
File: M359-Notes1.doc
Printed at: 15:55 on Tuesday, 2 February, 2010

M359: Notes for Lecture 1, Introduction — Page 1 of 11

CS252:HACD Fundamentals of Relational Databases

Notes for Section 1: Introduction

1. Cover slide

These notes are adapted from the ones given to Hugh Darwen's students at Warwick University.

Introductory Remarks

In Block 2 of M359, Relational Databases: Theory and Practice, we study the theory upon which
relational databases are based. Or perhaps it would be better to say, “should be based”, or “were
intended to be based (by its original proponent)”. We also study a database language that is firmly
based on this theory. When M359 was developed by the Open University, no implementation of
this language was available for students to experiment with and test their TMA solutions. In 2010
former M359 student John Waller decided to make such an implementation as his project on course
M450. Rel359 is that implementation and on successful completion of his project he decided to
make Rel359 available to future generations of M359 students (at their own risk, of course).)

Block 3 of M359 introduces you to the “state of the art” of relational database support in the
industry. This takes the form of SQL, the language that was dubbed “intergalactic dataspeak” by
database guru Michael Stonebraker in the 1980s (since when its use and its number of
implementations have grown enormously). You are strongly encouraged to compare and contrast
the theory of Block 2 and the practice of SQL!

Lecture 1: Introduction

Lecture 1 gives a very broad overview of

• what a database is

• what a relational database is

• what a database management system (DBMS) is

• what a DBMS does

• how a relational DBMS does what a DBMS does

We start to familiarise ourselves with terminology and notation used on this course.

We get a brief introduction to each topic that will be considered in more detail in later sections of
the course.

2. Some Preliminaries

Note that the word “database” had not been coined when Ted Codd, actually a hardware specialist
working on for IBM on its mainframe architecture at the time, did this important work for which he
was later a recipient of the Turing Award. Codd died in 2003.

Tutorial D (which is always written that way, in bold face) was invented in the late 1990s by Hugh
Darwen and C.J. (Chris) Date for the very purpose that its name suggests—teaching, as opposed to
commercial use. It is used for examples and exercises in several books coauthored by them and in
particular in the two books by Chris Date that are recommended reading for this course. The
official definition of the language is given in their book, “Databases, Types, and The Relational
Model: The Third Manifesto” (Pearson Education inc., 2007, ISBN 0-321-39942-0), but this book is
not suitable for an introductory course of this nature and in any case we will not use all of the
language.

Page 2 of 11 — M359: Notes for Lecture 1, Introduction

An implementation of Tutorial D, Rel, has been made available to the academic community at
large as an Open Source product by its author, Dave Voorhis of the University of Derby. John
Waller’s Rel359 is an adaptation of Rel.

3. What Is a Database?

You will find many definitions of this term if you look around the literature and the Web.
Wikipedia offers this: “A structured collection of records or data.” I prefer to elaborate a little, as
shown on the slide:

A database is an organised, machine-readable collection of symbols,
to be interpreted as a true account of some enterprise. A database is
machine-updatable too, and so must also be a collection of variables.
A database is typically available to a community of users, with
possibly varying requirements.

The organised, machine-readable collection of symbols is what you “see” if you “look at” a
database at a particular point in time. It is to be interpreted as a true account of the enterprise at that
point in time. Of course it might happen to be incorrect, incomplete or inaccurate, so perhaps it is
better to say that the account is believed to be true.

The alternative view of a database as a collection of variables reflects the fact that the account of the
enterprise has to change from time to time, depending on the frequency of change in the details we
choose to include in that account.

The suitability of a particular kind of database (such as relational, or object-oriented) might depend
to some extent on the requirements of its user(s). When E.F. Codd developed his theory of
relational databases (first published in 1969), he sought an approach that would satisfy the widest
possible ranges of users and uses. Thus, when designing a relational database we do so without
trying to anticipate specific uses to which it might be put, without building in biases that would
favour particular applications. That is perhaps the distinguishing feature of the relational approach,
and you should bear it in mind as we explore some of its ramifications.

