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ABSTRACT
We derive simple bounds on the queue distribution in finite-buffer

queues with Markovian arrivals. Our technique relies on a subtle

equivalence between tail events and stopping times orderings. The

bounds capture a truncated exponential behavior, involving joint

horizontal and vertical shifts of an exponential function; this is

fundamentally different than existing results capturing horizontal

shifts only. Using the same technique, we obtain similar bounds on

the loss distribution, which is a key metric to understand the impact

of finite-buffer queues on real-time applications. Simulations show

that the bounds are accurate in heavy-traffic regimes, and improve

existing ones by orders of magnitude. Remarkably, in the limit

regime with utilization ρ = 1 and iid arrivals, the bounds on the

queue size distribution are insensitive to the arrivals distribution.
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1 INTRODUCTION
In practice, queueing systems have finite buffers to store packets

(jobs, customers, etc.) when the service capacity is insufficient;

when a buffer fills up then packets are discarded.

The analysis of finite-buffer queues is however challenging. The

seminal work of Keilson [30] on the M/G/1/K queue showed that

the distribution of the stationary queue size, denoted by QK , can

be expressed in terms of the corresponding distribution in the

infinite-buffer system. For this reason, it has somewhat been natural

that the literature dealing with non-Poisson arrivals employed

approximations of the form

P (QK ≥ σ ) ≈ P (Q∞ ≥ σ ) ,

where the subscript denotes the buffer size. The approximations

consist of various correction terms, independent of σ , which essen-

tially involve horizontal shifts of an exponential function, e.g.,

P (QK ≥ σ ) ≈ βe−θσ ,

where β and θ are some parameters (see, e.g., Belhaj and Pap [5]).

However, P(QK ≥ σ ) has intrinsically a truncated form because

QK is bounded by K . This behavior involves joint horizontal and
vertical shifts, e.g.,

P (QK ≥ σ ) ≈ α + βe−θσ , (1)
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where α is independent of σ .
In this paper we derive stochastic upper and lower bounds on

the queue distribution in finite-buffer queueing systems with in-

dependent and identically distributed (iid), as well as Markovian

arrivals. We consider a discrete-time queueing model (see, e.g., Cruz

and Liu [18]) with fluid (infinitely divisible) arrivals and constant-

rate service. For a discussion on extending our results to G/G/1/K

queues whereby the arrivals are ‘jobs’, each with its own service

time, see § 8.

Our approach is based on a non-trivial extension of Kingman’s

martingale-based technique to derive bounds in GI/G/1 queues [34].

This involves the construction of two stopping times N− and N+,
where N− is finite a.s. (almost surely), such that

{QK ≥ σ } = {N+ < N−} a.s.

Manipulating the two stopping times using martingale properties

yields bounds on P(QK ≥ σ ), which explicitly capture the truncated
behavior from (1).

Using the same technique, we also derive bounds on the loss
distribution in finite-buffer queues. We point out that this metric

is not only more powerful, but also practically more relevant than

the common loss probability metric, i.e., the long-run fraction of

lost packets (see § 2.2 for additional details). Alike QK , the loss

probability PL is also typically subject to approximations of the

form PL ≈ βP (Q∞ ≥ K) for some correction factor β (Mignault et
al. [39]).

Our results are obtained in both underload (i.e., utilization ρ < 1)

and overload (ρ > 1) regimes. Using a limit argument we immedi-

ately obtain bounds in the border regime ρ = 1. Remarkably, in the

iid case, the bounds on the queue size distribution are insensitive

to the arrivals distribution, i.e.,

P(QK ≥ σ ) ≤ 1 −
σ

C + K
,

for all 0 ≤ σ ≤ K , where C is the service capacity. Similar results

are obtained for the loss distribution, yet they are not subject to an

insensitivity property.

In comparison to related work, the key benefits of our bounds are

negligible numerical complexity and expressivity. Moreover, unlike

existing approximations, our results capture the fundamental trun-

cated behavior in finite-buffer queueing systems. Using simulations,

it is further shown that the bounds are accurate in heavy-traffic

regimes and improve upon existing ones by orders of magnitude.

Next, we first summarize related work in § 2 and then describe

the finite-buffer queueing model in § 3. We present the main re-

sults in § 4, i.e., bounds on the queue and loss distributions, in both

underload and overload regimes. We instantiate these results to

iid and Markovian arrivals in § 5 and § 6, respectively. Numerical

comparisons with related work are presented in § 7, and possible

improvements and extensions in § 8. Brief conclusions are drawn
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in § 9; an Appendix includes some proofs and additional case stud-

ies.

2 RELATEDWORK
We first review work concerning the closely related queue dis-

tribution and loss probability metrics, and then discuss the loss

distribution metric along with other related ones.

2.1 Queue Distribution and Loss Probability
The stationary queue distribution in M/G/1/K queues was obtained

by Keilson [30] in terms of the queue distribution in M/G/1 queues

(with infinite buffer size). This idea was leveraged in several queue-

ing models with non-Poisson arrivals, and with various degrees of

accuracy (e.g., Biskidian et al. [6], Gouweleeuw and Tijms [23], Kim

and Shroff [32]); for a numerical evaluation of some approximations

see [5]. These results immediately lend themselves to the (packet)

loss probability, i.e., the long-run fraction of lost packets. An exact

link between the two distributions was provided by Ishizaki and

Takine [27] in the case of state-dependent Markovian arrivals and

deterministic service times, under the mild assumption that no

arrivals occur in one state.

An exact analysis of the general N/G/1/K (‘N’ stands for the

N-process, also known as Batch Markovian arrival process (BMAP),

see, e.g., Lucantoni [38]) queue was carried out by Blondia [7] using

matrix analytical techniques, which pose computational complex-

ity issues. Other exact results (for the waiting-time distribution)

were obtained by Miyazawa for the GI/GI/1/K queue in terms of

transforms [40]. Related “transform-free" results in product-form

were obtained by Kim and Chae [33], yet they rely on additional

terms posing computational problems except in few cases (e.g.,

exponential service times). The exact (queue) distribution in the

GI/M/1/K queue was recently obtained by Kempa [31] in recursive

form involving the Laplace transform of the inter-arrivals; another

recursive algorithm for queues with state-dependent Markovian

arrivals was given by Gupta and Rao [24]. A diffusion approxima-

tion in G/GI/n/K queues was given in Whitt [55]. Computationally

efficient algorithms were obtained by Chaudhry et al. [15]. Scal-
able solutions were also investigated by Nagarajan et al. [41] in
the case of a superposition of Markov-Modulated On-Off (MMOO)

sources (see Baiocchi et al. [4] as well). It was shown that using a

2-state Markov-Modulated Poisson Process (MMPP) approximation,

whereby the matching depends on the buffer size, the loss rates are

accurate over a broad range of buffer sizes. A renewal approxima-

tion (i.e., matching a GI/D/1/K queue) was shown to perform well

only in heavy-traffic, whereas fluid approximations (also explored

by Tucker [54], and Yang and Tsang [58]) perform well except in

small-buffer regimes. In turn, a Poisson approximation was shown

to be inaccurate. A recursive algorithm for estimating the loss prob-

ability with arbitrary accuracy was proposed by Sericola [50] for

more general Markovian queues. Asymptotic loss rates in queues

with heavy-tailed On-Off processes were obtained by Jelenković

and Momčilović [28]; remarkably, the approximations are accurate

for a broad range of finite values of K .

2.2 Loss Distribution and Distance, and Other
Related Metrics

In the study of finite queueing systems, Ramaswami [46] argued

that the loss probability may be insufficient to understand the loss

behavior because although the loss probability can be very small,

sources can experience many consecutive losses. The explanation
is that the conditional loss probability, i.e., the probability of losing

packets in a slot conditioned on a loss in the previous slot, is high;

this was shown using simulations [46] and network measurements

by Bolot [10], Yajnik et al. [57], and Handley [26]. Consecutive

losses (a.k.a., packet gap) can be detrimental to network perfor-

mance, e.g., in scenarios involving Forward Error Correction (FEC)

or audio/video transmissions (for a more elaborate discussion see

Jiang and Schulzrinne [29]).

Blondia and Casals [9] derived the conditional loss probability

in a finite queue with D-BMAP (discrete Batch Markovian Arrival

Processes); the result was obtained in analytic form (involving an

infinite sum) using matrix analytical techniques. The same authors

addressed earlier in [8] the case of a superposition of (discrete)

On-Off (Markovian) sources and obtained the loss distribution of

a tagged source, by enforcing however an additional artificial as-

sumption on the arrivals of the tagged source. An earlier study by

Li [36] addressed the case of a superposition of (continuous) On-Off

sources; using a stationary analysis the author obtained the aver-

age blocking period (the maximum interval whereby losses occur

continuously) and the average loss rate within it. A key insight was

that the length of the blocking period, as well as the behavior of

packet loss within such a period, are invariant to the buffer size;

the average non-blocking periods would obviously be affected.

Other derivations of conditional loss probabilities were carried

out by Schulzrinne et al. [49] for Interrupted Poisson Processes (IPP)
arrivals and by Takine et al. [52] for more general state-dependent

Markovian arrivals. In the latter work, dealing with the exponential

numerical complexity (in K) in computing the stationary proba-

bilities of an underlying Markov chain was resolved through a

recursive algorithm. The authors also derived the distribution of

the blocking period (a.k.a. loss distance); interestingly, its average
has the same expression as the average of the geometric distribution

(the Bernoulli probability being the complement of the conditional

loss probability), although the underlying Bernoulli trials are not

independent. As a side remark, both the loss probability and loss dis-

tance were later specified in an IETF RFC document [35] as the key

metrics to characterize the performance of real-time applications

(e.g., audio and video) from the users’ perspective.

