
Page 1 of 2

Relational Database Constraints
by Hugh Darwen

One of the M359 subjects that students typically find particularly difficult is constraints, as
expressed in both conceptual (E-R models) and in relational database designs (logical schemas).
This is my attempt to explain the latter in a slightly different way to the text on the subject in
Block 2, which I assume you have read. I also assume you understand the select, project and
difference operators of the relational algebra.

A constraint is a truth-valued expression that must "always"1 evaluate to true.
In order to be able to express absolutely any constraints that might be required, we rely on the
completeness of the relational algebra. But a relational algebra expression yields a relation, not a
truth value. To express a constraint, we need to be able to apply some kind of truth-valued
operator—typically a comparison operator—to a relation.

It turns out that in theory we could make do with just one such comparison operator; for
example: is empty. In other words, every constraint that might ever be needed can be written in
the form r is empty, where r is some relational expression (possibly just a relation name).

Why do I call is empty a comparison operator? Because it compares the number of tuples in a
given relation with zero. If COUNT (r) is the number of tuples in r, then r is empty is
equivalent to COUNT (r) = 0.

Now, many constraints are naturally expressed in the form of some condition that must be true in
every tuple of a given relation. For example, if the tuples in r each represent the occurrence of
some process that has a starting time st and an ending time et, we probably want a constraint to
the effect that in every tuple of r the value for st must be earlier than the value for et. If is empty
is the only comparison operator available to us, we have to invoke a kind of double negative,
remembering that if condition c is true in every tuple of r, then there is no tuple of r in which not
c is true. Thus, we would write:

constraint (select r where not (st < et)) is empty
or, perhaps more likely, the logically equivalent:

constraint (select r where et ≤ st) is empty
Constraint Shorthands
Although every constraint can in theory be expressed using is empty, certain very commonly
required constraints are very cumbersome and error-prone to write that way. Database languages
typically provide useful shorthands to make them easier. A shorthand is typically written inside
the declaration of some relation to which it applies.

For example, consider this one again:

constraint (select r where et ≤ st) is empty
If r is the name of some relation declared in the logical schema, the language might usefully
allow us to write this constraint, inside the declaration of r, in the simpler form

constraint st < et

1 i.e. whenever the database is updated

Page 2 of 2

thus implying that the given expression is required to be true in every tuple of r.

An even commoner form of constraint that can conveniently be given as part of the declaration
of a relation in the logical schema is the primary key constraint. This, too, is a shorthand for a
certain comparison. For example, let the primary key of r consist of the attributes k1 and k2.
Then the constraint could be expressed like this:

constraint COUNT (r) = COUNT (project r over k1, k2)2
If the number of tuples in r is the same as the number of tuples in its projection over k1 and k2,
then it follows that no two tuples in r can have the same combination of values for these two
attributes—if they did, they would "condense" (so to speak) to a single tuple in the projection.
The typical shorthand, imbedded in the declaration of r, is of course

primary key (k1, k2)
(and the parentheses might be optional). Similarly,

alternate key k3
imbedded in the declaration of r, is shorthand for

constraint COUNT (r) = COUNT (project r over k3)
Another common form of constraint is to enforce mandatory participation of participant p1 in
some relationship between p1 and p2 (as expressed in the corresponding E-R model).
Mandatory participation of participant p1 typically means that every tuple in the relation
representing p1 must have at least one "matching" tuple in the relation representing p2. The
"matching" in question is "over" some set of attributes that are considered to common to p1 and
p2. If that set is { a1, a2 }, then the required constraint can be expressed like this:

constraint (project p1 over a1, a2) difference (project p2 over a1, a2) is empty
If any tuple in p1 has values for a1 and a2 such that there is no tuple in p2 having those same
values for its a1 and a2 attributes, then the tuple (a1, a2) must appear in the result of the
difference, which is therefore non-empty. Now, in certain very special but common
circumstances, the so-called foreign key shorthand is available to express constraints of this
particular kind. The very special circumstances are as follows (and, personally, I find them to be
somewhat arbitrary and over-restrictive, so I'm afraid I can't fully justify them for you):

• p1 and p2 are both relations that are declared in the logical schema.

• The declaration of the constraint is imbedded in the declaration of relation p1.

• The declaration of p2 includes the constraint declaration primary key (a1, a2)
When these conditions all pertain, the constraint can be written as part of the declaration of p1
like this:

foreign key (a1, a2) references p2

END

2 I haven't used is empty here because we would have to resort to a bit of trickery that I don't want to be
bothered with in this short paper.