4. “Organised Collection of Symbols”

For example, the table shown in the slide shows an organized collection of symbols:

StudentId Name CourseId

S1 Anne C1

S1 Anne C2

S2 Boris C1

S3 Cindy C3

Can you guess what this tabular arrangement of symbols might be trying to tell us? What might it
mean, for symbols to appear in the same row? In the same column? In what way might the
meaning of the symbols in the very first row differ from the meaning of those below them?

Do you intuitively guess that the symbols below the first row in the first column are all student
identifiers, those in the second column names of students, and those in the third course identifiers?
Do you guess that student S1’s name is Anne? And that Anne is enrolled on courses C1 and C2?
And that Cindy is enrolled on neither of those two courses? If so, what features of the organisation
of the symbols led you to those guesses?

M359: Notes for Lecture 1, Introduction — Page 3 of 11

Remember those features. In an informal way they form the foundation of relational theory. Each
of them has a formal counterpart in relational theory, and those formal counterparts are the only
constituents of the organized structure that is a relational database.

5. “To Be Interpreted as a True Account”

For example, from the table just shown:

StudentId Name CourseId

S1 Anne C1

Perhaps those green symbols, organised as they are with respect to the blue ones, are to be
understood to mean:

“Student S1, named Anne, is enrolled on course C1.”

In that case, your guesses were correct.

An important thing to note here is that only certain symbols from the sentence in quotes appear in
the table—S1, C1, and Anne. None of the other words appear in the table. The symbols in the top
row of the table (column headings?) might help us to guess “student”, “named”, and “course”, but
nothing in the table hints at “enrolled”. And even if those assumed column headings had been A, B
and C, or X, Y and Z, the given interpretation might still be the intended one.

Another important point is that the interpretation takes the form of a declarative sentence of which
it can be said, “that is true” or “that is false”. Such declarative sentences are what logicians call
propositions.

Now, we can take the sentence “Student S1, named Anne, is enrolled on course C1” and replace each of S1,
Anne, and C1 by the corresponding symbols taken from some other row in the table, such as S2, Boris, and
C1. In so doing, we are applying exactly the same mode of interpretation to each row. If that is indeed how
the table is meant to be interpreted, then we can conclude that the following sentences are all true:

Student S1, named Anne, is enrolled on course C1.

Student S1, named Anne, is enrolled on course C2.

Student S2, named Boris, is enrolled on course C1.

Student S3, named Cindy, is enrolled on course C3.

In my paper “What a Database Really Is: Predicates and Propositions”, I show you exactly how such
interpretations can be systematically formalized. And in the Block 2 material on relational algebra, you will
see how they help us to formulate correct queries to derive useful information from a relational database.

6. “Collection of Variables”

This slide gives a name, ENROLMENT, to a table very similar to the one shown in slide 4. The
only changes are the additions of the name, ENROLMENT, above the table and an extra row:

Page 4 of 11 — M359: Notes for Lecture 1, Introduction

ENROLMENT

StudentId Name CourseId

S1 Anne C1

S1 Anne C2

S2 Boris C1

S3 Cindy C3

S4 Devinder C1

Perhaps the table shown in slide 4 was once the value of this same variable, which has since been
“updated”. Our interpretation of the table in Slide 4 now has to be revised to include the sentence
represented by that additional row:

Student S1, named Anne, is enrolled on course C1.

Student S1, named Anne, is enrolled on course C2.

Student S2, named Boris, is enrolled on course C1.

Student S3, named Cindy, is enrolled on course C3.

Student S4, named Devinder, is enrolled on course C1.

Notice that in English we can join all these sentences together to form a single sentence, using
conjunctions like “and”, “or”, “because” and so on. If we join them using “and” in particular, we
get a single sentence that is logically equivalent to the given set of sentences in the sense that it is
true if each one of them is true (and false if any one of them is false). A database, then, can be
thought of as a representation of an account of the enterprise expressed as a single sentence! (But
it’s more usual to think in terms of a collection of individual sentences.)