The multiclass G/G/N/K queue was addressed by Ferrandiz and

Lazar [20], who obtained closed-form results for the average loss

distance and average packet gap. A valuable insight for network

monitoring, in terms of reducing computational and storage costs,

is that the packet gap only depends on the behavior of two con-

secutively lost packets; in particular, if the latter has a Markovian

structure then the packet gap is geometrically distributed.

Other related “loss metrics" include the loss period (the differ-

ence between the arrival times of the last and first in a series of

consecutively lost packets); its behavior was addressed by Fiems et
al. [21], in an M/G/1/K queue, in terms of a joint transform with

the number of losses within such a period. Another is the block loss
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probability (the fraction of lost packets within a block of consecu-

tive arrivals); a recursive formula was obtained by Cidon et al. [16]
in an IPP/M/1/K queue, whereas an explicit expression was later de-

rived by Gurewitz et al. [25] using ballot theorems in the M/M/1/K

case; for a discussion of applications of such results to FEC schemes

see [21]. Lastly, we mention the number of lost packets in a busy

period (loss as well as blocking periods are sub-intervals of busy pe-

riods); asymptotic properties (in K ) were obtained by Abramov [1].

Interestingly, in a M/GI/1/K queue at utilization ρ = 1, the mean

number of lost packets in a busy period is 1 and is independent of

K ; for an elegant proof using stochastic couplings see Righter [47].

3 MODEL AND METRICS
We consider the discrete-time queueing system from Figure 1, con-

sisting of an arrival flow A served at a constant-rate C > 0, and a

finite buffer size K > 0. The cumulative arrivals until time n ≥ 0

are given by

A(n) :=

n∑
k=1

ak ,

where (ak )k ∈N are the non-negative instantaneous arrivals. The

bivariate extension of A(n) is defined for 0 ≤ k ≤ n as A(k,n) :=

A(n) −A(k); by convention A(0) = 0.

The arrival process is stationary and ergodic to guarantee the

existence of stationary limits for the underlying queueing processes

(see Jelenković and Momčilović [28]).
Let the utilization factor

ρ :=
E[a1]

C
. (2)

We shall mainly address the underload regime (i.e., ρ < 1), but also

the overload (i.e., ρ > 1) and border (i.e., ρ = 1) regimes. Obviously,

because K is finite, stability holds in all; for a broader discussion

on stability issues see Chapter 2 in Baccelli and Brémaud [3].

3.1 Queue Process
One quantity of interest is the queue process Q(n), which denotes

the volume of (fluid) arrivals stored in the buffer at time n.1 It is
defined recursively for n ≥ 0 as

Q(n + 1) := max {0,min {Q(n) + an+1 −C,K}} , (3)

andQ(0) := 0. Its non-recursive representation is given in Cruz and

Liu [18] (see Eq. (6) therein)

Q(n) = max

0≤k≤n

{
min

{
A(k,n) − (n − k)C,

min

k≤m≤n
{A(m,n) − (n −m)C + K}

}}
.

We shall focus on the steady-state limit

Q := max

n≥0

{
min

0≤m<n

{
A(n) − nC,A(m) −mC + K

}}
. (4)

For brevity we wrote, and we shall write (unless otherwise spec-

ified), A(n) instead of the corresponding time-reversed process

Ar (n) :=
∑n
k=1

a−k (obtained by extending (ak )k ∈N to a stationary

process (ak )k ∈Z on the whole set of integers).

1
Note that, unlike in the introduction, we dropped the subscript K from QK .

A(n)

K

Q(n)

C

Figure 1: Finite-buffer queueing system: Flow A(n) arriving
at a server with capacity C > 0; buffer size K > 0; actual
queue size (buffer content) Q(n) ≤ K .

Obviously, the previous representation recovers Reich’s equation

in the case of an infinite-buffer (K = ∞), i.e.,

Q =D max

n≥0

{A(n) − nC} . (5)

3.2 Loss Process
The other quantity of interest is the loss process L(n), which denotes
the volume of dropped/lost arrivals at time n as a consequence of

having a finite-buffer. It is defined for n ≥ 1 as

L(n) := max{Q(n − 1) + an −C − K , 0} .

Its non-recursive representation is also provided in [18] (see Eq. (12)

therein) and we shall focus on the steady-state limit

L := max

n≥1

{
min

1≤m<n

{
A(n) − nC − K ,A(m) −mC

}
, 0

}
. (6)

Obviously, L = 0 in the limit K → ∞.

4 MAIN RESULTS
We adopt a general arrival representation in terms of martingale-
envelopes (see Poloczek and Ciucu [44]):

Definition 1. The flow A admits a martingale-envelope if there
exists a parameter θ and a function h : Im(a1) → R

+ such that the
process

Mn := h(an )e
θ (A(n)−nC)

(7)

is a (discrete) martingale for n ≥ 0.

Recall that A(n) denotes the reversed process, and note that

M0 = h(a0); Im() denotes the image of a (random) function.

Besides an integrability condition, the crucial property of the

martingale is that

E [Mn+1 | Fn ] = Mn ,

for all n ≥ 1, where Fn is the σ -algebra (‘information’) generated
by the increments of A until time n. A related concept is that of a

stopping-time, which is essentially a random variable N such that

the event {N = n} is Fn-measurable. More informally, {N = n}
only depends on the past+present but not the future (i.e., informa-

tion after time n).
The expression of a martingale-envelope is driven by the ex-

pression of the steady-state queue size Q from (5), and in partic-

ular the cumulative drift A(n) − nC . Martingales are convenient

to bound probability events of the form P(Q ≥ σ ) using Doob’s

Optional-Stopping Theorem; for a follow-up discussion see § 4.2.

The martingale-envelope from (7) essentially transforms the cu-

mulative drift, which is either a supermartingale or submartingale,

depending whether ρ < 1 or ρ > 1, respectively, into a martingale.



ACM conference, 2018 Florin Ciucu, Felix Poloczek, and Amr Rizk

The parameter θ is positive when ρ < 1 or negative when ρ > 1.

In general, θ can be regarded as the decay rate of the stationary

queue process in an infinite-buffer system, whereby A(n) is served
at rate C . In turn, h() is defined on the set of values of a1, and it

does not have a concrete meaning besides its ‘role’ to encode the
correlation structure of the arrivals; if the increments are iid then

h() = 1. Explicit constructions for these parameters will be provided

in § 5 and § 6.

For ourmain results we need to define four additional parameters

related to the construction of the key stopping times N+ and N−

from the main results.

Definition 2. Assume the flow A admits a martingale-envelope
with θ and h. Define

H+ := inf {h(x) | x > C} , H− := inf {h(x) | x < C} ,

and also

H ′
+ := sup {h(x) | x > C} , H ′

− := sup {h(x) | x < C} .

For instance, H+ is constructed by only accounting for the incre-

ments of A(n) satisfying a strictly positive drift an −C . H+ and H−

will appear in the upper bounds, whereas H ′
+ and H

′
− will appear

in the lower bounds.

Next, we give the main results of the paper, i.e., bounds on the

queue and loss distributions.

4.1 Queue Distribution. Underload (ρ < 1)
Assume the ‘stability’ condition ρ < 1 which implies that θ > 0 in

the construction of arrival-envelopes; the system is nevertheless

stable for any value of ρ.

Theorem 3 (Queue distribution (underload)). In the queue-
ing scenario above, assume the flow A admits a martingale-envelope
Mn with parameters θ > 0 and h. Then, the following upper bound
holds for the queue size distribution Q , for 0 < σ ≤ K

P(Q ≥ σ ) ≤
E[h(a0)] − H−e

θ (σ−K−C)

H+eθσ − H−eθ (σ−K−C)
.

Further, if an ≤ amax for some constant amax > 0 and all n ≥ 0, then
additionally the following lower bound on Q holds

P(Q ≥ σ ) ≥
E[h(a0)] − H ′

−e
θ (σ−K )

H ′
+e

θ (σ+amax−C) − H ′
−e

θ (σ−K )
.

We tacitly assume that the denominators in the bounds are posi-

tive (all our examples satisfy this property); otherwise the inequality

signs have to be reversed and the bounds themselves change, e.g.,

the upper becomes lower.

By letting K → ∞ the upper bound in the infinite queue is

P(Q ≥ σ ) ≤
E[h(a0)]

H+
e−θσ ,

whichwas obtained in [44], whereas the corresponding lower bound

is

P(Q ≥ σ ) ≥
E[h(a0)]

H ′
+

e−θ (σ+amax−C) .

Proof. Consider Q’s representation from (4). For 0 < σ ≤ K ,
define the stopping time N as the first point in time where the

process within the max-operator first exceeds σ , i.e.,

N := min

{
n ≥ 0

��� min

{
A(n) − nC,

min

0≤m<n
{A(m) −mC + K}

}
≥ σ

}
.

(8)

By definition, it holds that
2

{Q ≥ σ } = {N < ∞} .

We now define the key stopping times N+ and N− as

N+ := min {n ≥ 0 | A(n) − nC ≥ σ } (9)

N− := min {m ≥ 0 | A(m) −mC < σ − K} . (10)

Their construction is directly related to the expression ofN from (8),

and in particular the two terms in the outer ‘min’.

