Chapter 13

T h e l nheritance Mo d e

| nt roducti on
| M Prescriptions
Recent inheritance nodel changes

I NTRODUCTI ON

In this chapter, we sinply state the various I M Prescriptions that
go to make up our nodel of subtyping and inheritance, with no
attenpt at discussion or further explanation. The nmaterial is
provided primarily for reference; you probably should not even
attenpt to read it straight through (at |east, not on a first
readi ng) .

A note on term nol ogy: Throughout what follows, we assune that
all of the types under discussion are nenbers of sone given set of
types S; in particular, the definitions of the terns root type and
| eaf type are to be interpreted in the context of that set S.

Al so, we use the synbols T and T' generically to refer to a pair of
types such that T' is a subtype of T (equivalently, such that T is
a supertype of T'). You mght find it helpful to think of T and T
as ELLI PSE and CI RCLE, respectively. Keep in mnd, however, the
fact that, in general, they are not limted to being scal ar types
specifically, barring explicit statenents to the contrary.

I M PRESCRI PTI ONS

1. T and T' shall indeed both be types; i.e., each shall be a
named set of val ues.

2. Every value in T shall be a value in T; i.e., the set of
val ues constituting T° shall be a subset of the set of val ues
constituting T (in other words, if a value is of type T', it

shall also be of type T). Moreover, if T and T' are distinct
(see IMPrescriptions 3 and 4), then there shall exist at |east
one value of type T that is not of type T .

3. Tand T shall not necessarily be distinct; i.e., every type
shall be both a subtype and a supertype of itself.

Copyright (c) 2005 C. J. Date and Hugh Darwen page 13.1

4. If and only if types T and T' are distinct, T shall be a
proper subtype of T, and T shall be a proper supertype of T'.

5. Every subtype of T' shall be a subtype of T. Every supertype
of T shall be a supertype of T'.

6. If and only if T is a proper subtype of T and there is no type
that is both a proper supertype of T' and a proper subtype of
T, then T' shall be an inmedi ate subtype of T, and T shall be
an i nmedi ate supertype of T'. A type that is not an imedi ate
subtype of any type shall be a root type. A type that is not
an i medi ate supertype of any type shall be a | eaf type.

7. If Tl and T2 are distinct root types, then they shall be
disjoint; i.e., no value shall be of both type Tl and type T2.

8. Every set of types T1, T2, ..., Tn shall have a commobn subtype
T such that a given value is of each of the types T1, T2, ...,
Tn if and only if it is of type T .

9. Let scalar variable V be of declared type T. Because of val ue
substitutability (see I MPrescription 16), the value v assigned
to V at any given tine can have any subtype T' of type T as its
nost specific type. W can therefore nodel V as a naned
ordered triple of the form <DT, MST, v>, where:

a. The nane of the triple is the nane of the variable, W
b. DT is the nane of the declared type for variable V.

c. MST is the nane of the nost specific type—al so known as the
current nost specific type—for, or of, variable V.

d. v is a value of nost specific type MST—the current val ue
for, or of, variable V.

W use the notation DT(V), MST(V), v(V) to refer to the DT
MST, v conponents, respectively, of this nodel of scalar
vari able V.

Now |l et X be a scal ar expression. By definition, X
specifies an invocation of sonme scal ar operator Op (where the
argunents, if any, to that invocation of Op are specified as
expressions in turn). Thus, the notation DT(V), MT(V), v(V)
just introduced can be extended in an obvious way to refer to
the declared type DT(X), the current nost specific type MST(X),
and the current value v(X), respectively, of X—where DI(X) is
DT(Op) and is known at conpile tinme, and MST(X) and v(X) refer

Copyright (c) 2005 C. J. Date and Hugh Darwen page 13.2

10.

11.

12.

13.

14.

to the result of evaluating X and are therefore not known until
run time (in general).

Let T be a regular proper supertype (see |IMPrescription 20),
and let T' be an inmediate subtype of T. Then the definition
of T shall specify a specialization constraint SC, fornulated
interns of T, such that a value shall be of type T' if and
only if it is of type T and it satisfies constraint SC. There
shal | exist at |east one value of type T that does not satisfy
constraint SC.

Consi der the assi gnnent
V.=X

(where V is a variable and X is an expression). DT(X) shall be
a subtype of DIT(V). The assignnent shall set MST(V) equal to
MST(X) and v(V) equal to v(X).

Consi der the equality conparison
Y =X

(where Y and X are expressions). DT(X) and DT(Y) shall have a
nonenpty common subtype. The conparison shall return TRUE if
MST(Y) is equal to MST(X) and v(Y) is equal to v(X), FALSE

ot herw se.

