
Page 1 of 7

M359 An explanation from Hugh Darwen

"Relations for Relationships"

This note might help those who have struggled with M359's so-called "relation for
relationship" method of representing, in a relational database design, something that is
shown as a relationship in an E-R model.

Preamble
It is useful to reflect on why the term relation was introduced—by logicians, long
before the idea of relational databases came about—for the formal construct that
M359 is (almost) all about. And the reason is indeed the close connection in English
between the words relation and relationship.

The following definitions are from the Shorter Oxford English Dictionary (SOED):
relation n.

2 The existence or effect of a connection, correspondence, or contrast between
things; the particular way in which one thing stands in connection with
another; any connection or association conceivable as naturally existing
between things.

relationship n.

The state or fact of being related; a connection, an association, ...

If you read about relations in any introductory text on logic, you will probably find
that the term is used specifically for what we now call binary relations—relations of
degree two, i.e., having two attributes in our terminology. And familial relationships
such as "a is a parent of b", "a is a sibling of b" and so on are often used as examples.

Reminder: "a is a parent of b" is an example of a predicate in
two variables (a and b). The corresponding relation is the set of
all pairs of a and b values that satisfy the predicate. Such a pair
satisfies the predicate if the result of substituting them for the
variables in the predicate is a true statement (a true proposition).

But some relations involve more than two things. For example, that I am your tutor
on M359 involves two people (me and you) and a course: three things altogether.
Aside: Moreover, the relation here irreducibly involves all three things: that t is s's
tutor on course c doesn't always follow from the facts that t teaches c, s studies c, and
t is somehow eligible to be s's tutor. (If it did, you would have two tutors this year on
M359 and the fact that I am your tutor could be expressed via three smaller relations,
"Hugh teaches M359", "<you> are studying M359", and "Hugh and <you> are in the
same region".) End of aside.
It was E.F. Codd's great insight that gave us the notion that the way we normally
record facts in databases can conveniently be represented in the form of n-ary
relations. And he was among the first to note that n could even be less than 2, even
though it can hardly be said that a relation of degree 11 is "a connection,
correspondence or contrast between things". But the point I want to make is that

1 Relations of degree 0 also exist in the theory, but alas Codd didn't notice them and so they don't
appear in many texts on the subject (including M359). There are only two such relations, because there
is only one 0-tuple (the tuple with no attributes and therefore no values at all). A relation of degree 0 is
either empty or contains just that 0-tuple.

Page 2 of 7

every relation that is of degree 2 or more does indeed represent a relationship between
(or among) things.

But not all relationships (in the general sense) are represented in E-R models by
relationships (in the E-R sense). Some are represented by attributes—in the E-R
sense of that term, not the relational sense, though the two senses are almost identical.
That an attribute represents a special case of a relationship is shown by the following
alternative representation of the Nurse entity type shown in the Hospital conceptal
data model:

Here each attribute has become an entity type. That NurseName is an attribute of
Nursee is indicated by the IsCalled relationship; similarly, Identifies indicates that
StaffNo is an attribute of Nurse. Of course, not every E-R relationship can be
represented by an attribute. In fact, only those that satisfy the following conditions
can be:

• The entity type to which the attribute is to belong (Nurse in my example) must
have mandatory participation (indicated by a blob). That's because an
attribute requires every entity of the type in question to have a value for that
attribute.

• There must be no crow's foot on the entity type that is to become an attribute.
That's because an attribute requires every entity of the type to which it belongs
to have exactly one value for that attribute.

• The entity type that is to become an attribute must not participate in any other
relationships. And that means it cannot have any attributes either.

The big point arising from this observation is that, really, every relation in a relational
design is a "relation for relationship(s)"!2

Foreign key placement and "relation for relationship"
So, what is the real distinction being made between the two methods—foreign key
placement and "relation for relationship"—that M359 teaches for representing an E-R
relationship?

Well, the distinction lies in a very important observation that comes up towards the
end of Block 2 when we study normal forms and their relevance to database design
issues. The observation is that, wherever a relational design RD1 includes an n-ary
relation r where n is greater than 2, it might be possible to replace r by two or more
relations, each of degree less than n, such that the resulting design RD2 is logically
equivalent to RD1 (i.e., RD2 is capable of representing exactly the same information

2 Codd, in his 1970 paper, used the term "relationship" to distinguish his notion of relation from the
older mathematical notion in which the order in which the attributes appear has significance. Having
pointed out the distinction, he then used the mathematical term anyway in the rest of the paper. Well,
otherwise we wouldn't have had the useful adjective, "relational"!