Clearly, P(N+ = N−) = 0. Note also that N+,N− ≥ 1 a.s. because

A(0) − 0C = 0 ∈ [σ − K ,σ ) .

Further, from the ‘stability’ condition ρ < 1, note that the process

A(m) −mC has a negative drift and hence N− is finite a.s.

P(N− < ∞) = 1 . (11)

We next show that the three stopping times N , N+, and N− are

related by the fundamental relationship

{N < ∞} = {N+ < N−} . (12)

Assume first that N < ∞. For all k > N− it holds:

min

{
A(k) − kC, min

0≤m<k
{A(m) −mC + K}

}
≤ min

0≤m<k
{A(m) −mC + K}

≤ A(N−) − N−C + K

< σ ,

such that necessarily N ≤ N−. As obviously A(N ) − NC ≥ σ , it
follows that N+ ≤ N and thus N+ < N−.

For the other direction, assume that N+ < N−. Form < N− it

holds by definition

A(m) −mC + K ≥ σ , (13)

and hence also

min

{
A(N+) − N+C, min

0≤m<N+
{A(m) −mC + K}

}
≥ σ ,

and thus N ≤ N+. This completes the proof of (12) since N− < ∞.

As a side remark, the finite and infinite-buffer cases are subject to

very different behaviors concerning buffer overflows. In the finite

case, at N+ ∧ N− (which is a.s. finite) we know for certain whether

Q ≥ σ or Q < σ , depending where the minimum is attained. In the

infinite case, however, if Q < σ then at no point in time we would

know this fact for certain (we would know that Q ≥ σ at time N+,
should it be reached; note that P(N+ = ∞) > 0).

We can now derive the bounds on P(Q ≥ σ ). For the upper bound,
apply the Optional-Stopping Theorem (see, e.g., Williams [56],

2
We note that this duality has also been established in the context of ruin probabilities

(e.g., Asmussen [2], pp. 1-2).
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p. 100) to the martingale-envelope M from Definition 1 and the

bounded stopping time N+ ∧ N− ∧ n (for some n ≥ 0):

E[h(a0)] = E[M0] = E[MN+∧N−∧n ]

= E[MN+∧N−
1{N+∧N−≤n }] + E[Mn1{N+∧N−>n }]

(14)

For additional insights into this crucial step see the follow-up dis-

cussion from § 4.2.

Let n → ∞. From the Monotone Convergence Theorem we can

interchange the limit with the first expectation, and by the finiteness

of N+ ∧ N− the first expectation converges to E[MN+∧N−
]. From

the Bounded Convergence Theorem we can interchange the limit

with the second expectation (becauseMn < eθσ on N+ ∧ N− > n)
and thus the second expectation vanishes. Therefore

E[h(a0)] = E[MN+∧N−
] , (15)

which can be expanded as

E[h(a0)] = E[MN+1{N+<N− }] + E[MN−
1{N−<N+ }]

= E[MN+1{N <∞}] + E[MN−
1{N=∞}]

= E[h(aN+ )e
θ (A(N+)−N+C)

1{N <∞}]

+ E[h(aN−
)eθ (A(N−)−N−C)

1{N=∞}]

≥ eθσE[h(aN+ )1{N <∞}]

+ eθ (σ−K−C)E[h(aN−
)1{N=∞}]

≥ eθσH+P(N < ∞)

+ eθ (σ−K−C)H− (1 − P(N < ∞)) . (16)

In the second line we used the equivalence from (12). In the fifth

and sixth lines we used, for the first term, the definition of N+, and,
for the second term, by (13), A(n) − nC + K ≥ σ for n < N−, and

hence

A(N−) − N−C = A(N− − 1) − (N− − 1)C + aN−
−C

≥ σ − K + aN−
−C (17)

≥ σ − K −C .

In the last line we used Definition 2 with the fact that the last

increment of the stopped processA(n)−nC must be strictly positive

at N+ and strictly negative at N−.

Now solve for P(N < ∞) to obtain:

P(N < ∞) ≤
E[h(a0)] − H−e

θ (σ−K−C)

H+eθσ − H−eθ (σ−K−C)
.

Recall by the definition of N that P(N < ∞) = P(Q ≥ σ ) and hence
the derivation of the upper bound is complete.

For the lower bound we use a similar expansion, except for

changing the inequality sign, i.e.,

E[h(a0)] = E[MN+∧N−
]

= E[MN+∧N−
1{N+<N− }] + E[MN+∧N−

1{N−<N+ }]

= E[MN+1{N <∞}] + E[MN−
1{N=∞}]

≤ H ′
+e

θ (σ+amax−C)P(N < ∞)

+ H ′
−e

θ (σ−K ) (1 − P(N < ∞)) .

We again used (12). For the term in the fourth line note that by the

definition of N+,

A(N+) − N+C ≤ A(N+ − 1) − (N+ − 1)C + amax −C

< σ + amax −C .

For the second term we used the definition of N− from (10). Solving

for P(N < ∞) completes the proof. �

4.2 Gist of the Technical Approach
Let us nowprovide some high-level insights into themartingale/stopping-

times method at the core of the previous result from Theorem 3, as

well as the other main results to follow. Recall the expression for

the stationary queue size from (4)

Q := max

n≥0

{
A(n) − nC, min

0≤m<n

{
A(m) −mC + K

}}
,

and visualize it for convenience by the diagonal matrix

0
A(1) − C K

A(2) − 2C A(1) −C + K K

A(3) − 3C A(2) − 2C + K A(1) −C + K K

A(4) − 4C A(3) − 3C + K A(2) − 2C + K A(1) −C + K K
...

. . .
. . .

. . .
. . .

For each row a minimum is taken, and the maximum of all these

yields Q .
Let us also restate N+ and N−

N+ := min {n ≥ 0 | A(n) − nC ≥ σ }

N− := min {m ≥ 0 | A(m) −mC < σ − K} ,

and consider P(Q ≥ σ )which is the central quantity to be estimated.

Suppose for instance that N− < N+, say at N− = 2, which means

thatA(2)−2C +K < σ . Additionally,A(n)−nC < σ for n = 0, 1, 2, 3

because N+ > N−. In other words, the maximum of the minimums

for the first four rows is smaller than σ ; see the bold-font quantities,
which are all smaller than σ . Because A(2) − 2C + K will appear

in all the rows from the forth one onwards, the queue size can

never reach σ , i.e., Q < σ . The other case when N+ > N− can be

visualized similarly.

The gist of our main results is to essentially inspect the system

at the two stopping times, N+ and N−, which essentially retain all

the information about the event of interest {Q ≥ σ }, in the sense

that {Q ≥ σ } = {N+ < N−} a.s.

As natural as they appear, stopping times are misleading. For a

quick illustration consider an iid Bernoulli process Xn and define

the stopping time

N := min{n : Xn = 1} .

Recall the definition of a stopping time, in particular that the event

{N = n} entirely depends on the history up to timen, i.e., the values
X1,X2, . . . ,Xn only. By inspecting the ‘system’ at the (random) time

N , the iid property is lost because E [XN ] = 1 , E [X1] from the

very definition of N .

A counter-trick is to consider martingales Xn , which do pre-

serve the property of the system at stopping times, in the sense

that E [XN ] = E [X1]; this is essentially Doob’s Optional-Stopping
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Theorem (OST)
3
whose application was essential in the proof of

Theorem 3; see (14).

In our queueing ‘system’ the driving factor is the cumulative drift

A(n)−nC . In a underload regime (E[A(1)] < C), this process is in fact
a supermartingale for which OST would hold as well, at the expense

however of introducing a conceivably loose inequality which would

severely weaken the accuracy of the bound for P(Q ≥ σ ) itself. To
avoid this pitfall the key idea is to transform the cumulative drift

process into a martingale, for which OST does hold with equality.

This is essentially Kingman’s original idea for bounding GI/G/1

queues ([34]), and which evolved as a simple technique for studying

many queueing systems, including the case of Markovian arrivals

(e.g., Chang [14] or Duffield [19]).

An important observation is on the robustness of the martingale-

envelope model from Def. 1 in the sense that our main results

(Theorem 3 and the later ones) apply to any arrival model for

which martingale-envelope representations exist; several examples

will be provided in § 5, § 6, and § B.1.

4.3 Queue Distribution. Overload (ρ > 1)
We now assume ρ > 1 which implies that arrival-envelopes have

an exponent −θ instead of θ (where θ > 0).

Theorem 4 (Queue distribution (overload)). In the queueing
scenario above, assume that the flow A admits a martingale-envelope
Mn with parameters −θ and h, where θ > 0. Then, the following
upper bound holds for the queue size distribution Q , for 0 < σ ≤ K

P(Q ≥ σ ) ≤
E[h(a0)] − H ′

−e
−θ (σ−K−C)

H ′
+e

−θσ − H ′
−e

−θ (σ−K−C)
.

Further, if an ≤ amax for some constant amax > 0 and all n ≥ 0, then
additionally the following lower bound on Q holds

P(Q ≥ σ ) ≥
E[h(a0)] − H−e

−θ (σ−K )

H+e−θ (σ+amax−C) − H−e−θ (σ−K )
.

Again, we tacitly assume that the denominators in the bounds

are positive (all our examples satisfy this property); otherwise the

inequality signs have to be reversed. Note that these bounds are

similar to those in the underload case; the differences are θ vs. −θ
and the ‘H ’ parameters.

