
Comments on Treatment of Constraints in Block 1

Some of the text on constraints in Block 1 can give rise to confusion for people who are very
new to the subject. These comments are offered in the interests of clarification. Text from
Block 1 is shown in black.

Imposing limits on the types of operation that can be applied is one example of imposing
constraints on the data held in a database. (p.20)

It is true that a constraint has the effect of disallowing certain specific update
operations but a constraint isn’t specified in such terms. E.g., CHECK HireDate >
BirthDate has the effect of prohibiting the recording of an employee being hired on or
before their birthday, but the wording suggests that a constraint has the effect of
prohibiting certain types of operation, such as INSERT, DELETE, UPDATE.

Most complex databases have many rules, usually known as constraints, that define the
representation and values permitted for valid data being entered into the database or that
describe valid changes that can be made to existing data. (p.24)

A constraint doesn’t define representation, nor does it “describe valid changes”.

… things like user access controls, constraints, backup and recovery mechanisms are all
tools that can be used to protect data assets. (p.51)

Including constraints here is likely to cause confusion. It is not usual to think of
consistency (with constraints) as being involved in asset protection.

There should be a constraint imposed in the database that ensures this inconsistency cannot
arise. (p.61)

Yes, that’s exactly the kind of thing a constraint is for. (We would normally say
imposed on rather than imposed in.)

The database designer has implemented a constraint to ensure this inconsistency is not
permitted within the database. (p.61)

Yes, that’s good too, though it is really the DBMS that implements constraints—
designers just define (or declare) them.

Failing to identify dependencies between data items and protect that dependency with
appropriate constraints can lead to the entry of data that is inconsistent, or can allow changes
to data that should not be permitted. It is preferable to have the database enforce the
constraints consistently for all the user applications rather than depend on the individual
applications to be programmed to check the constraints. (p.61)

This is good. It clearly shows update operations as being affected by the existence of
constraints but not explicitly involved in their declaration. For example, the constraint
CHECK HireDate > BirthDate does not mean, “When the HireDate is altered, make
sure it’s greater than the BirthDate”, for that would allow the BirthDate to be altered to
be greater than the HireDate!

A logical schema is the central component in this architecture. It defines the logical
properties of data in a database, being concerned with a representation of the data and
associated constraints that are independent of how it is stored in files. (p.69)

Well, yes, but the whole of the LS is independent of “how it is stored in files”, not just
the constraints.

Constraint management (p.75)

This DBMS function is concerned with the definition of constraints and, since constraints are
properties of data, they are included in a schema in the same way as described for data
definition. Indeed, constraint definition could be considered as just one aspect of data
definition, but we have described it separately to emphasise the importance of constraints as
a special characteristic of data in a database.



This is a bit fuzzy. The first sentence is trying to say that it’s a responsibility of the
DBMS to permit constraints to be declared, and such declarations are considered to
be part of the logical schema. Instead of saying, rather loosely, that a constraint is a
property of the data, we would such that it is a condition that the data must always
satisfy. A similar comment applies to “a special characteristic of data”.

After a constraint has been defined, a DBMS must ensure that data in a database never
violates the constraint – that is, a constraint is enforced automatically. Constraints are
checked whenever a request to the DBMS would result in changes to the data that might
affect the constraint. Note that many DBMSs allow constraint enforcement to be switched off
either temporarily or permanently – this control should be exercised with great caution.

This is good. “Never violates” means the same as “always satisfies”. The second
sentence could be replaced by this: “Notionally, every constraint is checked whenever
the database is updated. In practice, of course, we expect the DBMS to check just
the constraints that reference the parts of the database affected by the update.”

ACTIVITY 3.1 (p.78)

Examining the DBMS system tables

Shows that constraint definitions in SQL do not mention update operations (apart
perhaps from in triggered actions such as ON DELETE CASCADE).