We might also be able to conclude that the following sentences (for example) are false:

Student S2, named Boris, is enrolled on course C2.

Student S2, named Beth, is enrolled on course C1.

Whenever the variable is updated, the set of true sentences represented by its value changes in some
way. Updates usually reflect perceived changes in the enterprise, affecting our beliefs about it and
therefore our account of it.

7. What Is a Relational Database?

A relational database is one whose symbols are organised into a collection of relations. Slide 7
confirms that the examples we have already seen are in fact relations, depicted in tabular form.

Happily, this visual (tabular) representation we have been using thus far is suited particularly well
to relational databases: so much so that many people use the word table as an alternative to relation.
The language SQL in particular uses that term, so in the context of relational theory it is convenient
and judicious to stick with relation for the theoretical construct, allowing SQL’s deviations from
relational theory to be noted as differences between tables and relations.

Relation is a formal term in mathematicsin particular, in the logical foundation of mathematics.
It appeals to the notion of relationships between things. Most mathematical texts focus on relations
involving things taken in pairs but our example shows a relation involving things taken three at a
time and, as we shall see, relations in general can relate any number of things (and, as we shall see,
the number in question can even be less than two, making the term relation seem somewhat
inappropriate).

M359: Notes for Lecture 1, Introduction — Page 5 of 11

Relational database theory is built around the concept of a relation. Our study of the theory will
include:

 The “anatomy” of a relation.

 Relational algebra: a set of mathematical operators that operate on relations.

 Relation variables: their creation and destruction, and operators for updating them.

 Relational comparison operators, allowing consistency rules to be expressed as
constraints (commonly called integrity constraints) on the variables constituting the
database.

And we will see how these, and other constructs, can form the basis of a database language
(specifically, a relational database language).

8. Relation Table

The title of this slide is trying to say that the terms “relation” and “table” are not synonymous. The
following table (from the slide) is different from the one we have just been looking at, but
represents the same relation:

Name StudentId CourseId

Devinder S4 C1

Cindy S3 C3

Anne S1 C1

Boris S2 C1

Anne S1 C2

For one thing, although every relation can be depicted as a table, not every table is a representation
of (i.e., denotes) some relation. For another, several different tables can all represent the same
relation.

A table that does not depict any relation is shown in the EXERCISE given in the last slide of this
lecture.

Several different tables can all denote the same relation, because we can simply change the left-to-
right order in which the columns are shown and/or the top-to-bottom order in which the rows are
shown and yet still be depicting the same relation.

What does it mean to say that the order of columns and the order of rows doesn’t matter? We will
find out the answer to this question when we later study the typical operators that are defined for
operating on relations (e.g., to compute results of queries against the database) and relation
variables (e.g., to update the database). None of these operators will depend on the notion of some
row or some column being the first or last, or immediately before or after some other column or
row.

Page 6 of 11 — M359: Notes for Lecture 1, Introduction

9. Anatomy of a Relation

Here is the picture shown on the slide:

Because of the distinction I have noted between the terms “relation” and “table”, we prefer not to
use the terminology of tables for the anatomical parts of a relation. We use instead the terms
proposed by E.F. Codd, the researcher who first proposed relational theory as a basis for database
technology, in 1969.

Try to get used to these terms. You might not find them very intuitive. Their counterparts in the
tabular representation might help:

relation : table

(n-)tuple : row

attribute : column

Also (repeating what is shown in the slide):

The degree is the number of attributes.

The cardinality is the number of tuples.

The heading is the set of attributes (note set, because the attributes are not ordered in any
way and no attribute appears more than once).

The body is the set of tuples (again, note set—the tuples are not ordered and no tuple
appears more than once).

An attribute has an attribute name,1 and no two have the same name.

