails in the shown
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Figure 1: Waiting-time CCDF (upper bounds vs. simula-
tions); (N = 5, ρ = 0.99)

intervals. Besides the accuracy of the bounds, an interesting obser-

vation is that in the case of constant service times, the inter-arrival

distribution makes a substantial difference on waiting times; this

effect disappears however in the case of exponential service times.

Appendix § B provides additional simulations (Fig. 9) illustrating

that the bounds degrade at lower utilizations, and especially for

constant service times.

The issue of the bounds’ tightness is closely related to the es-

timation of the overshoot. Having a (Markov) random walk with

increments (Ui )i , and a value σ ≥ 0, the overshoot is defined as

Rσ = inf{U1 +U2 + · · · +Un − σ | U1 +U2 + · · · +Un ≥ σ } .

In the proof of Theorem 7, the derivation of the bounds mainly

relies on the crude estimation Rσ ≥ 0; see also the discussion

around Lemma 2. Without resorting on a rigorous argument, we

believe that in heavy-traffic the last increment behaves as a typ-

ical increment, whereas in lower-traffic the last increment gets

larger; ignoring this information is a possible cause for the bounds

degradation. For potential improvements of the crude overshoot

estimation see Chang [11].

4.3 Example 3: ΣWeibull + ΣErlang-k/G/1
Let us now consider a heterogeneous mix of N1 Weibull and N2

Erlang-k classes, mutually independent. We use the same parame-

ters as before, including λ := 2k√
π
in the Erlang-k case, to normal-

ize the arrival rates of the two classes. The service times satisfy

E[S1,1] = k
λN ρ where N := N1 + N2 and ρ is the overall utilization.

Denote the Weibull and Erlang-k compound processes as Ai (t) for
i = 1 . . .N1 and i = N1 + 1, . . . ,N , respectively.

We next illustrate the algorithm for computing a waiting time

bound in the case of heterogeneous input. Recall the key idea

from § 3.2 of obtaining martingales with the same ‘θ ’ for both
classes (in this case N1 Weibull and N2 Erlang-k), and also the

0 10 20 30 40
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100

Bounds
Simulations

(a) N1 = 1 and N2 = 4
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10-4

10-2
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Bounds
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(b) N1 = 4 and N2 = 1

Figure 2: Waiting-time CCDF for a Weibull job; N1 Weibull
and N2 Erlang-k classes; constant (D) service times; (N = 5,
k = 3, ρ = 0.99)

proofs of Corollaries 9 and 10. We thus look for a split

w1N1 +w2N2 = N

which yields the martingales

hW (R1(t))eθ1
N
w
1

(A1(t )−w
1

N t)

for a single Weibull compound process A1(t) and

hE (RN1+1(t))e
θ2 N

w
2

(AN
1
+1(t )−w

2

N t)

for a single Erlang-k compound process A2(t); the ‘W’ and ‘E’ sub-

scripts correspond to the two classes.

The same ‘θ ’ constraint reduces to

θ :=
θ1N

w1

=
θ2N

w2

.

We also note the additional constraints onw1 andw2 to guarantee

the existence of the two martingales above

ρ < w1 <
N − N2ρ

N1

,

which are merely stability conditions (e.g., the rate of A1(t) is less
than

w1

N ). The existence ofw1 satisfying the same ‘θ ’ constraint is

guaranteed by the continuity of f1(w1) := θ1N
w1

and f2(w1) := θ2N
w2

,

and the extreme points f1(ρ) = 0 (because the corresponding θ1 is

zero) and f2(N−N2ρ
N1

) = 0.

Multiplexing N1 Weibull classes and N2 Erlang-k classes yields

the martingale

N1∏
i=1

hW (Ri (t))
N∏

i=N1+1

hE (Ri (t))eθ (A(t )−t )

where A(t) := ∑N
i=1Ai (t) is the overall compound process. There-

fore, a bound on the waiting-time of a Weibull class is

P(W ≥ σ ) ≤ KW (θ )N1−1KE (θ )N2e−θσ ,

where KW (θ ) and KE (θ ) are the K(θ )’s from Corollaries 9 and 10,

respectively. In turn, the waiting time of an Erlang-k class is the

same except for the prefactor KW (θ )N1KE (θ )N2−1
.

We illustrate the accuracy of these bounds for a ΣWeibull +

ΣErlang-k/D/1 queue in Fig. 2; both cases of disproportionateWeibull

and Erlang-k classes relative to the other are addressed in (a) and

(b). The numerical settings are the same as in Fig. 1. Results with

similar accuracy were obtained for exponential service jobs (not
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shown here), whereas the accuracy of the bounds degrade at lower

utilization (similar as in Fig. 9 from Appendix § B).

5 APPLICATION 2: QUEUES WITH
MARKOVIAN ARRIVALS

We now apply Lemma 5 to several subclasses of MAPs from tele-

traffic theory: Markov Modulated Fluid (MMF, § 5.1), Markov Mod-

ulated Poisson Process (MMPP, § 5.2), and (Generalized) Markovian

Arrival Processes ((G)MArP, § 5.3).

0 P

µ

λ
P

Figure 3: MMOO process

5.1 Fluid Scenario. MMF
The MMF model assumes that data is infinitely divisible (i.e., a

continuous ‘fluid’), whereas a background processMt determines

the rate at which the fluid arrives at the server:

A(t) =
∫ t

0

Msds . (12)

In the basic Markov-Modulated On-Off (MMOO) model [2],Mt has

two states (denoted for convenience 0 and P ) with transition rates

λ and µ (see Fig. 3). While in state 0 (also referred to as ‘off’) the

process does not generate any fluid; while in state P (also referred

to as ‘on’) the process generates ‘fluid’ at some constant rate P .
Before applying Lemma 5, we remark that the parameter C has

the meaning of the rate of a hypothetical queueing server for the

process A(t). To avoid trivial situations we assume that P > C (i.e.,

the peak rate is greater than the capacity) and that the utilization

factor ρ =
µ

λ+µ P
C satisfies the stability condition ρ < 1.

Corollary 11. (Single MMOO) In the scenario above, let

θ :=
λ

P −C
− µ

C
, h(P) := θC + µ

µ
, and h(0) := 1 .

Then the process
h(Mt )eθ (A(t )−Ct )

is a martingale.