Proof. We only sketch the proof for the upper bound, which

proceeds as the proof for the (underload) upper bound.

The first key difference is that N+ rather than N− is a.s. finite. It

still holds however that

{N < ∞} = {N+ < N−} .

Proceeding further we have

E[h(a0)] = E[MN+1{N <∞}] + E[MN−
1{N=∞}]

≤ H ′
+e

−θσ P(N < ∞)

+ H ′
−e

−θ (σ−K−C) (1 − P(N < ∞)) .

Here we used the negativity of θ and

A(N−) − N−C = A(N− − 1) − (N− − 1)C + aN−
−C

≥ σ − K −C ,

3
See Williams [56], p. 100, for the precise technical conditions under which OST holds.

from the definition of N− and aN−
≥ 0. The proof is complete by

solving for P(N < ∞) = P(Q ≥ σ ). �

4.4 Loss Distribution. Underload (ρ < 1)
To analyze the loss process we need the stationary distribution of

the instantaneous arrivals. Assuming for convenience a discrete

range of values bi , denote

πi = P (a1 = bi )

over some countable set with index i .
The next result gives bounds on the loss distribution in the

underload regime ρ < 1.

Theorem 5 (Loss distribution). In the queueing scenario above,
assume the flow A admits a martingale-envelope with parameters
θ > 0 andh. Then the following upper bound holds for the distribution
of the loss process for σ > 0

P(L ≥ σ ) ≤
∑

σ+C≤bi<σ+C+K

πi
h (bi ) e

θ (bi−C) − H−e
θ (σ−C)

H+eθ (σ+K ) − H−eθ (σ−C)

+ P(a1 ≥ σ +C + K) . (18)

Further, if an ≤ amax for some constant amax > 0 and all n ≥ 0, then
additionally the following lower bound on L holds

P(L ≥ σ ) ≥
∑

σ+C≤bi<σ+C+K

πi
h (bi ) e

θ (bi−C) − H ′
−e

θσ

H ′
+e

θ (σ+K+amax−C) − H ′
−e

θσ

+ P(a1 ≥ σ +C + K) .

The explanation for the second term is that L ≥ σ on a1 ≥

σ +C + K (a1 is the last increment in reverse time). Note that the

bounds match in a bufferless regime (K = 0), i.e., P(a1 ≥ σ +C).
The case when a1 is a continuous random variable can be treated

almost identically; the only difference is that the sums in Theorem 5

become integrals, and the πi ’s are replaced by a1’s density function

f (x), provided that it exists. From a computational perspective,

however, the integrals may not have a closed-form expression due

to the factor h(bi ) (h(x) in continuous-time).

Proof. The proof is similar to the one for the queue size but

with a fundamental difference. Define first the stopping time

N := min

{
n ≥ 1

��� min

{
A(n) − nC − K ,

min

1≤m<n
{A(m) −mC}

}
≥ σ

}
.

(19)

The crucial observation is that in order to have a loss event then

the last increment triggering the loss must satisfy

a1 ≥ σ +C .

(recall that a1 plays the role of the last increment in reverse time).

Define now Pi as the underlying probabilitymeasure conditioned

on a1 = bi , and also the stopping times

N+ := min {n ≥ 1 | A(n) − nC ≥ σ + K} (20)

N− := min {m ≥ 1 | A(m) −mC < σ } , (21)

which are slightly different than those defined for the queue size

process. Similarly, we next show that

{L ≥ σ } = {N < ∞} = {N+ < N−} . (22)
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The first equality holds from the definition of N ; this step was also

used in the proof of Theorem 3. Assuming N < ∞ we have that

A(N ) − NC − K ≥ σ and hence N+ ≤ N . Also, A(m) −mC ≥ σ
for allm ≤ N and hence N− > N . Therefore N+ < N−; note that

P(N+ = N−) = 0.

In the other direction, assume that N+ < N−. Because A(m) −

mC ≥ σ for allm < N− it follows that

min

1≤m<N+
{A(m) −mC} ≥ σ .

Since A(N+) − N+C ≥ σ + K (from the definition of N+) we obtain
that N ≤ N+ and hence N < ∞ (note that N− is finite and hence

N+ as well).
The next observation is that on Pi the process Mn starting at

M1 = h (bi ) e
θ (bi−C)

remains a martingale. The rest of the proof

proceeds similarly as in Theorem 3 by invoking the OST for Mn ,

i.e.,

Ei [M1] = h (bi ) e
θ (bi−C) = Ei

[
MN+∧N−∧n

]
,

for any n ≥ 1, where Ei is the expectation under Pi .
Taking the limit in n we have

Ei [M1] = E[MN+1{N <∞}] + E[MN−
1{N=∞}]

≥ H+e
θ (σ+K )P(N < ∞)

+ H−e
θ (σ−C) (1 − P(N < ∞)) .

Here we used the positivity of θ and

A(N−) − N−C = A(N− − 1) − (N− − 1)C + aN−
−C

≥ σ −C ,

The proof for the upper bound is complete by deconditioning

on bi ; note in particular that

P (N < ∞ | bi ≥ σ +C + K) = 1 .

The proof for the lower bound proceeds similarly as in Theorem 3.

�

4.5 Loss Distribution. Overload (ρ > 1)
The overload extension proceeds similarly as the overload queue

distribution from § 4.3.

Theorem 6 (Loss distribution (overload)). In the queueing
scenario above, assume that the flow A admits a martingale-envelope
Mn with parameters −θ and h, where θ > 0. Then, the following
upper bound holds for the distribution of the loss process for σ > 0

P(L ≥ σ ) ≤
∑

σ+C≤bi<σ+C+K

πi
h (bi ) e

−θ (bi−C) − H ′
−e

−θ (σ−C)

H ′
+e

−θ (σ+K ) − H ′
−e

−θ (σ−C)

+ P(a1 ≥ σ +C + K) , (23)

Further, if an ≤ amax for some constant amax > 0 and all n ≥ 0, then
additionally the following lower bound on L holds

P(L ≥ σ ) ≥
∑

σ+C≤bi<σ+C+K

πi
h (bi ) e

−θ (bi−C) − H−e
θσ

H+e−θ (σ+K+amax−C) − H−e−θσ

+ P(a1 ≥ σ +C + K) .

We note that the only changes from the underload bounds from

Theorem 5 are the sign change of θ and the H ′
+ and H ′

− parame-

ters, instead of H+ and H−. Concerning the proof itself, the only

significant difference is that now N+ is finite a.s.

5 CASE STUDY 1: IID ARRIVALS
We first address the underload regime, and then the overload and

border regimes.

5.1 Underload regime (ρ < 1)
Assume that the process (an )n∈Z is given by an iid family of random

variables. The following lemma (see Lemma 14 in [44]) shows the

existence of a corresponding martingale-envelope:

Lemma 7. For iid instantaneous arrivals, let θ be defined by

θ := sup

{
θ ≥ 0

��� E[eθa1 ] ≤ eθC
}
.

Then the flowA admits a martingale-envelope with parameters θ and
h ≡ 1, i.e.,

Mn = eθ (A(n)−Cn) .

The existence of θ is guaranteed under the tacit assumption

E[a1] < C < supa1 to avoid the trivial scenario of an always empty

queue.

With the observation that for the constant function h it clearly

holds H+ = H− = 1, the results from Theorems 3 (queue distribu-

tion) and Theorem 5 (loss distribution) apply immediately.

For instance, an upper bound on the queue size distribution is

P(Q ≥ σ ) ≤
1 − eθ (σ−K−C)

eθσ − eθ (σ−K−C)
. (24)

Improved bounds, relative to Theorem 3, can be obtained in the

iid case using an idea from Ross [48] (see also [17])

Corollary 8 (Queue distribution; improved bounds). In the
queueing scenario above

1 − β+e
θ (σ−K )

α+eθσ − β+eθ (σ−K )
≤ P(Q ≥ σ ) ≤

1 − β−e
θ (σ−K )

α−eθσ − β−eθ (σ−K )
,

where
α− = inf

x>C
E

[
eθ (a1−x ) | a1 ≥ x

]
and

β− = inf

0≤x<C
E

[
eθ (a1−x ) | a1 < x

]
,

whereas α+ and β+ are the same as α− and β− except for replacing
the ‘inf ’ by ‘sup’.

The proof is given in Appendix §A. An important remark is that,

unlike Theorem 3, the lower bounds hold in the case when a1 has

unbounded support. When K = ∞ the bounds are exact in the case

of exponential arrivals because α− = α+, as a direct consequence
of the memoryless property.

In certain cases, the parameters α−, β−,α+, β+ can be easily

computed. For instance, if a1 has an increasing failure rate dis-

tribution then E
[
eθ (a1−x ) | a1 ≥ x

]
and E

[
eθ (a1−x ) | a1 < x

]
are

non-increasing (see Ross [48], Shaked and Shanthikumar [51] (The-

orem 1.A.30), and Nanda et al. [42]). We also point out that, to
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simplify notation, we tacitly consider the range of x to be included

in the support of a1.

Improved bounds on the loss distribution, relative to Theorem 5,

can be obtained similarly:

Corollary 9 (Loss distribution; improved bounds). In the
queueing scenario above

P(L ≥ σ ) ≤
∑

σ+C≤bi<σ+C+K

πi
h (bi ) e

θ (bi−C) − β−e
θσ

α−eθ (σ+K ) − β−eθσ

+ P(a1 ≥ σ +C + K) .