Each attribute has an attribute value in each tuple.

1 An attribute also has a type, for which M359 uses the term “domain”.

Name StudentId CourseId

Devinder S4 C1

Cindy S3 C3

Anne S1 C1

Boris S2 C1

Anne S1 C2

attribute

name

attribute values

n-tuple, or

tuplehere

n = 3, the

degree of the

relation.

the bodythis

one has 5 tuples.

5 is the

cardinality of

the relation.

the heading

M359: Notes for Lecture 1, Introduction — Page 7 of 11

10. What Is a DBMS?

A database management system (DBMS) is exactly what its name suggestsa piece of software for
managing databases and providing access to them. But be warned!in the industry the term
database is commonly used to refer to a DBMS, especially in promotional literature. You are
strongly discouraged from adopting such sloppy practice (if such a system is a database, what are
the things it manages?)

Before looking at the components we expect to find in a relational DBMS, we need to briefly
review what is expected of a DBMS in general.

A DBMS responds to commands2 given by application programs, custom-written or general-
purpose, executing on behalf of users. Commands are written in the database language of the
DBMS (e.g., SQL). Responses include completion codes, messages and results of queries.

In order to support multiple concurrent users a DBMS normally operates as a server. Its immediate
users are thus those application programs, running as clients of this server, typically (though not
necessarily) on behalf of end users. Thus, some kind of communication protocol is needed for the
transmission of commands and responses between client and server. Before submitting commands
to the server a client application program must first establish a connection to it, thus initiating a
session, which typically lasts until the client explicitly asks for it to be terminated. That is all you
need to know about client-server architecture as far as M359 is concerned.

The term data sublanguage is sometimes used instead of database language. The “sub-” prefix
refers to the fact that application programs are sometimes written in some more general-purpose
programming language (the “host” language), in which the database language commands are
embedded in some prescribed style. Sometimes the embedding style is such that the embedded
statements are unrecognised by the host language compiler or interpreter, and some special
preprocessor is used to replace the embedded statements by, for example, CALL statements in the
host language.

A query is an expression that, when evaluated, yields some result derived from the database.
Queries are what make databases useful. Note that a query is not a command. The DBMS might
support some kind of command to evaluate a given query and make the result available for access,
also using DBMS commands, by the application program. The application program might execute
such commands in order to display a result in tabular form in a window.

11. What Does a DBMS Do?

In response to requests from application programs, we expect a DBMS to be able to:

 create and destroy variables in the database

 take note of integrity rules (constraints)

 take note of authorisations (who is allowed to do what, to what)

 update variables (honouring constraints and authorisations)

 provide results of queries

To amplify some of those terms:

The requests take the form of commands written in the database language supported by the DBMS.

2 The less appropriate term statement is very commonly used instead of command, especially for certain kinds of
command; I use that term quite often myself, as you will see. The term imperative is also occasionally used.

Page 8 of 11 — M359: Notes for Lecture 1, Introduction

The variables are the constituents of the database, like the ENROLMENT variable we looked at
earlier. (Note: M359 doesn’t actually use the term variable for the constituents of a database. In
Block 2 it uses the same term, relation, both for the variables and for the values assigned to or
derived from those variables. In Block 3, it similarly puts the SQL term table to both purposes.)

Constraints (sometimes called integrity constraints) are rules governing permissible values and
permissible combinations of values, of the variables. For example, it might be possible to tell the
DBMS that no student’s assessment score can be less than zero. A database that violates a
constraint is false, by definition. A database that satisfies all its constraints is said to be consistent,
even though it cannot in general be guaranteed to be true.

Authorisations are for security what constraints are for integrity. Some of the data in a database
might represent sensitive information whose accessibility is restricted to certain privileged users
only. Similarly, it might be desired to allow some users to access certain parts of the database
without also being able to update those parts.