Proof. We distinguish two cases. First, if M0 = 0, then in a

small interval [0,∆s] the process Ms jumps to the ‘on’-state with

probability P ≈ µ∆s (more precisely P = µ∆s + o(∆s)). We have

d

ds
φ0(s)

����
s=0

= lim

∆s→0

1

∆s
E
[
h(M∆s )eθ (A(∆s)−C∆s) − h(0)

���M0 = 0

]
= lim

∆s→0

1

∆s

(
µ∆sh(P)eθ∆s(P−C) + (1 − µ∆s)e−θC∆s − 1

)
= µh(P) − µ − θC = 0 ,

after applying Taylor’s expansion ex∆s = 1 + x∆s + o(∆s).
Similarly, ifM0 = P then the process jumps in [0,∆s] with prob-

ability P ≈ λ∆s so that

d

ds
φP (s)

����
s=0

= lim

∆s→0

1

∆s
E
[
h(M∆s )eθ (A(∆s)−C∆s) − h(P)

���M0 = P
]

= lim

∆s→0

1

∆s

(
λ∆se−θC∆s + (1 − λ∆s)h(P)eθ∆s(P−C) − h(P)

)
= λ − λh(P) + h(P)θ (P −C)

= h(P)
(
λ

µ

θC + µ
− λ + θ (P −C)

)

= h(P)
(
λ
µ(P −C)

Cλ
− λ + λ − µ(P −C)

C

)
= 0 .

�

The MMOO martingale appeared in a general form for Markov

fluids in Ethier and Kurtz [21] (see Lemma 3.2 therein), which was

instantiated in the MMOO case by Palmowski and Rolski [40]. Note

that Corollary 11 not only provides an elementary proof, but it also

guarantees the unicity of exponential martingales of the form from

Eq. (9) for the MMOO process (subject to a fixed C).

Next we consider an aggregate of N MMOO processes repre-

sented in Fig. 4. The corresponding aggregate process is A(t) and
the background process with N + 1 states is Mt ; the utilization

factor ρ =
µ

λ+µ PN
C satisfies ρ < 1.

0 P 2P . . . NP

N µ

λ

(N − 1)µ

2λ

µ

Nλ

P 2P NP

Figure 4: An aggregate of N MMOO processes

Corollary 12. (Multiplexed MMOO) In the scenario above, let

θ =
N

C

(
λC

NP −C
− µ

)
, h(iP) =

(
1 +

Cθ

N µ

)i
i = 0, . . . ,N .

Then the process

h(Mt )eθ (A(t )−Ct )

is a martingale.

Bounds on the waiting time distribution follow directly from

Theorem 7. Denoting for convenience c := C
N and b := 1 + cθ

µ we

have

P (W ≥ σ ) ≤
∑N
i=0 πib

i

b
c
P

e−θσ ,
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where πi =
(N
i
) (

µ
λ+µ

)i (
λ

λ+µ

)N−i
are the stationary probabilities

ofMt . We deliberately used the weaker bound with b
c
P , instead of

b ⌈ cP ⌉
, which lends itself to the ‘expressive’ bound from [15]

P (W ≥ σ ) ≤ KN e−θσ , (13)

where K := ρ
(
ρ−pon
1−pon

) pon
ρ −1

< 1 and pon :=
µ

λ+µ ; the same bound

appeared in [40] yet without the explicit exponential representation

of the prefactor. We also note that in the application of Theorem 7

we have Im(Mt ) = {⌈ cP ⌉, . . . ,N } because at least ⌈ cP ⌉ individual
sources must be ‘on’ to guarantee a(T ) ≥ C at the stopping time

T ; the rest follows from the monotonicity of h(iP). The bounds

from (13) are accurate, at both high (ρ = .9) and moderate (ρ =
.75) utilizations, as illustrated through simulations in [15]. The

fundamental reason is that the bound from (13) captures the right

scaling in N , as conjectured by Choudhury et al. [13].

5.2 Packet Scenario. MMPP
Here we analyze the ‘packetized’ version of the MMF model; we

consider both constant and random packet sizes.

5.2.1 Constant Packet Size. Data consists of indivisible units

(i.e., ‘packets’) of size 1. The instantaneous probability of a packet

arrival is determined by a background process Mt , whereas the

cumulative arrivals process A(t) evolves according to

P (A(t + ∆t) −A(t) = 1) = r (Mt )∆t + o(∆t) , (14)

where r (·) is a rate function. For instance, we letMt be the Markov

process from Fig. 5a, i.e., state space {1, 2} and transition rates µ1
and µ2, in which case r (1) = λ1 and r (2) = λ2.

1 2

µ1

µ2
λ1 λ2

(a)

1 2

p

1 − p

q

1 − q

Expξ1 Expξ2

(b)

Figure 5: MMPP (a) and packet size modulator (b)

To construct a martingale from A(t) using Lemma 5 we need the

following matrix transform: For θ > 0, let

Tθ :=

(
λ1e

θ − µ1 − λ1 µ1
µ2 λ2e

θ − µ2 − λ2

)

and denote by λ(θ ) its spectral radius.

Corollary 13. In the scenario above, pick θ > 0 such that λ(θ ) =
θC , and let h = (h1,h2) be an eigenvector corresponding to Tθ and
λ(θ ). Then the process

h(Mt )eθ (A(t )−Ct )

is a martingale; for notation’s convenience h(i) ≡ hi .
We next apply Theorem 7 in the case of N multiplexed (homoge-

neous) MMPPs Ai (t), with background processes Mi,t , served at

rate C , and utilization ρ < 1. Letting the individual martingales

h(Mi,t )e
θ
(
Ai (t )− C

N t
)

with h(·) and θ as in Corollary 13 (with C replaced by
C
N ), the

aggregate martingale is∏
i
h(Mi,t )eθ (

∑
i Ai (t )−Ct ) .

We then obtain the following upper bound on the waiting time

P (W ≥ σ ) ≤
E

[
h(M1,0)

]N
min{h1,h2}N

e−θCσ . (15)

Assuming that the system is initially stationary, E
[
h(M1,0)

]
=

h1
µ2

µ1+µ2 +h2
µ1

µ1+µ2 . The lower bound is similar except for replacing

the ‘min’ by ‘max’, and σ by σ + 1 (as packets have size 1).

5.2.2 Random Packet Size. We extend the previous model from

constant to random packet sizes. We assume that a Markov chain

Ln determines the size of the n-th packet. The chain Ln alternates

between two states with transition probabilities p and q as in Fig. 5b.
The packets are exponentially distributed with rates ξ1 and ξ2 de-
pending on the chain’s state; other types of distributions can be

considered. Note that in the case ξ1 = ξ2 we have the scenario with
i.i.d. packet sizes.

If A(t) is the cumulative arrival process with constant packet

sizes (as in Subsection § 5.2.1), the arrival process with random

packets Arnd(t) has the representation

Arnd(t) :=
A(t )∑
k=1

SLk ,k ,

where (S
1,k )k ∈N and (S

2,k )k ∈N are i.i.d. sequences of exponential

random variables with rates ξ1 and ξ2, respectively. Note that the
process (

Arnd(t),
(
Mt ,LA(t )

))
is a MAP in the sense of Definition 4.