Let rx and ry be relations with a conmon attribute A and |et
the declared types of Ainrx and ry be DIx(A) and DTy(A),
respectively. Consider the join of rx and ry (necessarily over
A at least in part). DIx(A) and DTy(A) shall have a nonenpty
common subtype and hence shall al so have a nobst specific common
supertype, T say. Then the declared type of Ain the result of
the join shall be T.

Anal ogous remarks apply to union, intersection, and
di fference operators. That is, in each case:

a. Corresponding attributes of the operands shall be such that
their declared types have a nonenpty conmon subtype.

b. The declared type of the corresponding attribute of the
result shall be the correspondi ng nost specific common
supertype.

Let X be an expression, let T be a type, and let DI(X) and T
have a nonenpty common subtype. Then an operator of the form

TREAT_AS T (X))

Copyright (c) 2005 C. J. Date and Hugh Darwen page 13.3

15.

16.

17.

(or logical equivalent thereof) shall be supported. W refer
to such operators generically as "TREAT" or "TREAT AS'
operators; their semantics are as follows. First, if MST(X) is
not a subtype of T, then a type error shall occur. Oherw se:

a. |If the TREAT invocation appears in a "source" position (for
exanple, on the right side of an assignnent), then the
decl ared type of that invocation shall be T, and the
invocation shall yield a result, r say, with MST(r) equal to
MST(X) and v(r) equal to v(X).

b. If the TREAT invocation appears in a "target" position (for
exanple, on the left side of an assignnent), then that
i nvocation shall act as a pseudovari abl e reference, which
means it shall actually designate its argunment X (nore
precisely, it shall designate a version of X for which DT(X)
is equal to T but MST(X) and v(X) are unchanged).

Let X be an expression, let T be a type, and let DI(X) and T
have a nonenpty common subtype. Then a |ogical operator of the
form

IS T (X)

(or | ogical equivalent thereof) shall be supported. The
operator shall return TRUE if v(X) is of type T, FALSE
ot herw se.

Let Op be a read-only operator, |let P be a paraneter to Op, and
let T be the declared type of P. Then the declared type (and
therefore, necessarily, the nost specific type) of the argunent
A corresponding to Pin an invocation of Op shall be allowed to
be any subtype T' of T. 1In other words, the read-only operator
o applies to values of type T and therefore, necessarily, to
val ues of type T' —The Principle of (Read-only) Operator

I nheritance. It follows that such operators are pol ynorphic,
since they apply to values of several different types—The
Principle of (Read-only) Operator Polynorphism It further
follows that wherever a value of type Tis permtted, a val ue
of any subtype of T shall also be permtted—The Principle of
(Val ue) Substitutability.

Any given operator O shall have exactly one specification
signature, a nonenpty set of version signatures, and a nonenpty
set of invocation signatures. For definiteness, assune the
paraneters of Op and the argunments appearing in any given

i nvocation of Op each constitute an ordered list of n elenents
(n >0), such that the ith argunent corresponds to the ith
paraneter. Then:

Copyright (c) 2005 C. J. Date and Hugh Darwen page 13.4

18.

19.

a. The specification signature shall denote Op as perceived by
potential users. It shall consist of the operator nanme Op,
the declared types (in order) of the paraneters to OQp, and
the declared type of the result, if any, of executing Op.

b. There shall be one version signature for each inplenentation
version V of Op. Each such signature shall consist of the
operator name O (and possibly the version nane V), the
decl ared types (in order) of the paraneters to V, and the
decl ared type of the result, if any, of executing V.

c. There shall be one invocation signature for each possible
conbi nati on of nobst specific argunent types to an invocation
of Op. Each such signature shall consist of the operator
nanme Op and the pertinent conbination of nobst specific
argunent types (in order). Note: The invocation signatures
for Op can easily be derived fromthe correspondi ng
specification signature, but the concepts are logically
di stinct.

Every version of Op shall inplenment the sane senmantics.

Let Op be an update operator and let P be a paranmeter to Op
that is not subject to update. Then Op shall behave as a read-
only operator as far as P is concerned, and all relevant
aspects of IMPrescription 16 shall therefore apply, nutatis
mut andi s.

Let Op be an update operator, let P be a paraneter to Op t hat
I's subject to update, and let T be the declared type of P.

Then it mght or m ght not be the case that the declared type
(and therefore, necessarily, the current nost specific type) of
the argunent A corresponding to P in an invocation of Op shal
be allowed to be a proper subtype of type T. It follows that
for each such update operator Op and for each paraneter P to
that is subject to update, it shall be necessary to state
explicitly for which proper subtypes of the declared type T of
paraneter P operator Op shall be inherited—The Principle of
(Update) Operator Inheritance. (And if update operator Op is
not inherited in this way by type T', it shall not be inherited
by any proper subtype of type T' either.) Update operators
shal |l thus be only conditionally polynorphi c—The Principle of
(Update) QOperator Polynmorphism |If Op is an update operator
and Pis a paraneter to Op that is subject to update and T' is
a proper subtype of the declared type T of P for which O is

i nherited, then by definition it shall be possible to i nvoke Op
W th an argunment corresponding to paraneter P that is of
declared type T'—The Principle of (Variable) Substitutability.