Note the three parts of an authorisation: who, what, and to what. “Who” is a user of the database;
“what” is one of the operations that are defined for operating on the variables in the database; “to
what” is one of those variables.

12. Create and Destroy Variables

Two Rel359 commands are shown on Slide 12, one to create a variable in the database, the other to
destroy a variable. Here, again, is the first one

relation ENROLMENT
StudentId: CHAR
Name: CHAR
CourseId: CHAR

primary key (StudentId, CourseId) ;

explained as follows:

 relation is a key word indicating that a relation variable is being created.

 ENROLMENT is the variable’s name.

 Lines 3-5 define the attributes of ENROLMENT, giving the name and domain (or type) for
each one. CHAR is the type name used in Rel359 for character strings.

 The primary key specification indicates that the variable is subject to a certain kind of
constraint, in this case declaring that no two tuples in the relation assigned to
ENROLMENT can ever have the same combination of attribute values for StudentId and
CourseId (i.e., we cannot enrol the same student on the same course more than once, so to
speak).

 You will learn more about constraints in general and key constraints in particular later in the
course.

The second command shown on the slide

drop ENROLMENT ;

shows how a variable can be destroyed. After execution of this command the variable no longer
exists and any attempt to reference it is in error.

13. Take Note of Integrity Rules

Here is the constraint declaration shown on the slide

M359: Notes for Lecture 1, Introduction — Page 9 of 11

constraint NamePresent
(select ENROLMENT where Name = '')
is empty ;

and here is its explanation:

constraint is a key word indicating that a constraint is being declared.

NamePresent is the name of the constraint.

select ENROLMENT where Name = '' is a Rel359 expression denoting the relation
consisting of all the tuples of ENROLMENT whose Name attribute value is the empty
string=.

(select ENROLMENT where Name = '') is empty is a truth-valued expression yielding true
if the relation denoted by the expression in parentheses is indeed empty (i.e., no tuple in
ENROLMENT satisfies the condition Name = ''), otherwise yielding false.

The declaration tells the DBMS that the database is inconsistent if the value of NamePresent is ever
false, and that the DBMS is therefore to reject any attempt to update the database that, if accepted,
would bring about that situation.

14. Take Note of Authorisations

Tutorial D and Rel359 don’t include any commands for creating and destroying permissions,
because security and authorisation, though important, is not specifically a relational database issue.
In SQL they look like this, as shown on the slide.

GRANT SELECT ON ENROLMENT TO User9 ;
GRANT UPDATE ON ENROLMENT TO User8 ;

The first GRANT statement confers permission to “select”, authorising the user User9 to read the
data in ENROLMENT but not to update it. The second GRANT statement authorises the user
User8 to use SQL UPDATE commands on ENROLMENT. SQL uses the key word REVOKE for
withdrawing a previously given permission. You learn all about authorisation in SQL in Block 3.

15. Updates Variables

The usual way of updating a variable in computer languages is by assignment. For example, if X is
an integer variable, the assignment X := X + 1 updates X such that its value immediately after
execution of the assignment is one more than its value was immediately beforehand. The
expression on the right of := denotes the source for the assignment and the variable name on the
left denotes the target.

When the target is a relation variableas it always is when it is part of a relational databasethe
source must be a relation. You will learn how to write such expressions that denote relations in
Block 2, but in any case assignment, though it should be available (it isn't in SQL), is not the usual
way of applying updates to a relational database. This is because there is very often only a small
amount of difference, in a manner of speaking, between the “old” value and the “new” value and it
is usually much more convenient to be able to express the update in terms of that small difference.

Block 2 is not concerned with updating, so you don't actually learn how to update until you come to
the SQL commands for that purpose in Block 3. Rel359 therefore uses the Tutorial D commands.