In order to apply Lemma 5 to this example, we need the following

matrix transform Tθ for θ > 0

Tθ :=

©«
(1 − p) λ1EeθS1,1 − µ1 − λ1 pλ1Ee

θS2,1 µ1 0

qλ1Ee
θS1,1 (1 − q) λ1EeθS2,1 − µ1 − λ1 0 µ1

µ2 0 (1 − p) λ2EeθS1,1 − µ2 − λ2 pλ2Ee
θS2,1

0 µ2 qλ2Ee
θS1,1 (1 − q) λ2EeθS2,1 − µ2 − λ2

ª®®®®¬
.
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Figure 6: Waiting-time CCDF for N MMPPs; constant and
random packet sizes; (N = 5, µ1 = 0.1, µ2 = 0.5, λ1 = 1, λ2 = 25,
p = 0.1, q = 0.9, E[ξ1] = 0.2, ρ = 0.99)

Let λ(θ ) be its spectral radius.
Corollary 14. In the scenario above, pick θ > 0 such that λ(θ ) =

θC , and leth =
(
h1,1,h1,2,h2,1,h2,2

)
be an eigenvector corresponding

to Tθ and λ(θ ). Then the process

h(Mt )e
θ
(
Arnd(t )−Ct

)
is a martingale.

An upper bound on the waiting time is the same as in Eq. (15)

except for the denominator in the prefactor, which is replaced by

min{h1,1,h1,2,h2,1,h2,2}N according to Corollary 14. In turn, a

lower bound cannot be obtained with Theorem 7 because packet

sizes are unbounded.

Figure 6 illustrates the accuracy of the bounds in the case of an

aggregate of MMPP flows in heavy-traffic (ρ = 0.99). Both cases

of constant and random-size packets are considered; in both cases

the upper bound and simulation lines almost overlap, the former

being slightly above the other. Simulations are obtained from a run

of 10
10

packets of which the first 10% were discarded. Additional

simulations for smaller utilization ρ = 0.75 are shown in Figure 10

in Appendix § B.

5.3 Packet Scenario. MArP and GMArP
As in the MMPP case we address both constant and random packet

sizes.

5.3.1 Constant Packet Size. First we consider Markovian Arrival

Processes (MArPs) that generalize the Markov Modulated Poisson

processes from § 5.2.1.

Definition 15. A Markovian Arrival Process is defined via a pair
(D0,D1) of n × n-matrices such that:

di, j := D0(i, j) ≥ 0 , i , j , d ′i, j := D1(i, j) ≥ 0 ,

di,i := D0(i, i) = −
∑
i,j

di, j −
∑
j
d ′i, j .

The background processMt is aMarkov process with generatorD0+D1

and steady-state distribution π . If a transition ofMt is triggered by an
element of D1, a packet is generated and A(t) increases by 1 (active
transitions); transitions triggered by D0 do not increase A(t) (hidden
transitions):

P (A(t , t + ∆t) = 0,Mt+∆t = j | Mt = i) = D0(i, j)∆t + o(∆t) ,

and

P (A(t , t + ∆t) = 1,Mt+∆t = j | Mt = i) = D1(i, j)∆t + o(∆t) .

Corollary 16. In the scenario above, for θ > 0, let λ(θ ) be the
spectral radius of the matrix

D0 + e
θD1 .

If λ(θ ) = θC and h is a corresponding eigenvector then the process

h(Mt )eθ (A(t )−Ct ) (16)

is a martingale. Moreover, if hr is an eigenvector corresponding to the
spectral radius of the transform matrix

Π−1
(
D0 + e

θD1

)T
Π ,

where Π is the matrix with the steady state distribution π on its
diagonal, then the process

hr (Mr
t )eθ (A

r (t )−Ct )

is a martingale as well.

An immediate consequence of the second part of the Corollary

is that in the general case of not necessarily reversible processes,

an upper bound on the waiting time is the same as in (15), except

for accounting for the "reversed" eigenvector hr .
A key property of MArPs is their stability under superposition:

Given two MArPs (A(t),Mt ) and (A′(t),M ′
t ) with corresponding

matrices (D0,D1) and (D ′
0
,D ′

1
), respectively, the aggregate arrival

process A(t) +A′(t) is a MArP with matrices

(D0 ⊕ D ′
0
,D1 ⊕ D ′

1
) ,

where ‘⊕’ stands for the Kronecker sum. The next result gives the

resulting martingale:

Corollary 17. In the situation with two MArPs as above, for
θ > 0, let λ(θ ) and λ′(θ ) denote the spectral radii of the matrices

D0 + e
θD1 and D ′

0
+ eθD ′

1
,

respectively; let also h and h′ be the corresponding eigenvectors. If
λ(θ ) + λ′(θ ) = θC then the process

h(Mt )h′(M ′
t )eθ (A(t )+A

′(t )−Ct )

is a martingale.

The result generalizes immediately to any number of MArPs.

5.3.2 Random Packet Size. We finally consider Generalized Mar-

kovian Arrival Processes (GMArPs) that generalize the MArPs

from § 5.3.1 by allowing for random packet sizes.

Definition 18. AGeneralizedMarkovianArrival Process (GMArP)
is defined via a sequence (Lk )1≤k<∞ of strictly positive distributions
and a sequence (Dk )0≤k<∞ of n × n-matrices such that

Dk (i, j) ≥ 0 , i , j , for all k ≥ 0 , and

D0(i, i) = −
∑
i,j

D0(i, j) −
∞∑
k=1

∑
j
Dk (i, j) .

The background processMt is aMarkov process with generator
∑∞
k=0 Dk ,

and π denotes its steady-state distribution. If a transition of Mt is
triggered by an element of Dk , a packet is generated with size given
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by Lk . Accordingly, A(t) increases by Xk , i.e., a random variable
independently drawn from the distribution Lk .

If in the above definition we let Dk := 0 for all k ≥ 2, and L1 :=

δ1, i.e., the deterministic distribution on 1, we recover the MArP

scenario from the previous section. Moreover, if only Lk := δk ,
i.e., the deterministic distribution on k , GMArP instantiates to the

Batch Markovian Arrival Process (BMArP) [37].

Corollary 19. In the scenario above, for θ > 0, let λ(θ ) denote
the spectral radius of the matrix

∞∑
k=0

E[eθXk ]Dk .

If λ(θ ) = θC , and h is a corresponding eigenvector, then the process

h(Mt )eθ (A(t )−Ct )

is a martingale. Moreover, if hr is an eigenvector corresponding to the
spectral radius of the transposed matrix

Π−1
( ∞∑
k=0

E[eθXk ]Dk

)T
Π ,

where Π denotes the matrix with the steady state distribution π on
its diagonal, then the process

hr (Mr
t )eθ (A

r (t )−Ct )

is a martingale as well.

Proof. Analogously to the proof of Corollary 16. �

We also note that multiplexing GMArPs can be treated in the

same manner as in Corollary 17, whereas a bound on the waiting

time follows exactly as in the MArP case.

1 2

µ (0)
1

λ(2)
3

λ(1)
1

µ (0)
2

λ(2)
4

λ(1)
2

Figure 7: Example of GMArP

To provide numerical results we consider the GMarP process

from Fig. 7. By convention, the superscript in each transition corre-

sponds to the ‘k’ from Def. 18. More precisely

D0 =

[
−λ1 − λ3 − µ1 µ1

µ2 −λ2 − λ4 − µ2

]
D1 =

[
λ1 0

0 λ2

]
, D2 =

[
0 λ3
λ4 0

]
.