Copyright (c) 2005 C. J. Date and Hugh Darwen page 13.5

20.

21.

22.

A union type is a type T such that there exists no val ue that
Is of type T and not of sone imredi ate subtype of T (i.e.,
there is no value v such that MST(v) is T). A dummy type is a
uni on type that has no decl ared possible representation (and
hence no selector); a given union type shall be permtted to be
a dumry type if and only if it is enpty or it has no regular

I mredi ate supertype (where a regular type is a type that is not
a dumy type). Moreover

a. Conceptually, there is a special scalar dumy type, al pha,
that contains all scalar values. Type alpha is the maxi mal
type with respect to every scalar type; by definition, it
has no decl ared possible representation and no i medi ate
supertypes.

b. Conceptually, there is a special scalar dumy type, onega,
that contains no values at all. Type onega is the m nina
type with respect to every scalar type; by definition, it
has no decl ared possible representation and no i medi ate
subt ypes.

Let types T and T' be both tuple types or both relation types,
w t h headi ngs

{ <A1, Tl> <A2,T2> ..., <An,Tn> }

{ <A1, T1l'> <A2,T2'> ..., <An,Tn'>}

respectively. Then type T' is a subtype of type T
(equivalently, type T is a supertype of type T') if and only
if, for all i (i =1, 2, ..., n), type Ti' is a subtype of type
Ti (equivalently, type Ti is a supertype of type Ti').

Let {H be a heading defined as foll ows:

{ <A1, Tl> <A2,T2> ..., <An,Tn> }

Then:

a. t is a tuple that conforns to heading {H} if and only if t
is of the form

{ <A1, Tl ,vl> <A2,T2',v2> ..., <An,Tn',vn> }

where, for all i (i =1, 2, ..., n), type Ti' is a subtype
of type Ti and vi is a value of type Ti'.

b. r is arelation that confornms to heading {H} if and only if
r consists of a heading and a body, where:

Copyright (c) 2005 C. J. Date and Hugh Darwen page 13.6

23.

24.

B The heading of r is of the form
{ <AL, T1'>, <A2,T2'>, ..., <An,Tn'>}

where, for all i (i =1, 2, ..., n), type Ti' is a
subtype of type Ti.

B The body of r is a set of tuples, all of which conformto
t he heading of r.

Let types T, T alpha, and T onega be all tuple types or al
rel ation types, with headi ngs

{ <A1, T1>, <A2, T2>, ..., <An, Tn> }
{ <A1, Tl al pha>, <A2,T2 al pha>, ..., <An, Tn_al pha> }
{ <A1, Tl onega>, <A2,T2 onega> ..., <An, Tn_onega> }

respectively. Then types T al pha and T onega are the naxi mal
type with respect to type T and the mininmal type with respect
to type T, respectively, if and only if, for all i (i =1, 2,

., n), type Ti _alpha is the nmaximal type with respect to type
Ti and type Ti _onega is the mnimal type with respect to type
Ti.

Let {H} be a heading defined as foll ows:
{ <A1, T1>, <A2,T2> ..., <An,Tn>}
Then:

a. If t is atuple that conforms to H—neaning t is of the form

{ <A1, T1',vl>, <A2,T2',v2> ..., <An,Tn',vn>}
where, for all i (i =1, 2, ..., n), type Ti' is a subtype
of type Ti and vi is a value of type Ti'—then the nost

specific type of t is
TUPLE { <A1, M5T1>, <A2, M5T2>, ..., <An, MSTn> }

where, for all i (i =1, 2, ..., n), type MSTi is the nost
specific type of value vi.

b. If r is arelation that confornms to H—neani ng the body of r
is a set of tuples, each of which has as its nobst specific
type a type that is a subtype of the type TUPLE{H,6 and
meani ng further that each such tuple can be regarded w thout
| oss of generality as being of the form

Copyright (c) 2005 C. J. Date and Hugh Darwen page 13.7

25.

{ <AL, T1',vl> <A2,T2',v2> ..., <An,Tn',vn>}

where, for all i (i =1, 2, ..., n), type Ti' is a subtype
of type Ti and is the nost specific type of value vi (note
that distinct tuples in the body of r will be of distinct
nmost specific types, in general; thus, type Ti' varies over
the tuples in the body of r)—then the nost specific type of
ris

RELATI ON { <Al, MST1>, <A2, M5T2>, ..., <An, M5Tn> }

where, for all i (i =1, 2, ..., n), type MSTi is the nost

speci fic common supertype of those nost specific types Ti',
taken over all tuples in the body of r.