(25)

and

P(L ≥ σ ) ≥
∑

σ+C≤bi<σ+C+K

πi
h (bi ) e

θ (bi−C) − β+e
θσ

α+eθ (σ+K ) − β+eθσ

+ P(a1 ≥ σ +C + K) .

(26)

where α−, β−, α+, and β+ are given in Corollary 8.

Alike for the queue distribution, the loss lower bounds are more

general than those from Theorem 5 in that the arrivals are not

restricted to finite support.

5.2 Overload regime (ρ > 1)
Assume that ρ > 1 and the additional constraint

inf a1 < C

to avoid the trivial scenario of an always full queue.

Lemma 10. For iid instantaneous arrivals, and ρ > 1, let θ > 0 be
defined by

θ := sup

{
θ ≥ 0

��� E[e−θa1 ] ≤ e−θC
}
.

Then the flow A admits a martingale-envelope with parameters −θ
and h ≡ 1, i.e.,

Mn = e−θ (A(n)−Cn) .

The proof is given in Appendix §A.

Upper and lower bounds follow directly from Theorem 4 by

noting that H ′
+ = H ′

− = 1. Improved bounds (and more general

lower bounds) follow as in the underload regime (see Corollary 8):

Corollary 11 (Queue distribution; improved bounds). In
the queueing scenario above

1 − β−e
−θ (σ−K )

α−e−θσ − β−e−θ (σ−K )
≤ P(Q ≥ σ ) ≤

1 − β+e
−θ (σ−K )

α+e−θσ − β+e−θ (σ−K )
,

where
α− = inf

x>C
E

[
e−θ (a1−x ) | a1 ≥ x

]
and

β− = inf

0≤x<C
E

[
e−θ (a1−x ) | a1 < x

]
,

whereas α+ and β+ are the same as α− and β− except for replacing
the ‘inf ’ by ‘sup’.

Unlike Theorem 4, the lower bounds now hold in the case when

a1 has unbounded support. The proof is almost identical to that of

Corollary 8. We also note that the conditional expectations in the

expressions for α− and β− are non-decreasing in the case when a1

has an increasing failure rate distribution.

Improved upper bounds, and more general lower bounds, can

also be obtained for the loss distribution.

Corollary 12 (Loss distribution; improved bounds). In the
queueing scenario above

P(L ≥ σ ) ≤
∑

σ+C≤bi<σ+C+K

πi
h (bi ) e

−θ (bi−C) − β+e
−θσ

α+e−θ (σ+K ) − β+e−θσ

+ P(a1 ≥ σ +C + K) .

(27)

and

P(L ≥ σ ) ≥
∑

σ+C≤bi<σ+C+K

πi
h (bi ) e

−θ (bi−C) − β−e
−θσ

α−e−θ (σ+K ) − β−e−θσ

+ P(a1 ≥ σ +C + K) .

(28)

where α−, β−, α+, and β+ are given in Corollary 11.

Note that this result is the same as in Corollary 9 except for

changing the sign of θ and interchanging α− with α+ and β− with

β+; recall also the differences between Theorems 5 and 6.

5.3 Border regime (ρ = 1)
We now enforce the condition ρ = 1 and additionally

inf a1 < C < supa1

to avoid trivial scenarios.

Corollary 13 (Queue distribution (ρ = 1)). In the scenario
above, the queue size distribution satisfies for 0 ≤ σ ≤ K

P(Q ≥ σ ) ≤ 1 −
σ

C + K
. (29)

This bound is particularly interesting because it is insensitive

to the arrivals’ distribution; as simulations will show, the bound is

quite accurate for several distributions.

Proof. The proof does not involve a martingale-envelope be-

cause the construction of θ from Lemma 7 would yield the trivial

martingaleMn = 1. Instead we apply l’Hôpital rule in (24), i.e.,

lim

θ ↓0

1 − eθ (σ−K−C)

eθσ − eθ (σ−K−C)
= 1 −

σ

C + K
. (30)

Note that θ ↓ 0 in the constructions from Lemma 7 when ρ ↑ 1.

However, because each θ is implicitly obtained from each ρ, the
continuity/differentiability of the function

f (ρ) :=
1 − eθ (ρ)(σ−K−C)

eθ (ρ)σ − eθ (ρ)(σ−K−C)

is not guaranteed, where θ (ρ) is the corresponding value of θ
from Lemma 7 for a specific ρ. The proof is complete by apply-

ing the sequential characterization of limits from real analysis: if

limx→0 д(x) = L exists then limxn→0 д(xn ) = L for any sequence

xn → 0 with xn , 0. In our case the values of xn are taken by

the values of θ (ρ) from Lemma 7, and therefore the limit from (30)

applies to f (ρ) when ρ ↑ 1. �

An almost analogous result is that the number of jobs N in the

M/M/1/K queue satisfies

P(N ≥ σ ) = 1 −
σ

K + 1

,
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for σ = 0, 1, . . . ,K ; for related results concerning insensitivity

properties in queueing networks see Taylor [53]. Our queueing

system can be viewed as a D/G/1/K queue, i.e., equally-spaced

arrivals and general service times driven by the distribution of a1

and the service rate C . However, its underlying dynamics (see the

recursion from (3)) are slightly different from those of the D/G/1/K

queue; one reason is that our queue process Q is measured in fluid

arrivals rather than number of jobs (for a follow-up discussion

see § 8).

Using the same limit argument we can derive a simplified upper

bound on the loss distribution:

Corollary 14 (Loss distribution (ρ = 1)). The loss distribution
satisfies for σ > 0

P(L ≥ σ ) ≤
∑

σ+C≤bi<σ+C+K

πi
bi − σ

K +C
+P (a1 ≥ σ +C + K) . (31)

Unlike the queue distribution from (29), the loss distribution

does depend on the distribution of the increments an .

5.4 Bounds vs Simulations
5.4.1 Exact Bounds. We first consider a simple case in which the

bounds are exact. Let an be Bernoulli random variables with{
P(a1 = 2) =

ρ
2

P(a1 = 0) = 1 −
ρ
2
,

such that E [a1] = ρ; the capacity is C = 1 and the buffer size is

K = 10 (or any integer value).

Consider the upper bounds on the queue distribution from Corol-

laries 8 (underload) and 11 (overload). The two bounds match those

from Theorems 3 and 4 (e.g., α− = 1 and β− = e−θC in Corollary 8).

Moreover, the bounds are in fact exact, for integer values of σ . To
see that, it is instructive to recall the proof of the upper bound, and

in particular (16) where we made use of two inequalities:{
A(N+) − N+C ≥ σ

A(N−) − N−C ≥ σ − K −C .

From the definitions of N+ and N−, and the parameters of a1, these

inequalities do hold as equalities, because the instantaneous drift

an −C is either −1 or 1.

5.4.2 Simulations. Next we consider several distributions for a1

and compare the bounds against simulations shown in terms of

Wilson confidence intervals, which are recommended for estimating

the success probability of Binomial distributions [12]. Note that

for any σ the empirical distribution P(Q̂ ≥ σ ) follows a binomial

law B(n,p), where n is the number of samples and p = P(Q ≥ σ ) is
the success probability to be estimated. We use n = 10

9
in all our

simulations; each sample is the queue/loss size experienced by the

10
5
th packet, starting from an empty system.

In Fig. 2(a,b) we consider Erlang-3 and Weibull (with shape pa-

rameter 2) distributions for a1; the corresponding rate and scale

parameters (both denoted by λ) are determined from C and the

utilization. For instance, in the Weibull case, λ =
2ρC
√
π
. We also

consider the Uniform (U [0, 2E[a1]]) and Poisson distributions in

(c) and (d), with E[a1] determined from C and ρ. In all figures we
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Figure 2: Queue distribution for iid arrivals (C = 0.1, K = 10)

include the upper/lower bounds from Corollaries (8) and (11) for

ρ < 1 and ρ > 1, respectively, and the simplified upper bound

from (29) for ρ = 1. All the bounds can be derived in closed-form

except for the parameter θ , and except those for the Poisson case

which requires numerical procedures for estimating the α ’s and β ’s
parameters.

In heavy-traffic the upper bounds, simulations, and lower bounds

are visually almost indistinguishable. The shown upper bounds

from Corollaries (8) and (11) only negligibly improve upon those

from Theorems 3 and 4 (not shown here). We have also experienced

a very slow convergence of the tails at utilization ρ = 1.25 when

using fewer samples (e.g., 10
6
instead of 10

9
). A possible explanation

is that convergence is provably very slow in finite-buffer queues,

more precisely it can have an order of O (t−γ ) for some parameter

γ , where t is time (see Bratiichuk [11]); this slow convergence

rate raises further computational concerns on existing recursive

algorithms (recall the discussion from § 2).

An interesting observation is that there is a large gap between

the plots for ρ = 0.99 and ρ = 1. This is not the case however in the

Poisson case where we omitted the plot for ρ = 0.99 which almost

overlaps with that for ρ = 1. The Poisson case further stands out

because queues are significantly larger at ρ = 0.75 than in the other

three cases; the reason lies in the magnitude of the coefficient of

variation of the Poisson increments, i.e., about 6-fold larger than in

the other cases for the given set of parameters.

We also note that the bounds for ρ = 1 slightly deteriorate in

the tail. A possible reason is that the shape of the bound from (29)

does not capture the fact that P(Q ≥ K + ε) = 0 for ε > 0.