Note that unlike λ1 and λ2, the transitions λ3 and λ4 involve a

change of state, in addition to drawing a packet size from a different

distribution.

In Fig. 8 we consider an aggregate of N = 5 homogeneous

GMArPs, and both constant and exponential packet sizes. The nu-

merical settings normalize the average rate as in the MMPP case

0 50 100
10-4

10-2

100

(a) constant

0 50 100
10-4

10-2

100

Bounds
Simulations

(b) random

Figure 8: Waiting-time CCDF for N GMArPs; constant and
random packet sizes; (N = 5, µ1 = 0.1, µ2 = 0.5, λ1 = 0.3,
λ2 = 10, λ3 = 0.7, λ4 = 15, E[X1] = 1, E[X2] = 3.01, ρ = 0.99)

(Fig. 6); however, we now consider much burstier processes. Sim-

ulations are run as in the MMPP case; similarly, the upper bound

and simulation lines almost overlap.

Let us now comment on the numerical complexity in analyzing

queues with a superposition of N BMArP. The standard approach

consists in computing the generator matrix of the superposed pro-

cess, which has an exponential number of states (in N ) as a conse-

quence of the Kronecker product. Exact results (e.g., on the waiting

time distribution) can be obtained by applying a mix of matrix-

analytic techniques and inversion algorithms of Laplace transforms

(for an overview see [37]). A computationally more effective ap-

proach in the case of MArPs consists in building a n-dimensional

Markov process, where n is the number of states for each (i.i.d.)

MArP; the overall number of states is

(N+n−1
n−1

)
which is generally

much smaller than the exponential. This approach has its roots

in the analysis of GI/PH/N queues [43]; for a discussion of the

applications of this approach, including queues with superposed

MArPs, see [24]. In turn, bounding approaches as in this paper or

the literature (e.g., [9, 36]) are subject to a linear complexity.

6 DISCUSSION
Here we discuss some related work in more detail and comment on

possible extensions of our results.

6.1 Related Work
Kingman’s GI/G/1 bound from (4) was extended to the case of

discrete-time MAPs in Chang and Cheng [10]. Using a different

martingale transform, Duffield [18] improved the bounds by essen-

tially capturing the positiveness of the instantaneous drift at the

underlying stopping time (this fact holds by default in the renewal

case and does not have to be properly accounted for). This improve-

ment can be substantial because in some cases, e.g., bursty On-Off

processes whereby the sum of the transition probabilities between

the two states is less than 1, the prefactor in the exponential bound

is also less than 1; in turn, the prefactor from [10] is always greater

or equal than 1. Another martingale transform was constructed

by Fang et al. [22] using a fixed point argument in the case of the

G/GI/1 queue, allowing for Markovian inter-arrivals; while there

is similarity to Duffield’s approach (which essentially relies on the

eigenvalue/eigenvector problem – a fixed point problem itself), a

qualitative comparison is challenging due to the different bounds’

structures.
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In a more recent work, Jiang and Misra [29] obtained bounds in

ΣGI/G/1 queues. In the ΣD/D/1 case, tight worst-case bounds are
obtained by relying on network calculus models and techniques.

The general case is treated by discretizing time and then directly

applying Kingman’s technique, as outlined in § 2. A proof for the

claimed discrete-time martingale is however not given, and we

believe that it may be challenging due to the loss of the renewal

property in the general case. For Poisson arrivals, the renewal

property is preserved under superposition and the martingale con-

struction holds; the obtained bounds—which are essentially the

same as in this work, as well as in [30] by properly instantiating

the general results—are shown to be numerically accurate.

Kingman also provided a more powerful GI/G/1 bound in [31].

In the notation from § 2.1

P(W ≥ σ ) ≤ γ (σ ) ,

where γ (σ ) is a non-increasing function with 0 ≤ γ (σ ) ≤ 1 such

that for all σ > 0∫ σ

−∞
γ (σ − y)dF (y) + 1 − F (σ ) ≤ γ (σ ) , (17)

where F (y) is the distribution of U1. The bound facilitates the dis-

covery of tighter bounds than the original bound from (4), which is

recovered with γ (σ ) := e−θσ .
This idea was exploited by Liu, Nain, and Towsley [35, 36] in

the case of general discrete-time MAPs, whereby the background

Markov chain can have a general state space. The method extends

immediately to continuous-time MAPs by embedding a Markov

chain to account for the the (discrete-time) structure of the integral

inequality from (17). Notably, the obtained bounds are exact for the
GI/M/1 queue, which also holds for Ross’ bounds from [46] (see (7));

based on this match, it is of interest to qualitatively compare the

bounds from [36, 46] (see the proof of Lemma 3 for the extension

of Ross bounds to the non-renewal case).

Such a qualitative comparison is provided in [35, 36] for the

bounds therein and those from [18], and also from Asmussen and

Rolski [5]; the latter are derived in the context of risk theory (for

the analogy between ruin probabilities and tail bounds on waiting

time see [3]). A deep comparison is however very challenging due

to the different structures of the bounds. Numerical comparison

between the three bounds (and also some corresponding lower

bounds) are given in [36]; we reproduce some tables in Appen-

dix § B (see Figs. (12) and (13), and include our bounds from § 5.2.1

for the MMPP/D/1 queue (see (15)) and § 5.2.2 for the MMPP/M/1

queue; we refer to our bounds as CP (the authors’ initials), and to

the other three similarly (LNT-Liu/Nain/Towsley, D-Duffield, and

AR-Asmussen/Rolski). In the MMPP/D/1 case the CP-bounds are

essentially identical to the AR-bounds. In the MMPP/M/1 case the

CP-bounds are only slightly better than the D-bounds, which were

identified in [36] as the loosest for the numerical settings therein.

From a qualitative point of view, the CP-bounds are most ‘similar’

to the D-bounds. The fundamental difference is that the CP-bounds

are derived exclusively in continuous-time, using a continuous-

martingale, whereas the D-bounds are derived in discrete-time but

using the same technique from Theorem 7 extending Kingman’s

original idea to the non-renewal case. A slight difference is that the

CP-bounds hold for the virtual delay process whereas the D-bounds

hold for the packet delay; a normalization between the two mea-

sures can be obtained using a Palm argument (see Shakkottai and

Srikant [47]). There is also a deeper difference in that continuous

and discrete-time models (e.g., Markov On-Off processes/chains)

can lend themselves to qualitatively different bounds (see the expo-

nential decay with prefactor less than 1 from (13); the same holds

in the case of an On-Off chain but under a specific burstiness con-

dition on the transition probabilities, see Buffet and Duffield [8],

which is the same as the embeddability condition of Markov chains

in Markov processes, see Poloczek and Ciucu [41]).