Let tuple or relation variable V be of declared type T, and | et
the heading of T have attributes Al, A2, ..., An. Then we can
nodel V as a naned set of named ordered triples of the form
<DTi , M5Ti , vi >, where:

a.

The nane of the set is the nanme of the variable (V in the
exanpl e).

The nane of each triple is the nane of the correspondi ng
attribute.

DTi is the name of the declared type of attribute A

MSTi is the nanme of the nost specific type—al so known as
the current nost specific type—for, or of, attribute A .
(I'f Vis arelation variable, then the nost specific type of
Al is the nost specific common supertype of the nost
specific types of the mvalues in vi—see the explanation of
vi bel ow.)

If Vis a tuple variable, vi is a value of nobst specific
type MSTi—the current value for, or of, attribute Al. If V
is arelation variable, then let the body of the current

val ue of V consist of mtuples; |abel those tuples (in sone
arbitrary sequence) "tuple 1," "tuple 2," ..., "tuple ni;
then vi is a sequence of mval ues (not necessarily al
distinct), being the Al values fromtuple 1, tuple 2, ...,
tuple m(in that order); note that all of those values are
of type MSTI.

W use the notation DI(A), MST(A), v(A) to refer to the DTi,
MSTi, vi conponents, respectively, of attribute Al of this
nodel of tuple or relation variable V. W also use the
notation DT(V), MT(V), v(V) to refer to the overall decl ared

Copyright (c) 2005 C. J. Date and Hugh Darwen page 13.8

type, overall current nost specific type, and overall current
val ue, respectively, of this nodel of tuple or relation
vari able V.

Now | et X be a tuple or relation expression. By definition,
X specifies an invocation of sone tuple or relation operator Op
(where the argunents, if any, to that invocation of Op are
specified as expressions in turn). Thus, the notation DTi (V),
MSTi (V), vi(V) just introduced can be extended in an obvi ous
way to refer to the declared type DTi(X), the current nost
specific type MSTi (X), and the current value vi(X),
respectively, of the DTi, MSTi, vi conponents, respectively, of
attribute Al of tuple or relation expression X—where DTi(X) is
known at conpile time, and MSTi (X) and vi(X) refer to the
result of evaluating X and are therefore not known until run
time (in general).

RECENT | NHERI TANCE MODEL CHANGES

There are a few differences between the inheritance nodel as
defined in the present chapter and the version docunented in this
book' s predecessor (reference [83]). For the benefit of readers
who m ght be famliar with that earlier version, we summrize the
mai n di fferences here.

e The root and | eaf type concepts are no |onger regarded as
absolutes but are instead defined relative to sone given set of
types (which can be thought of, informally, as a type hierarchy
or type graph). This change primarily affects | M Prescriptions
6 and 7.

e The wordi ng of several prescriptions has been changed to cover
(a) both single and nultiple inheritance and (b) both scal ar
and tuple/relation types. These changes—whi ch are not
i ntended to affect the nodel as such—apply primarily to IM
Prescriptions 7 and 8.

e In IMPrescription 12, the requirenment that DT(X) and DT(Y)
shal | have a comon supertype has been repl aced by the stronger
requi renent that DT(X) and DT(Y) shall have a nonenpty conmon
subtype. (The fact that the new requirenent is stronger than
the old one m ght not be obvious but is proved in Chapter 15.)

e Analogously, in IMPrescription 13, the requirenent that DTx(A)
and DTy(A) shall have a common supertype has been replaced by
the stronger requirenent that DIx(A) and DTy(A) shall have a
nonenpty conmon subt ype.

Copyright (c) 2005 C. J. Date and Hugh Darwen page 13.9

In I MPrescription 14, TREAT DOMN has been renanmed TREAT AS or
(more usual ly) just TREAT.

| M Prescriptions 14 and 15 have been generalized slightly

(previously we required T to be a subtype of DI(X); now we
require only that they have a nonenpty common subtype).

I M Prescription 20 has been corrected slightly (previously it
required a dumy type to have no regul ar i nmedi ate supertypes,
but this rule overlooked the possibility that a dumy type

m ght be enpty).

In addition to all of the foregoing, alnost all of the

prescriptions have been reworded sonewhat. However, those
revisions in thenselves are not intended to i nduce any changes in

I's being described.

*** End of Chapter 13 ***

Copyright (c) 2005 C. J. Date and Hugh Darwen page
13. 10

	T h e I n h e r i t a n c e M o d e l