The bounds for the loss distribution are illustrated in Fig. 3 for

iid Geometric and Poisson arrivals with the same mean; we use the

improved ones from this section and also the upper ones from (31)

when ρ = 1. As it was the case for the queue distribution, there

is only a negligible difference in the Poisson case (and also in the

Geometric case) between ρ = 0.99 and ρ = 1, for which reason

we split the figures into (a,b) and (c,d). The shown bounds only
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Figure 3: Loss distribution for iid Geometric and Poisson
(C = 0.1, K = 10)

marginally improve those from Theorem 5/(23); note that lower

bounds are not available through Theorem 5 given the unbounded

support of the two distributions.

6 CASE STUDY 2: MARKOVIAN ARRIVALS
6.1 Markov Modulated Processes; Constant

Size Packets
Consider aMarkov (modulating) chainXn with state space {1, . . . , S},
transition matrix T ∈ RS×S , i.e., T (i, j) := P(Xn = j | Xn−1 = i),
and a rate function r : {1, . . . , S} → R such that

an := r (Xn ) .

We assume that Xn has a steady-state distribution denoted by π =
(πi )1≤i≤S ; moreover, Xn starts in the steady-state.

Let the transform matrix Tθ ∈ RS×S for θ > 0 as

Tθ (i, j) := T (i, j)eθ r (j) , for 1 ≤ i, j ≤ S .

Moreover, let λ(θ ) ∈ R denote the spectral radius of

Π−1TθΠ ,

where Π is the diagonal matrix formed from the π ’s, and let vθ =
(v1,v2, . . . ,vS ) ∈ R

S
denote a corresponding (right) eigenvector.

By the Perron-Frobenius theorem, λ(θ ) is the maximal positive

eigenvalue and vθ can be chosen to be positive.

The following lemma (see Lemma 16 in [44]) provides themartingale-

envelope for the reversed process, denoted by A(n) as usual:

Lemma 15. For Markov-modulated arrivals, let

θmar := max

{
θ ≥ 0

��� λ(θ ) ≤ eθC
}
,

then the flow A admits the martingale-envelope

Mn := h(an )e
θ (A(n)−nC)

for n ≥ 0, with h(r (i)) = vi for i = 1, 2, . . . , S .

1 2

p

q
R

Figure 4: AnMMOO process; R arrivals are produced in each
time-slot while in state ‘2’

For the upper and lower thresholdsH+ andH− from Definition 2

it holds

H+ := inf {h(r (i)) | r (i) > C}

and

H− := inf {h(r (i)) | r (i) < C} ,

and similarly for H ′
+ and H ′

−. The bounds on the queue size and

loss from Theorems 3 and 5, respectively, apply immediately.

6.1.1 Example 1:MMOO. One of the simplest examples of aMarkov-

modulated process is the Markov-Modulated On-Off (MMOO), i.e.,

S := 2,

T :=

(
1 − p p

q 1 − q

)
,

for some probabilities p and q, and r (1) := 0, and r (2) := R, for a
peak rate R > 0 (see Fig. 4). For the transformed matrix Tθ denote

by v1 and v2 as the components of the eigenvector corresponding

to the spectral radius λ(θ ).

6.1.2 Example 2: An aggregate of MMOO’s. Let us now consider

the more general case of multiplexing N independent MMOO pro-

cesses, each defined as earlier with identical parameters. Assume

the stability condition NR
p

p+q < C and the non-trivial situation

when NR > C (otherwise the queue would always be empty).

Let us also assume the burstiness condition

p + q < 1 ,

under which it holds that v1 ≤ v2 (see [13]). Clearly, the transition

matrix of the underlying Markov chain for the aggregate process

can be computed, albeit in a quite cumbersome form, and one can

further construct a corresponding martingale as in Lemma 15.

A numerically much more efficient technique is to use the statis-

tical independence of the MMOO’s (see [44]). By first constructing

a martingale Mi (n) for each individual arrival process Ai (n) =∑
k ai,k as in Lemma 15 (with normalized capacity c := C

N ), i.e.,

Mi,n = hi (ai,n )e
θ (Ai (n)−cn)

the aggregate process A(n) :=
∑
i Ai (n) has the martingale

Mn = h(an )e
θ (A(n)−Cn) ,

where h() is the (min,×) convolution of hi ()
′s , i.e.,

h(r ) = min

r1+r2+· · ·+rN =r
h1(r1)h2(r2) . . .hN (rN ) .

Using the monotonicity property v1 ≤ v2 we obtain immediately

that

h(iR) = vN−i
1

vi
2
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for i = 0, 1, . . . ,N and also

H− = v
N
1
, H+ = v

N−⌈CR ⌉

1
v
⌈CR ⌉

2
,

H ′
− = v

N−⌊ CR ⌋

1
v
⌊ CR ⌋

2
, H ′
+ = v

N
2
.

(With abuse of notation ⌊CR ⌋ denotes
C
R − 1 if

C
R is an integer.)

The steady-state probabilities of the aggregate chain are

πi :=

(
N

i

) (
q

p + q

)N−i (
p

p + q

)i
,

for i = 0, 1, . . . ,N . Then, under these notations, the bounds from

Theorems 3 and 5 hold. For instance, the upper bound on the backlog

process is

P(Q ≥ σ ) ≤
E[h(a0)] − H−e

θ (σ−K−C)

H+eθσ − H−eθ (σ−K−C)
.

Refined bounds can be immediately obtained as in the iid case, i.e.,

P(Q ≥ σ ) ≤
E[h(a0)] − H−β−e

θ (σ−K )

H+α−eθσ − H−β−eθ (σ−K )
, (32)

where α− = infx>C,y E
[
eθ (a1−x ) | a1 ≥ x ,a0 = y

]
whereas β− =

inf0≤x<C,y E
[
eθ (a1−x ) | a1 < x ,a0 = y

]
. All the improved bounds

are identical as those from the iid case (Corollaries 8 and 9) except

for the expanded conditional expectations in the expressions for α−
and β− (and also of α+ and β+) to account for the Markov structure

(see the free value y).
Fig. 5 compares the (refined) upper and lower bounds on the

queue size distribution for an aggregate of MMOO’s against sim-

ulations; as mentioned in the iid case as well, only the refined

lower bounds significantly improve over those from Theorem 3.

The MMOO’s parameters are given in the caption; the utilizations

ρ = 0.99 (heavy-traffic) and ρ = 0.75 (moderate) yield different

capacitiesC . The figures indicate that the upper bounds are tight in
heavy-traffic and in situations with larger buffers (e.g., (e) vs. (c)).

Similar observations hold in Fig. 6 for the loss distribution. We note

that P(L ≥ σ ) = 0 when N = 1; also, in Fig. 6(b), P(L ≥ 4) = 0 due

to the parameters’ configuration; in (c) and (d) we omit the ρ = 0.75

case due to very small probability values.

6.2 Markov Modulated Processes; Random
Packet Size

Here we briefly consider a generalized version of the previous

Markov Modulated Processes in the sense that while in state j a
process generates packets of size r (j) with probability pj , instead
of probability 1; with probability 1 − pj no packet is generated.

These processes are the discrete-time variant of Markov Modulated

Poisson Processes (MMPP).

The martingale representation from Lemma 15 holds immedi-

ately. The only difference is that the transform matrix Tθ ∈ RS×S

is now defined as

Tθ (i, j) := T (i, j)
(
1 − pj + pje

θ r (j)
)
, for 1 ≤ i, j ≤ S .

Immediate extensions to other Markov Modulated processes are

also possible. If the arrivals in each state are iid then their moment

generating function would replace the factor

(
1 − pj + pje

θ r (j)
)
.
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Figure 5: Queue distribution (i.e., P(Q ≥ σ )) for MMOO’s (p =
0.1, q = 0.5, R = 1)

If they had a Markov structure then one would need to extend

the dimension of Tθ to account for the bivariate (state + arrivals)

Markov structure.

7 COMPARISONWITH RELATEDWORK
The discrete-time queueing model with finite buffer used in this

paper appeared in Cruz and Liu [18]. While slightly different from

the D/G/1/K queue, the advantage of this model is the non-recursive

formulation for the backlog and loss (recall (4) and (6)). Next we

compare our upper bounds on the loss distribution from (27) against

related ones for the iid Geometric and Poisson setting from Fig. 3.

First we consider the bound of Cruz and Liu [18]; see Theorem 5.3

in Liu [37] for the actual result. In the Poisson case

P(L ≥ σ ) ≤ inf

θ0<θ

e−θ0(σ+K )

e
θ0

(
C−λ eθ0−1

θ
0

)
− 1

,

withθ fromLemma 7. Slightly improved bounds appeared inGhiassi-

Farrokhfal and Ciucu [22]. What both methods have in common

is the use of the Union Bound to upper bound P (maxk Xk ≥ σ ),
where Xk is some stochastic process.