The CP-bounds (reproduced from [15]) are almost identical to

those from Palmowski and Rolski [40] in the case of the continuous-

time Markovian fluid; only the MMOO model was considered

in § 5.1 due to its expressiveness. As in Theorem 7, [40] exclusively

works in continuous-time using a continuous-time martingale from

Ethier and Kurtz [21]. Unlike the MMOO case, the general case

from [40] appears to miss the fundamental improvement of the

bounds related to the property of the instantaneous increment at

the stopping time; this likely overlook was rectified by Ciucu et
al. [16].

6.2 Extensions
The results in this paper assume a constant-rate service rate; even

the GI/G/1 queue was treated by constructing a compound arrival

process to be served at rate one. The underlying principle behind

this approach is to encode all the information about arrivals, in-

cluding the service times of packets in the GI/G/1 case, in a single

model, i.e., the martingale representation; this model is referred to

in Poloczek and Ciucu [42] as an arrival-martingale.
A fundamental motivation of this approach, which essentially

follows from the network calculus principles (see Chang [9], Le

Boudec and Thiran [7], and Jiang and Liu [28]), is to decouple

arrivals from service. One key benefit is the straightforward ex-

tension to random service rates, by encoding all the information

about service in a service-martingale [42] (defined therein for some

(discrete-time) Markov-modulated processes modelling specific

wireless channels). In our context, we can represent service in

terms of a MAP (S(t),Lt )t and slightly change Lemmas 5, 6 to con-

struct service-martingales in the homogeneous or inhomogeneous

cases. The main difference is a sign-change in the exponential of

the martingale, i.e.,

h(Lt )e−θ (S (t )−Ct ) .

(a service-martingale essentially extends an arrival-martingale in

the same way that effective-capacity (Wu and Negi [51]) extends

effective bandwidth).

Given an arrival-martingale ha (Mt )eθa (A(t )−Ca t ) and a service-

martingale hs (Lt )e−θs (A(t )−Cs t ), the bounds from Theorem 7 ex-

tend easily. Ca and Cb should be selected such that θa = θs =: θ ,
using the algorithm from § 4.3; existence is again guaranteed from

stability. A backlog upper bound is then

P(Q ≥ σ ) ≤ E[ha (M0)]E[hs (L0)]
max(m,l )∈D ha (m)hs (l)

e−θσ , (18)

where D = {(m, l) | ∃t : Mt =m ∧ Lt = l ∧ a(t) ≥ s(t)} (s(t) is the
instantaneous service, i.e., S(t) =

∫ t
0
s(u)du).
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Another key benefit of the decoupling principle is that scheduling

can be encoded in the service-martingale itself, and the bound

from (18) would still hold; such service-martingales have been

implicitly used in Ciucu et al. [15] for several scheduling algorithms.

The aggregate models in this paper are implicitly restricted to FIFO

scheduling.

7 CONCLUSIONS
We have proposed a novel method to construct martingale repre-

sentations from MAPs by solving for ODEs. Besides its elegance,

the key benefit of the proposed method is covering the case when

the background Markov process has an uncountable state-space

and can be inhomogeneous. The obtained MAP martingales, in

continuous time, enabled the analysis of the multiclass ΣGI/G/1
queues in terms of closed-form and almost explicit bounds, alike the

classical Kingman’s bounds for GI/G/1 queues. The key idea is that

fully working in continuous-time circumvents the non-renewal/

non-stationary technical issue characteristic to ΣGI/G/1. Using the

same method, we have also also derived bounds in queueing sys-

tems with a broad range of Markovian arrival processes, including a

novel Batch Markovian Arrival Process with continuous batch sizes.

What it noteworthy is that the computational complexity is linear

(in the number of multiplexed arrivals), whereas all the derived

bounds are almost exact in heavy-traffic according to simulations.
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A PROOFS
Proof of Lemma 3. We only give the proof for the upper bound;

the other is almost identical. Let us expand

E
[
eθ (U1+U2+· · ·+UT )

1T ≤n
]
=

n∑
k=1

E
[
eθ (U1+U2+· · ·+Uk )

1T=k

]
and denote by f (x) the density ofU1. We can write for each term

E
[
eθ (U1+U2+· · ·+Uk )

1T=k

]
=

∫ σ

−∞
eθx1 f (x1)

∫ σ−x1

−∞
eθx2 f (x2)· · ·

∫ σ−Lk−2

−∞
eθxk−1 f (xk−1)

E
[
eθUk 1Uk ≥σ−Lk−1

]
dxk−1 . . .dx1

=

∫ σ

−∞
eθx1 f (x1)

∫ σ−x1

−∞
eθx2 f (x2)· · ·

∫ σ−Lk−2

−∞
eθxk−1 f (xk−1)

K(σ − Lk−1)eθ (σ−Lk−1)P (Uk ≥ σ − Lk−1)dxk−1 . . .dx1
≥ inf

y≥0
K(y)eθσ P(T = k) .

Here we denoted Lk−1 := x1 + · · · + xk−1. Therefore,

E
[
eθ (U1+U2+· · ·+UT )

1T ≤n
]
≥ inf

y≥0
K(y)eθσ

∑
k

P(T = k)

and the rest is identical as in the proof of the Kingman’s bound.

As a side remark, the Ross bound from (6) can be immediately

generalized to the case when (Un )n is a homogeneousMarkov chain.

Indeed, the same bound from (6) would hold but with K(y) replaced
by

K(y, z) = E
[
eθ (U2−y) | U2 ≥ y,U1 = z

]
.

(additionally, the ‘inf ’ and ‘sup’ must be also taken after z, i.e, the
state-space ofUn ). This bound can be leveraged to improve existing

bounds in queues with Markov modulated arrivals in discrete-time

models (e.g., [18]); such bounds would have an additional factor

in (7), due to the use of a different martingale for Markov modulated

arrivals. �

Proof of Theorem 7. The proof is similar to the one for King-

man’s bound from § 2.1.1; what is different is the continuous-time

model and also the additional prefactor in the exponential martin-

gale.

The stationary backlog distribution Q has the representation

Q := sup

t ≥0
{A(t) −Ct} .

Define the stopping time T by

T := inf {t ≥ 0 | A(t) −Ct ≥ σ } ,

and note that {Q ≥ σ } = {T < ∞}. Now for n ∈ N, by the optional

stopping theorem:

E[h(M0)] = E[X0] = E[XT∧n ]

≥ E[h(MT )eθ (A(T )−CT )1T ≤n ]

≥ eθσ inf

m∈Im(M )
h(m)P(T ≤ n) . (19)

Recalling the definition of ‘Im(M)’, we remark that a(T ) ≥ C from

the definition of T . The upper bound on P(Q ≥ σ ) follows immedi-

ately by taking the limit n → ∞.