The differential update operators expected in a relational DBMS are usually called insert, update,
and delete, and those are the names used in Tutorial D and Rel359 (also in SQL). Take a look at
delete first:

delete ENROLMENT where StudentId = 'S4' ;

Page 10 of 11 — M359: Notes for Lecture 1, Introduction

Informally, this deletes all the tuples for student S4 and means “student S4 is not enrolled on any
courses”. More formally, it assigns to the variable ENROLMENT the relation resulting from the
removal, from the current value of ENROLMENT, of every tuple in which the value of the
StudentId attribute is the student identifier S4, and the retention of every other tuple in the current
value of ENROLMENT. In other words, it assigns to ENROLMENT the value of select
ENROLMENT where not (StudentId = 'S4').

Next, we look at update:

update ENROLMENT where StudentId = 'S1'
(Name := 'Ann') ;

Note that update uses a where clause, just like delete. The where clause is followed by a list of
assignmentsin the example, just one assignmentbut these are assignments to attributes, not
assignments to variables. Informally, this updates each tuple for student S1, changing its Name
value to 'Ann'. More formally, it assigns to the variable ENROLMENT the relation that is identical
to the current value in all respects except for the value for the attribute Name in the tuples whose
StudentId value is 'S1', which is the string 'Ann' in each case. (I would have written “except
possibly” had I not known that the existing Name value in those tuples is 'Anne' in each case,
allowing for the fact that in some circumstances no change takes place as a result of executing this
command.)

The final example on the slide illustrates the use of insert:

insert ENROLMENT
relation {

tuple { StudentId 'S4' ,
Name 'Devinder' ,
CourseId 'C1' } } ;

Informally, this adds a tuple to ENROLMENT indicating that student S4, still called Devinder, is
now enrolled on course C1. More formally, it assigns to the variable ENROLMENT the relation
consisting of every tuple in the current value of ENROLMENT and every tuple (there is only one)
in the relation denoted by the expression following the word ENROLMENT. That expression is a
relation literal in Tutorial D. M359 does not give any notation for relation literals, so Rel359 uses
the Tutorial D notation as shown.

The first example has no effect on the database in the case where the current value of
ENROLMENT has no tuples for student S4.

The second example has no effect on the database in the case where the current value of
ENROLMENT has no tuples for student S1.

The third example has no effect on the database in the case where the current value of
ENROLMENT already contains the tuple representing the enrolment of student S4, named
Devinder, on course C1.

Note that any attempt to insert a tuple with the empty string, '', for the Name value, would be
rejected by the DBMS if the constraint NamePresent shown on Slide 13 is in effect. Similarly, an
update command specifying Name := '' would also be rejected.

16. Provides Results of Queries

Expressing queries in relational algebra is dealt with in detail in Block 2. Here I present just a
simple example to give you the flavour of things to come in that Block. The example is a query
expressing the question, who is enrolled on course C1?

M359: Notes for Lecture 1, Introduction — Page 11 of 11

project (select ENROLMENT where CourseId = 'C1'
over StudentId, Name

Note carefully that this is not a command. It is just an expression, denoting a valuein this case, a
relation. In a relational database language the result of a query is always another relation! Here is
the relation that is the result of this query, shown as usual in tabular form:

CourseId No_of_students

C1 3

C2 1

C3 1

And here is an explanation of the query:

select3 is the key word identifying the Rel359 operator of that name. This operator operates on a
given relation and yields the relation consisting of every tuple in the given relation that satisfies the
where condition. The operators, including this one, that operate on relations and yield relations
constitute the relational algebra.

CourseId = 'C1' is the where condition, specifying that just the tuples for course C1 are required.

project … over StudentId, Name specifies that from the result of the previous operation (select)
just the StudentId and Name attributes are required.

17. EXERCISE

Consider this table:

A B A

1 2 3

4 5

6 7 8

9 9 ?

1 2 3

Give three reasons why it cannot possibly represent a relation.By the way, this table is supported by
SQL, and the three reasons represent some of SQL’s serious and far-reaching deviations from
relational theory.

End of Notes

3 Advance warning on SQL: SQL also uses the key word SELECT but with a completely different meaning!