Nurse NurseName StaffNo
Identifies IsCalled

Page 3 of 7

as RD1). In such cases, we might need to consider the advantages and disadvantages
of each design in deciding which one to plump for, and that is what I'll now do.

Staying with the Hospital example, consider Doctor, the entity type shown as
Doctor(StaffNo, DoctorName, Position). If we ignore the connection to Specalist, we
might represent it in a relational design by

relation Doctor
StaffNo StaffNumbers
DoctorName Names
Position Positions
primary key StaffNo

Here is a predicate for Doctor:

The doctor with staff number StaffNo is called DoctorName and has position
Position.

But note how that sentence uses elision to combine two sentences, logically joined
together by "and", into a single sentence. If we were to write this single sentence in
symbolic logic and than translate it back into English, word for word, we would arrive
at

The doctor with staff number StaffNo is called DoctorName and the doctor
with staff number StaffNo has position Position.

Also note very carefully that as a consequence of this design, every doctor whose
existence is recognised by the database must have a staff number, a name, and a
position—exactly one of each, in fact.

Now, I can take that longwinded version of the predicate and write it as two separate
sentences, replacing the word "and" by a full stop, like this:

(a) The doctor with staff number StaffNo is called DoctorName.
(b) the doctor with staff number StaffNo has position Position.

On the basis of a relation for each predicate, that would lead us to this alternative
design:

relation DoctorN
StaffNo StaffNumbers
DoctorName Names
primary key StaffNo

relation DoctorP
StaffNo StaffNumbers
Position Positions
primary key StaffNo

You should be able to see easily that this design is capable of representing exactly the
same information as the single Doctor relation. Every tuple in Doctor can be split
into two, so long as each resulting portion includes a copy of the primary key value
(StaffNo). We can express this observation using relational algebra, as follows:

DoctorN = project Doctor over StaffNo, DoctorName
DoctorP = project Doctor over StaffNo, Position
Doctor = DoctorN join DoctorP

Page 4 of 7

But if the second design is to be truly logically equivalent to the first, then it must
faithfully enforce the same constraints as the first. Implicit in the first design is a
constraint I have already mentioned, that every doctor whose existence is recognised
by the database has exactly one each of a staff number, a name, a position and a
specialism. That constraint would have to be stated explicitly in the second design, as
follows:

relation DoctorN
StaffNo StaffNumbers
DoctorName Names
primary key StaffNo
foreign key StaffNo references DoctorP

relation DoctorP
StaffNo StaffNumbers
Position Positions
primary key StaffNo
foreign key StaffNo references DoctorN

So, on the assumption that the single Doctor relation really does meet our
requirements, we would probably prefer that design to the more complicated
DoctorN/DoctorP one (and it is actually problematical in the current state of our
technology because few, if any, implementations provide adequate support for
"referential cycles" like the simple one illustrated here—you would need to be able to
insert tuples into both relations simultaneously to avoid violating those foreign key
constraints).

But supposing the requirements turn out to have been incorrectly stated, because the
assumption that every doctor has a position is not after all a safe one. In that case the
following small revision of the second design is not merely preferred—it is a
necessary consequence! All I do is remove the foreign key constraint from DoctorN.

relation DoctorN
StaffNo StaffNumbers
DoctorName Names
primary key StaffNo

relation DoctorP
StaffNo StaffNumbers
Position Positions
primary key StaffNo
foreign key StaffNo references DoctorN

Representing E-R relationships in a relational design
Now consider the relationship HeadedBy that connects Doctor entities to Team
entities in the Hospital E-R model. The Team entity type is given as
Team(TeamCode, TelephoneNo). We could represent it by the following relation:

relation Team
TeamCode TeamCodes
TelephoneNo Phonenos
primary key TeamCode

whose predicate is, simply

Page 5 of 7

The team with team code TeamCode can be contacted by phone on
TelephoneNo.

Because a Team entity is identified by a TeamCode value, the HeadedBy relationship
is necessarily represented by pairs (2-tuples) of (Head, TeamCode) values constituting
the relation for the predicate "The team TeamCode is headed by the doctor Head". I'll
now show how the two ways in which "foreign key" method results from combining
this predicate with an existing one, and how the "relation for relationship" method
arises from not combining it with any other predicate.