For the lower bound, the standard proof from [46] is to first

define an additional stopping time and then invoke a more elaborate

application of the optional stopping theorem. We next give a more

direct proof using Lemma 2. In the limit n → ∞ the first inequality

in (19) holds as an equality, and thus

E[h(M0)] = E[X0] = E[XT∧n ]

= lim

n
E[h(MT )eθ (A(T )−CT )1T ≤n ]

≤ lim

n
eθ (σ+ξ ) sup

m∈Im(M )
h(m)P(T ≤ n) ,

which completes the proof. (Note that just beforeT it holdsA(T−)−
(T−)C < σ and hence A(T ) −CT < σ + ξ .) �

Proof of Corollary 9. We focus on class 1 and consider the

Palm conditional space that one of its jobs arrives at time 0. For

t ≥ 0 let Ri (t) be the remaining lifetimes for each class i , i.e., the
time it takes from −t to the next arrival; note that, in particular,

R1(0) = 0.
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Let the compound process

Ai (t) :=
Ni (t )∑
j=1

Si,−j ,

and note that the waiting timeW of the job of class 1 arriving at

time 0 is bounded, in distribution, by
4

P (W ≥ σ ) ≤ P
©«supt ≥0


N∑
i=1

Ni (t )∑
j=1

Si,−j − t

 ≥ σ
ª®¬

= P

(
sup

t ≥0

{ N∑
i=1

(
Ai (t) −

t

N

)}
≥ σ

)
. (20)

To use the multiplexing property from § 3.2, we consider a single

class system but keep the utilization ρ (e.g., the service times of

A1(t) are scaled by N ). Let L := E
[
eθNS1,1

]
. Since λ(t) = 2t for the

Weibull distribution, the ODE from Lemma 8 becomes

h′(t) − h(t)(2t + θ ) = −2th(0)L .
Choosing the initial condition h(0) = 1 yields the unique solution

h(t) =
1 − 2L

∫ t
0
se−(s

2+θ s)ds

e−(t 2+θ t )

and consequently the martingale process

h(R1(t))eθ (NA1(t )−t ) .

Repeating the argument for all classes Ai (t) we obtain the product

martingale

N∏
i=1

h(Ri (t))eθN
∑N
i=1(Ai (t )− t

N ) .

is a martingale. Recalling the expression from (20) and applying

Theorem 7 yields

P(W ≥ σ ) ≤
∏

i E [h(Ri (0))]∏
i inft ≥0 h(t)

e−θNσ .

To complete the proof we will first prove that E [h(Ri (0))] = K(θ )
for i ≥ 2 (note that E [h(R1(0))] = E [h(0)] = 1) and second that

inft ≥0 h(t) = 1.

Fix t ≥ 0. Given that the density of R(0) (we drop the index i) is
2√
π
e−t

2

we have

E [h(R(0))] =
∫ ∞

0

1 − 2E
[
eθy

] ∫ t
0
se−(s

2+θ s)ds
√
π
2
e−θ t

dt

The inner integral can be rewritten as∫ t

0

se−(s
2+θ s)ds =

∫ t

0

e
θ 2
4 se

−
(
s+ θ

2

)
2

ds

and by the change of variable s + θ
2
= u it becomes∫ t+ θ

2

θ
2

e
θ 2
4 ue−u

2

du − θ

2

e
θ 2
4

∫ t+ θ
2

θ
2

e−u
2

du

=
1

2

(
1 − e−(t

2+θ t )
)
− θ

2

√
π

2

e
θ 2
4

(
er f

(
t +

θ

2

)
− er f

(
θ

2

))
.

4W is generally not a stationary waiting time, alike in the GI/G/1 case (see (10)), due

to the general lack of stationarity;W should be regarded as transient delay.

By rearranging terms E [h(R(0))] is∫ ∞

0

1 − L
(
1 − e−(t 2+θ t) + θ

√
π
2
e
θ 2
4

(
1 − er f

(
t + θ

2

))
−θ

√
π
2
e
θ 2
4

(
1 − er f

(
θ
2

)) )
√
π
2
e−θ t

dt

Using the identity [12]

E
[
e−θT1

]
= 1 − θe

θ 2
4

√
π

2

(
1 − er f

(
θ

2

))
(21)

and the definition of θ the integral simplifies to

2

√
π
L

∫ ∞

0

e−(t 2+θ t) − θ
√
π
2
e
θ 2
4

(
1 − er f

(
t + θ

2

))
e−θ t

dt

=
2

√
π
L

(∫ ∞

0

e−t
2

dt −
∫ ∞

0

θ

√
π

2

e
θ 2
4 eθ ter f c

(
t +

θ

2

))
dt

= L − θLe
θ 2
4

∫ ∞

0

eθ ter f c

(
t +

θ

2

)
dt . (22)

By a change of variable t + θ
2
= s the integral becomes

e−
θ 2
2

∫ ∞

θ
2

eθ ser f c(s)ds = e−
θ 2
2

(
− 1

θ
e
θ 2
2 er f c

(
θ

2

)
+

1

θ
e
θ 2
4

)
= − 1

θ
er f c

(
θ

2

)
+

1

θ
e−

θ 2
4 ,

after using in the first line the identity [38]∫
eθ ser f c(s)ds = 1

θ
eθ ser f c(s) + 1

θ
e
θ 2
4 er f

(
s − θ

2

)
.

We can now complete the derivation of Eq. (22) as

L − θLe
θ 2
4

(
− 1

θ
er f c

(
θ

2

)
+

1

θ
e−

θ 2
4

)
= Le

θ 2
4 er f c

(
θ

2

)
= K(θ ) .

Lastly, to prove inft ≥0 h(t) = 1, we follow the equations above and

rewrite

h(t) = L
©«1 −

θ
√
π
2

(
1 − er f

(
t + θ

2

))
e
−
(
t+ θ

2

)
2

ª®®¬ .
The proof is complete from h(0) = 1 and the monotonicity of

1−er f (x )
e−x2

[49]. �

Proof of Corollary 10. The proof is similar to that for the

Weibull case. Differently, we compute the numerator in the expres-

sion of h(t) from Corollary 8

1 − E
[
eθS1

] ∫ t

0

e−θ s f (s)ds = e−(λ+θ )t
k−1∑
l=0

(t(λ + θ ))l
l !

,

after elementary integrations involving the Erlang-k density f (t) =
λk tk−1e−λt

(k−1)! . Since the density of R(0) (the remaining lifetime) is

1−F (t )
E[T1,1] we obtain that

E[h(R(0))] =
λ

k

∫ ∞

0

e−λt
(k−1∑
l=0

(t(λ + θ ))l
l !

)
dt =

1

k

k∑
l=0

(
1 +

θ

λ

)l
.
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The proof is complete after rearranging terms and noting that

inft ≥0 h(t) = 1 (h(0) = 1 and h(t) is non-decreasing). �

Proof of Corollary 12. A direct proof follows from Lemma 5.

We present however a much more concise proof by using the multi-

plexing property from § 3.2. Indeed, letAi (t) andMi,t be the arrival

and background processes, respectively, of the individual MMOO

processes. According to Corollary 11 the processes

hi (Mi,t )e
θ
(
Ai (t )− C

N t
)

are martingales, where hi = h for i = 1, 2, . . . ,N and θ is obtained

similarly but withC replaced by
C
N . The proof is complete by letting

h(Mt ) := h(
∑
i
Mi,t ) :=

∏
i
h(Mi,t ) .