A much improved bound recently appeared in Raeis et al. [45] by
using an alternative ‘min-max’ non-recursive formulation for the

loss (analogous to the ‘max-min’ one from (6)). By picking a single
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Figure 6: Loss distribution (i.e., P(L ≥ σ )) for MMOO’s

point from the outer ‘min’ operator, Raeis et al. [45] deal with the

remaining ‘max’ using the Kingman/Ross martingale methodolo-

gies from [34] and [48]. A bound on the overflow probability (see

Theorem 4 therein) is

P(L > 0) ≤
1

α−
e−θK ,

with the same θ from Lemma 7 and α− from Corollary 8.
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(b) Geometric, ρ = 0.75
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(c) Poisson, ρ = 0.99
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(d) Poisson, ρ = 0.75

Figure 7: Upper bounds on the overflow probability P(L > 0)

for iid Geometric and Poisson (C = 0.1)

In Fig. 7 we compare all the bounds on the overflow probabil-

ity (the metric derived in [45]) as a function of the buffer size

K . The bounds from [22] simply restrict the bounds from [18] to

proper probability values. The improvement from [45] is significant,

as a direct consequence of applying martingale-based techniques

rather than the Union Bound (for a related discussion see Ciucu and

Poloczek [17]). The additional improvement of our bound from (27)

is also significant, especially in heavy-traffic. The reason is that we

fully exploit the ‘max-min’ structure through the stopping times

N+ and N−, unlike the approach from [45] which picks a single

point from the ‘min’ operator.

8 IMPROVEMENTS AND EXTENSIONS
The source of possible inaccuracies of the stopping-times/martingale

method lies in two inequalities{
A(N+) − N+C ≥ σ

A(N−) − N−C ≥ σ − K −C .

The latter is also subject to the use of aN−
≥ 0 (recall the discussion

from § 5.4). A possible method for improvements would have to

properly deal with overshoot probabilities, which essentially con-

cern the last increment when a stopping-time occurs (in our case

aN+ and aN−
, for which we used the immediate bounds aN+ ≥ C

and aN−
≥ 0); see, e.g., Asmussen [2].

To further improve the bounds one could consider alternative

continuous-time models. In this case, the second inequality above

would be strengthen to

A(N−) − N−C ≥ σ − K − ε ,

for infinitesimally small ε (recall the derivation of (17) in discrete-

time). Such a continuous-time extension of Kingman’s technique

was considered by Palmowski and Rolski [43]; see [44] for related

comments concerning continuous vs discrete-time models.

Our results could be extended to a slight variation of the G/G/1/K

queue subject to the recursion

Q(n + 1) = max{0,min{Q(n) + Xn ,K} −Tn } .

Tn ’s are the jobs’ interarrival times, whereas Xn ’s measure the job

sizes (e.g., bits) to be served at rate 1. Unlike the standard G/G/1/K

model whereby Q(n) measures the number of jobs in the queue, in

the modified model Q(n) measures ‘bits’, or, equivalently, waiting

times. Moreover, no arrivals are fully dropped, but only the over-

flowing fraction of Xn . The advantage of this fractional queueing
model is that it would lend itself to a non-recursive representation

similar to (4), which could be solved by adapting our stopping-

times/martingale technique. An alternative challenge is to directly

express the standard G/G/1/K queue size in a non-recursive manner

and apply our technique.

9 CONCLUSIONS
In this paper we have analyzed finite-buffer queues with iid and

Markovian arrivals. Using a non-elementary extension of King-

man’s bounding approach for GI/G/1 queues, we have obtained

bounds on the queue and loss distributions. The former retain the

inherent truncated behavior characteristic to finite-buffer queues,

thus departing from classical exponential tail approximations. In

the iid case and at utilization ρ = 1, the upper bounds are insensitive

to the arrivals distribution, whereas in heavy-traffic the bounds are

numerically accurate and improve upon existing bounds by orders
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of magnitude. A fundamental challenge is to extend our results in

realistic feedback-based/closed-loop scenarios whereby the arrival

model reacts to losses.

REFERENCES
[1] Vyacheslav M. Abramov. 1997. On a Property of a Refusals Stream. Journal of

Applied Probability 34, 3 (March 1997), 800–805. https://doi.org/10.2307/3215106

[2] Søren Asmussen. 2000. Ruin Probabilities. World Scientific.

[3] François Baccelli and Pierre Brémaud. 2002. Elements of Queueing Theory. Palm
Martingale Calculus and Stochastic Recurrences. Springer.

[4] Andrea Baiocchi, Nicola B. Melazzi, Marco Listanti, Aldo Roveri, and Roberto

Winkler. 1991. Loss Performance Analysis of an ATM multiplexer Loaded with

High-Speed ON-OFF Sources. IEEE Journal on Selected Areas in Communications
9, 3 (April 1991), 388–393. https://doi.org/10.1109/49.76637

[5] Alamin A. Belhaj and László Pap. 2000. An Efficient Bandwidth Assignment

Algorithm for Real-Time Traffic in ATM Networks. In Performance Analy-
sis of ATM Networks: IFIP TC6 WG6.3 / WG6.4. Fifth International Workshop
on Performance Modeling and Evaluation of ATM Networks. 339–357. https:

//doi.org/10.1007/978-0-387-35353-1_17

[6] Chatschik Bisdikian, John S. Lew, and Asser N. Tantawi. 1992. On the Tail

Approximation of the Blocking Probability of Single Server Queues with Finite

Buffer Capacity. In Proc. of the Second International Conference on Queueing
Networks with Finite Capacity. 267–280.

[7] Chris Blondia. 1989. The N/G/1 Finite Capacity Queue. Communications
in Statistics. Stochastic Models 5, 2 (1989), 273–294. https://doi.org/10.1080/

15326348908807110

[8] Chirs Blondia and Olga Casals. 1991. Cell Loss Probabilities in a Statistical

Multiplexer in an ATM Network. In Proc. of 6th GI/ITG-Fachtagung, Messung,
Modellierung and Bewertung von Rechensystemen. 121–136.

[9] Chris Blondia and Olga Casals. 1992. Statistical Multiplexing of VBR sources:

A Matrix-Analytic Approach. Performance Evaluation 16, 1 (Nov. 1992), 5 – 20.

https://doi.org/10.1016/0166-5316(92)90064-N

[10] Jean-Chrysotome Bolot. 1993. End-to-end Packet Delay and Loss Behavior in the

Internet. In ACM SIGCOMM. 289–298. https://doi.org/10.1145/166237.166265

[11] A. M. Bratiichuk. 2007. Rate of Convergence to Ergodic Distribution for Queue

Length in Systems of the Type M
θ
/G/1/N. Ukrainian Mathematical Journal 59, 9

(01 Sept. 2007), 1300–1312.

[12] Lawrence D. Brown, Tianwen Tony Cai, and Anirban DasGupta. 2001. Interval

Estimation for a Binomial Proportion. Statist. Sci. 16, 2 (2001), 101–117. http:

//www.jstor.org/stable/2676784

[13] Emmanuel Buffet and Nick G. Duffield. 1994. Exponential Upper Bounds via Mar-

tingales for Multiplexers with Markovian Arrivals. Journal of Applied Probability
31, 4 (Dec. 1994), 1049–1060.

[14] Cheng-Shang Chang and Jay Cheng. 1995. Computable Exponential Bounds for

Intree Networks with Routing. In Proc. of IEEE Infocom. 197–204.

[15] Mohan L. Chaudhry, Umesh C. Gupta, and Manju Agarwal. 1991. On Exact

Computational Analysis of Distributions of Numbers in Systems for M/G/1/N +

1 and GI/M/1/N + 1 Queues using Roots. Computers & Operations Research 18, 8

(1991), 679 – 694. https://doi.org/10.1016/0305-0548(91)90006-D

[16] Israel Cidon, Asad Khamisy, and Moshe Sidi. 1993. Analysis of Packet Loss

Processes in High-Speed Networks. IEEE Transactions on Information Theory 39,

1 (Jan. 1993), 98–108. https://doi.org/10.1109/18.179347

[17] Florin Ciucu and Felix Poloczek. 2018. Two Extensions of Kingman’s GI/G/1

Bound. Proc. of the ACM on Measurement and Analysis of Computing Systems -
SIGMETRICS 2, 3 (Dec. 2018), 43:1–43:33.

[18] Rene L. Cruz and Haining N. Liu. 1993. Single Server Queues with Loss: A

Formulation. In Proc. of the 1993 Conference on Information Sciences and Systems
(CISS).

[19] Nick G. Duffield. 1994. Exponential Bounds for Queues with Markovian Arrivals.

Queueing Systems 17, 3-4 (Sept. 1994), 413–430.
[20] Josep M. Ferrandiz and Aurel A. Lazar. 1992. Monitoring the Packet Gap of

Real-Time Packet Traffic. Queueing Systems 12, 3 (Sept. 1992), 231–242. https:

//doi.org/10.1007/BF01158800

[21] Dieter Fiems, Stijn De Vuyst, Sabine Wittevrongel, and Herwig Bruneel. 2008.

Packet Loss Characteristics for M/G/1/N Queueing Systems. Annals of Operations
Research 170, 1 (Sept. 2008), 149–154. https://doi.org/10.1007/s10479-008-0436-9

[22] Yashar Ghiassi-Farrokhfal and Florin Ciucu. 2012. On the Impact of Finite Buffers

on Per-Flow Delays in FIFO Queues. In 24th International Teletraffic Congress
(ITC).

[23] Frank N. Gouweleeuw and Henk C. Tijms. 1998. Computing Loss Probabilities

in Discrete-Time Queues. Operations Research 46, 1 (Jan.-Feb. 1998), 149–154.

http://www.jstor.org/stable/223070

[24] Umesh C. Gupta and T.S.S. Srinivasa Rao. 1996. Computing Steady State Prob-

abilities in λ(n)/G/1/K Queue. Performance Evaluation 24, 4 (1996), 265 – 275.

https://doi.org/10.1016/0166-5316(94)00035-2

[25] Omer Gurewitz, Moshe Sidi, and Israel Cidon. 2000. The Ballot Theorem Strikes

Again: Packet Loss Process Distribution. IEEE Transactions on Information Theory
46, 7 (Nov. 2000), 2588–2595. https://doi.org/10.1109/18.887866

[26] Mark Handley. 1997. An Examination of MBONE Performance. Technical Report.
University of Southern California / Information Sciences Institute, ISI/RR-97-450.