Foreign key placement method
We can use and to combine the "headed by" predicate with the predicate for Team to
give

The team with team code TeamCode can be contacted by phone on
TelephoneNo and is headed by the doctor Head.

The relation for that combined predicate would be

{Design 1 - correct}
relation Team

TeamCode TeamCodes
TelephoneNo Phonenos
Head StaffNumbers
primary key TeamCode
foreign key Head references Doctor

Here we are using the foreign key placement method, where the Team relation
acquires an extra attribute, Head, to represent the relationship. Note the inference that
every team has to have a head, and in fact exactly one head. If that is the case (and
indeed it is, if we are to believe the E-R diagram), then Design 1 is correct and could
be chosen.

Alternatively, we might consider combining the "headed by" predicate with that for
Doctor, yielding

The doctor with staff number StaffNo is called DoctorName, has position
Position, specialises in Specialism, and heads the team HeadOf.

for which the corresponding relation would be

{Design 2 - incorrect!}
relation Doctor

StaffNo StaffNumbers
DoctorName Names
Position Positions
HeadOf TeamCodes
primary key StaffNo
foreign key HeadOf references Team

Again we are using the foreign key method but here Doctor is the target of the
placement. Note the inference, now, that every doctor has to be the head of some
team and in fact exactly one team. The E-R diagram tells us that this is not the case,
so Design 2 would be incorrect and cannot be chosen.

Page 6 of 7

In case you are aware of SQL's concept of null, please note very
carefully that no such concept forms part of relational database
theory. The concept is illogical and unsound. Relational theory,
however, is logical and therefore sound, which proves that null is
not part of it! More to the point, relational theory is firmly rooted
in classical logic, with its two truth values, true and false. SQL
admits a third truth value, unknown, and that lies at the root of
most of the problems introduced by null.
In SQL, where null is admitted, Design 2 can be considered, but
that would not be a wise choice.

Finally, we don't have to combine the "headed by" predicate with either of the other
two. We can just take it as it is, in which case the relation for it would be

{Design 3 - correct!}
relation HeadedBy

Head StaffNumbers
TeamCode TeamCodes
primary key TeamCode
foreign key Head references Doctor
foreign key TeamCode references Team

This is the "relation for relationship" method. Although I have marked Design 3
"correct", as things stand it is now possible not only for a doctor to exist who heads no
team (as required by the E-R model) but also for a team to exist that nobody heads
(contrary to the requirements of the E-R model). If we adopt Design 3, therefore, we
must also add a foreign key constraint to the relation Team, referencing HeadedBy, to
force every team to be headed by somebody; but we might prefer Design 1, for
exactly the same reason as that which leads us to choose the Doctor relation in
preference to the DoctorN/DoctorP design. Note, however, that Design 3 is rather
more flexible than Design 1, in the face of possible changes in requirements. If it
becomes possible for a team to have several joint heads, we would have to replace
Design 1 by Design 3, with possible knock-on effects for applications. With Design 3
all we would need to do is change the primary key of HeadedBy to include both
attributes.

1:1 relationships and alternate keys
Actually, Design 1 and Design 3 are still incomplete. Notice that they both allow
several different teams to have the same head, contrary to the E-R model, whose
diagram shows HeadedBy to be 1:1.

Exercise: make sure you understand fully why this is so!

To complete the design we need to add the following constraint, to Team in Design 1
and to HeadedBy in Design 3:

alternate key Head

An alternate key specification has exactly the same semantics as primary key.

Page 7 of 7

Conclusion
In conclusion, then, we can state categorically that the relation for relationship method
is never logically incorrect and is in fact required whenever any of the following
conditions holds (examples are given from the Hospital conceptual data model):

• there is a circle at each end of the relationship line (e.g., Supervises);

• there is a crow's foot at each end (no examples in Hospital);

• there is a crow's foot at one end only but there is also a circle at that end (e.g.,
ConsistOf).

In all other cases the foreign key placement method can be used, and might even be
preferred, so long as the attribute3 in question is placed in the relation corresponding
to the entity type at the end showing a blob. If there is a blob at each end, then it must
be placed in the relation corresponding to the entity type at the end showing a crow's
foot. If there is a blob at each end and the relationship is 1:1, then the attribute can be
placed in either relation (but not both!).

END

3 Or attributes, when composite keys are involved—it is convenient to discuss these issues in terms of
singleton keys only, without any loss of generality.