As a side remark, the ‘split’ mentioned in § 3.2 is uniform (i.e., the

capacity C is equally split) since Ai (t)’s are themselves uniform.

Should that not be the case, then one would have to search for a

split guaranteeing the same ‘θ ’ as in § 4.3; recall the remark that

constructing martingales with different θ ’s and then normalizing

them as in [41] can be prone to numerical inaccuracies (due to the

use of Jensen’s inequality). �

Proof of Corollary 13. We again apply Lemma 5.

Assume M0 = 1. In a small interval [0,∆s], three ‘events’ can
happen:

(1) M stays at state 1 and A transmits:

P ≈ (1 − µ1∆s)λ1∆s ;
(2) M stays at 1 and A does not transmit:

P ≈ (1 − µ1∆s)(1 − λ1∆s) ;
(3) M jumps to state 2 and A does not transmit:

P ≈ µ1∆s(1 − λ1∆s) .
Note that, due to the independence assumption, the probability of

the fourth event, i.e., both a jump 1 → 2 ofM and a transmission

of A, is of order o(∆s), and can be ignored.

Therefore

φ1(∆s) =E
[
h(M∆s )eθ (A(∆s)−C∆s) | M0 = 1

]
=(1 − µ1∆s) λ1∆s h1 eθ (1−C∆s)

+ (1 − µ1∆s) (1 − λ1∆s)h1 e−θC∆s

+ µ1∆s (1 − λ1∆s)h2 e−θC∆s + o(∆s) ,
which simplifies to

h1 e
−θC∆s + ∆s h1(λ1 eθ − µ1 − λ1)e−θC∆s

+ ∆s h2 µ1e
−θC∆s + o(∆s) .

Accounting for φ1(0) = h1 we have

lim

∆s→0

1

∆s

(
h1 e

−θC∆s − h1
)
= −h1θC = −λ(θ )h1 ,

so that finally

d

ds
φ1(s)

����
s=0
= h1(λ1 eθ − µ1 − λ1) + h2 µ1 − λ(θ )h1 . (23)

Analogously, one obtains

d

ds
φ2(s)

����
s=0
= h2(λ2 eθ − µ2 − λ2) + h1 µ2 − λ(θ )h2 . (24)

Both final terms in (23) and (24) vanish if and only if

Tθ

(
h1
h2

)
= λ(θ )

(
h1
h2

)
,

which is true by assumption. �

Proof of Corollary 14. We again apply Lemma 5. Assume

M0 = λ1 and L0 = 1. In a small interval (0,∆s), four ‘events’ can
happen:

(1) M stays at state 1, Arnd
transmits, S stays:

P = (1 − µ1∆s)λ1(1 − p)∆s ;

(2) M stays at 1, Arnd
transmits, S jumps:

P = (1 − µ1∆s)λ1p∆s ;

(3) M stays at 1, and Arnd
does not transmit:

P = (1 − µ1∆s)(1 − λ1∆s) ;

(4) M jumps to state 2, and Arnd
does not transmit:

P = µ1∆s(1 − λ1∆s) .

Then,

φ(1,1)(∆s) =E
[
h(M∆s )eθ (A

rnd(∆s)−C∆s) | M0 = 1, L0 = 1

]
=(1 − µ1∆s) λ1 (1 − p)∆s h1,1 eθ (S1,1−C∆s)

+ (1 − µ1∆s) λ1 p ∆s h1,2 eθ (S2,1−C∆s)

+ (1 − µ1∆s) (1 − λ1∆s)h1,1 e−θC∆s

+ µ1∆s (1 − λ1∆s)h2,1 e−θC∆s + o(∆s) ,

Similarly as in the proof of Example 13 one obtains:

d

ds
φ(1,1)(s)

����
s=0
=

(
(1 − p)λ1E[eθS1,1 ] − µ1 − λ1 − θC

)
h1,1

+ pλ1E[eθS2,1 ]h1,2 + µ1h2,1 .

Analogously, one obtains

d

ds
φ(1,2)(s)

����
ts=0
=qλ1E[eθS1,1 ]h1,1 + µ1h2,2

+
(
(1 − q) λ1E[eθS2,1 ] − µ1 − λ1 − θC

)
h1,2 ,

d

ds
φ(2,1)(s)

����
s=0
=

(
(1 − p)λ2E[eθS1,1 ] − µ2 − λ2 − θC

)
h2,1

+ pλ2E[eθS2,1 ]h2,2 + µ2h1,1 ,

and

d

ds
φ(2,2)(s)

����
s=0
=qλ2E[eθS1,1 ]h2,1 + µ2h1,2

+
(
(1 − q) λ2E[eθS2,1 ] − µ2 − λ2 − θC

)
h2,2 .

By the choice of θ , all four terms vanish. �
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Proof of Corollary 16. Apply Lemma 5. For an arbitrary state

i it holds:

φi (∆s) :=E
[
h(M∆s )eθ (A(∆s)−C∆s)

��� M0 = i
]

=
∑
j,i

di, j∆sh(j)e−θC∆s +
∑
j
d ′i, j∆sh(j)e

θ (1−C∆s)

+
(
1 + di,i∆s

)
h(i)e−θC∆s + o(∆s) ,

such that

d

dt
φi (s)

����
s=0
= lim

∆s→0

(φi (∆s) − h(i))
/
∆s

=
∑
j

(
di, j + e

θd ′i, j
)
h(j) − θCh(i)

=
((
D0 + e

θD1

)
h
)
i
− (λ(θ )h)i .

By assumption, the last term vanishes, which completes the first

part of the proof.

For the reversed process, note first that by Bayes’ theorem

P
(
Ar (t , t + ∆t) = 0,Mr

t+∆t = j
�� Mr

t = i
)

= D0(j, i)
πj

πi
∆t + o(∆t) , and

P
(
Ar (t , t + ∆t) = 1,Mr

t+∆t = j
�� Mr

t = i
)

= D1(j, i)
πj

πi
∆t + o(∆t) ,

such that the reversed MArP process is characterized by the pair

(Dr
0
,Dr

1
):

Dr
0
= Π−1DT

0
Π and Dr

1
= Π−1DT

1
Π .

Since

Dr
0
+ eθDr

1
= Π−1DT

0
Π + eθΠ−1DT

1
Π

= Π−1
(
DT
0
+ eθDT

1

)
Π ,

the proof follows as in the first part. Note that eigenvalues are

preserved under transposition and similarity transformations, i.e.,

λ(θ ) is also the spectral radius of Π−1
(
D0 + e

θD1

)T
Π. �

Proof of Corollary 17. With ‘⊗’ denoting the Kronecker prod-
uct and In denoting the n × n-unit matrix, we have

D0 ⊕ D ′
0
+ eθ (D1 ⊕ D ′

1
)

=
(
D0 ⊗ In + In ⊗ D ′

0

)
+ eθ

(
D1 ⊗ In + In ⊗ D ′

1

)
=

(
D0 + e

θD1

)
⊗ In + In ⊗

(
D ′
0
+ eθD ′

1

)
=

(
D0 + e

θD1

)
⊕

(
D ′
0
+ eθD ′

1

)
,

whose spectral radius is λ(θ )+λ′(θ ); the corresponding eigenvector
is h′⊗h (see Theorem 4.4.5 in [26]).