[27] Fumio Ishizaki and Tetsuya Takine. 1999. Loss Probability in a Finite Discrete-

Time Queue in Terms of the Steady State Distribution of an Infinite Queue. Queue-
ing Systems 31, 3 (July 1999), 317–326. https://doi.org/10.1023/A:1019170500574
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A ADDITIONAL PROOFS
Proof of Corollary 9. The proof is similar to that of Theo-

rem 3 except for the evaluations ofE
[
MN+1N+<N−

]
andE

[
MN−

1N−<N+
]
.

Expanding

E
[
MN+1N+<N−

]
=

∑
k≥1

E
[
Mk1N+=k1N−>k

]
,

and denoting the partial sums Sk := U1 + · · · +Uk , Uk := ak −C ,
and the density ofU1 by f (x) , we can further expand each term as

E
[
Mk1N+=k1N−>k

]
= E

[
eθSk 1U1<σ 1U1≥σ−K . . . 1Sk−1

<σ

1Sk−1
≥σ−K 1Sk ≥σ 1Sk ≥σ−K

]
=

∫ σ

σ−K
eθx1 f (x1)· · ·

∫ σ−sk−2

σ−K−sk−2

eθxk−1 f (xk−1
)E

[
eθUk 1Uk ≥σ−sk−1

]
dxk−1

. . .dx1 ,

where sk := x1 + · · · + xk . Rewriting the inner expectation as

E
[
eθ (Uk−(σ−sk−1

)) | Uk ≥ σ − sk−1

]
P (Uk ≥ σ − sk−1

)

and simplifying terms we obtain

E
[
Mk1N+=k1N−>k

]
≥ α−e

θσ P (N+ = k,N− > k) ,

and hence

E
[
MN+1N+<N−

]
≥ α−e

θσ P (N+ < N−) .

Proceeding similarly for E
[
MN−

1N−<N+
]
we can write

E
[
Mk1N−=k1N+>k

]
= E

[
eθSk 1U1<σ 1U1≥σ−K . . . 1Sk−1

<σ

1Sk−1
≥σ−K 1Sk<σ 1Sk<σ−K

]
=

∫ σ

σ−K
eθx1 f (x1)· · ·

∫ σ−sk−2

σ−K−sk−2

eθxk−1 f (xk−1
)E

[
eθUk 1Uk<σ−K−sk−1

]
dxk−1

. . .dx1 .

Bounding as above and simplifying terms yields

E
[
MN−

1N−<N+
]
≥ β−e

θ (σ−K )P (N− < N+) ,

and the proof for the upper bound is complete. The proof for the

lower bound proceeds similarly except for reversing the inequalities

above and replacing the ‘inf ’ by ‘sup’.

Lastly, we note that if a1 does not have a density (e.g., it is a

discrete random variable) then the proof can be slightly adapted by

replacing the integrals by sums and; nonetheless, the results from

Corollary 8 hold as stated. �

Proof of Lemma 10. The proof proceeds similarly as the proof

of Lemma 7 (see [44]); the main difference is the sign change. Let the

functions ϕ1(θ ) = E
[
e−θa1

]
and ϕ2(θ ) = e−θC for θ ≥ 0. Because

ϕ ′
1
(θ )|θ=0

= −E [a1] < −C = ϕ ′
2
(θ )|θ=0

and ϕ1(0) = ϕ2(0), it follows that there exists ε > 0 such that

ϕ1(θ ) < ϕ2(θ )

in (0, ε). Moreover, because inf a1 < C , there exists θ ′ such that

ϕ1(θ
′) ≥ ϕ2(θ

′); (if a1 is a discrete r.v. then θ ′ = −
logP(a1=inf a1)

C−inf a1

).

Therefore, θ is well-defined and the rest of the proof proceeds as in

Lemma 7. �

B ADDITIONAL CASE-STUDIES
B.1 Autoregressive Arrival Processes
We consider autoregressive (AR) processes which belong to a sub-

class of Markovian arrivals whose instantaneous process (ak )k ∈Z
is defined recursively as follows

an = φan−1 + (1 − φ)µ + (1 − φ)σZn , (33)

where φ ∈ (0, 1), µ,σ > 0, and (Zk )k ∈Z is an independent family of

N0,1-distributed random variables.

We use the following result from [44] for the construction of the

martingale-envelope.

Lemma 16. Let θ = 2
C−µ
σ 2

and h(x) = e
θ φ

1−φ x . Then the autore-
gressive flow A admits a martingale-envelope with parameters θ and
h.

Next we give (approximate) bounds on the queue distribution;

bounds on the loss distribution can be obtained in a similar manner.

The lack of rigorousness is due to the fact that the increments an can

potentially be negative, as they follow a normal distribution, which

contradicts our basic assumption of positive arrivals. In general,

however, depending on the AR model, negative arrivals can occur

with negligible probabilities only.

Corollary 17 (Queue distribution - AR Case). In the scenario
above, the queue size distribution Q satisfies

P(Q ≥ σ ) /
e
θ φ

1−φ2
(φC+µ)

− eθ (σ−K−C)

e
θ φ

1−φ Ceθσ − eθ (σ−K−C)

. (34)

While AR processes have a Markovian structure, the key obser-

vation is that the parameter θ has now an explicit expression.

Proof. First we compute the mean and variance of an . By sta-

tionarity,

E[an ] = E[φan−1 + (1 − φ)µ + (1 − φ)σZn ]

= φE[an−1] + (1 − φ)µ + 0

= φE[an ] + (1 − φ)µ ,

and hence E[an ] = µ. Similarly,

Var[an ] = Var[φan−1 + (1 − φ)µ + (1 − φ)σZn ]

= φ2
Var[an−1] + (1 − φ)2σ 2

= φ2
Var[an ] + (1 − φ)2σ 2 ,

https://doi.org/10.1109/26.380134
https://doi.org/10.1109/26.2773
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Figure 8: Queue distribution for AR processes

and hence

Var[an ] = σ 2
(1 − φ)2

1 − φ2
= σ 2

1 − φ

1 + φ
.

Therefore, an is normally distributed with mean µ and variance

σ 2 1−φ
1+φ . The expectation E[h(a0)] can now be written as

E[h(a0)] =E
[
e
θ φ

1−φ a1

]
= E

[
e
θ φ

1−φ

(
µ+σ

√
1−φ
1+φ Z1

) ]
=e

θ φ
1−φ µe

θ 2φ2

2(1−φ )2
σ 2 1−φ

1+φ = e
θ φ

1−φ

(
µ+ θφ

2
σ 2 1

1+φ

)
=e

θ φ
1−φ

(
µ+ (C−µ )φ

1+φ

)
= e

θ φ
1−φ2

(φC+µ)

For the computation of H+ and H− we observe from Def. 2 that

H+ = h(C) = e
θ φ

1−φ C
and H− = h(0) = 1 .

The rest follows by Theorem 3. �

In Fig. 8 we compare the approximate AR bounds against simula-

tions, for two values of the weighting parameter φ (larger values of

φ correspond to stronger correlation structures of the increments

an ). We let σ = 1, whereas µ is implicitly computed from the uti-

lization ρ and C . Despite not being rigorous, the bounds are still

accurate at high utilization in (a) and (b), which indicates a neg-

ligible effect of the negative increments. By scaling the (arrival)

units and reducing the mean by a factor of 10 (in (c) and (d)), the

adverse effects of the negative increments arise. We also note that

the approximation errors in (c) and (d) are not uniform in σ (i.e.,

the ‘upper bounds’ can be either below or above simulations). The

reason is that the ‘true’ result would include a prefactor L for the

term eθ (σ−K−C)
in (34), both in the numerator and denominator;

see the derivation of (17) from Theorem 3.
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Figure 9: Queue length and loss quantiles for MMOO’s (N =
5, p = 0.1, q = 0.5, R = 1)

B.2 Queue-Size vs. Loss
Here we use our main results to study the relationship between

queue-size and loss in the context of dimensioning buffer sizes

subject to Quality-of-Service constraints of the form

P
(
Q ≥ σQ

)
≤ ε and P (L ≥ σL) ≤ ε ,

for some target values σQ , σL , and ε . Intuitively, larger buffer sizes
K imply larger queues (and hence waiting-times/delays) and fewer

losses; in turn, smaller values of K imply smaller queues (delays)

but more losses. Depending on the parameters σQ , σL , and σ , an
‘optimal’ buffer size may not exist.

In Fig. 9 we show the queue and loss quantiles for a range of

buffer sizesK , while keeping the utilization ρ constant; for instance,

the values corresponding to the 0.99 quantiles translate into a value

ε = 10
−2
. At high utilization (ρ = 0.99), the key insight is that

buffers should be small, as otherwise delays increase sharply while

losses only reduce negligibly; however, depending on the applica-

tion (e.g., involving forward error correction schemes) small gains

in the loss can have a significant impact on the application’s perfor-

mance, and hence larger delays may be more desirable. At smaller

utilization (ρ = 0.75), the underlying delays vs. losses tradeoff be-

comes more subtle, as it additionally depends on the ‘confidence

level’ ε .
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