5
DenoteM ′′(t) the background

Markov process ofA(t)+A′(t) (i.e., with generatorD0⊕D ′
0
+D1⊕D ′

1
)

and observe that

h′ ⊗ h(M ′′
t ) = h(Mt )h′(M ′

t ) .
The proof is complete by applying Corollary 16. �

5
We use the definition of the Kronecker sum from [26]; other definitions are available

in the literature.
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Figure 9: Waiting-time CCDF (upper bounds vs. simula-
tions); (N = 5, ρ = 0.75)
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Figure 10: Waiting-time CCDF for N MMPPs; constant and
random packet sizes; (N = 5, µ1 = 0.1, µ2 = 0.5, λ1 = 1, λ2 = 25,
p = 0.1, q = 0.9, E[ξ1] = 0.2, ρ = 0.75)
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Figure 11: Waiting-time CCDF for N GMArPs; constant and
random packet sizes; (N = 5, µ1 = 0.1, µ2 = 0.5, λ1 = 0.3,
λ2 = 10, λ3 = 0.7, λ4 = 15, E[X1] = 1, E[X2] = 3.01, ρ = 0.75)
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σ 0 50 100 150 200

LNT u.b. 1.017 1.472 10−2 2.131 10−4 3.086 10−6 4.468 10−8

LNT l.b. 0.939 1.360 10−2 1.969 10−4 2.851 10−6 4.128 10−8

AR u.b. 1.008 1.459 10−2 2.113 10−4 3.059 10−6 4.429 10−8

AR l.b. 0.898 1.300 10−2 1.882 10−4 2.724 10−6 3.945 10−8

D u.b. 1.009 1.058 10−2 1.110 10−4 1.164 10−6 1.220 10−8

CP u.b. 1.008 1.459 10−2 2.113 10−4 3.059 10−6 4.429 10−8

CP l.b. 0.898 1.300 10−2 1.882 10−4 2.724 10−6 3.944 10−8

(a) ρ = 0.95 (λ1 = 0.6, λ2 = 2, µ1 = 1, µ2 = 3)

σ 0 8 16 24 32

LNT u.b. 1.044 1.620 10−2 2.514 10−4 3.901 10−6 6.052 10−8

LNT l.b. 0.702 1.089 10−2 1.690 10−4 2.623 10−6 4.069 10−8

AR u.b. 1.028 1.594 10−2 2.474 10−4 3.838 10−6 5.956 10−8

AR l.b. 0.550 0.853 10−2 1.323 10−4 2.053 10−6 3.185 10−8

CP u.b. 1.028 1.594 10−2 2.474 10−4 3.838 10−6 5.956 10−8

CP l.b. 0.550 0.853 10−2 1.323 10−4 2.053 10−6 3.185 10−8

(b) ρ = 0.75 (λ1 = 0.6, λ2 = 1.2, µ1 = 1, µ2 = 3)

σ 0 3 6 9 12

LNT u.b. 1.184 1.357 10−2 1.555 10−4 1.783 10−6 2.044 10−8

LNT l.b. 0.341 0.390 10−2 0.445 10−4 0.551 10−6 0.589 10−8

AR u.b. 1.092 1.252 10−2 1.435 10−4 1.645 10−6 1.886 10−8

AR l.b. 0.169 0.193 10−2 0.222 10−4 0.254 10−6 0.291 10−8

D u.b. 1.064 18.26 10−2 9.220 10−4 0.799 10−6 2.352 10−8

CP u.b. 1.092 1.252 10−2 1.435 10−4 1.645 10−6 1.886 10−8

CP l.b. 0.169 0.193 10−2 0.222 10−4 0.254 10−6 0.291 10−8

(c) ρ = 0.4 (λ1 = 0.3, λ2 = 0.8, µ1 = 1, µ2 = 4)

Figure 12: Bounds on the waiting-time distribution P(W ≥
σ ) for the MMPP/D/1 queue (notations from § 5.2.1; average
service time is 1)

σ 0 100 200 300 400

LNT u.b. 0.956 1.003 10−2 1.052 10−4 1.103 10−6 1.157 10−8

LNT l.b. 0.952 0.999 10−2 1.047 10−4 1.099 10−6 1.152 10−8

AR u.b. 0.958 1.005 10−2 1.054 10−4 1.105 10−6 1.159 10−8

AR l.b. 0.942 0.988 10−2 1.036 10−4 1.087 10−6 1.140 10−8

D u.b. 1.009 1.058 10−2 1.110 10−4 1.164 10−6 1.220 10−8

CP u.b. 1.004 1.053 10−2 1.104 10−4 1.157 10−6 1.214 10−8

(a) ρ = 0.95 (λ1 = 0.6, λ2 = 2, µ1 = 1, µ2 = 3)

σ 0 3 12 48 72

LNT u.b. 0.759 4.040 10−2 1.145 10−4 6.099 10−6 1.729 10−8

LNT l.b. 0.749 3.993 10−2 1.132 10−4 6.027 10−6 1.709 10−8

AR u.b. 0.765 4.073 10−2 1.155 10−4 6.148 10−6 1.743 10−8

AR l.b. 0.728 3.878 10−2 1.099 10−4 5.853 10−6 1.659 10−8

D u.b. 1.020 5.431 10−2 1.540 10−4 8.197 10−6 2.323 10−8

CP u.b. 1.012 5.391 10−2 1.528 10−4 8.136 10−6 2.306 10−8

(b) ρ = 0.75 (λ1 = 0.6, λ2 = 1.2, µ1 = 1, µ2 = 3)

σ 0 3 12 24 30

LNT u.b. 0.417 7.150 10−2 3.611 10−4 0.313 10−6 0.921 10−8

LNT l.b. 0.403 6.912 10−2 3.491 10−4 0.302 10−6 0.891 10−8

AR u.b. 0.426 7.302 10−2 3.688 10−4 0.319 10−6 0.941 10−8

AR l.b. 0.367 6.294 10−2 3.179 10−4 0.275 10−6 0.811 10−8

D u.b. 1.064 18.26 10−2 9.220 10−4 0.799 10−6 2.352 10−8

CP u.b. 1.032 17.706 10−2 8.942 10−4 0.774 10−6 2.281 10−8

(c) ρ = 0.4 (λ1 = 0.3, λ2 = 0.8, µ1 = 1, µ2 = 4)

Figure 13: Bounds on the waiting-time distribution P(W ≥
σ ) for the MMPP/M/1 queue (notations from § 5.2.2; average
service time is 1)
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