
Copyright (c) 2005 C. J. Date and Hugh Darwen page 13.1

Chapter 13

T h e I n h e r i t a n c e M o d e l

┌────────────────────────────────────┐
│ Introduction │
│ IM Prescriptions │
│ Recent inheritance model changes │
└────────────────────────────────────┘

INTRODUCTION

In this chapter, we simply state the various IM Prescriptions that
go to make up our model of subtyping and inheritance, with no
attempt at discussion or further explanation. The material is
provided primarily for reference; you probably should not even
attempt to read it straight through (at least, not on a first
reading).

A note on terminology: Throughout what follows, we assume that
all of the types under discussion are members of some given set of
types S; in particular, the definitions of the terms root type and
leaf type are to be interpreted in the context of that set S.
Also, we use the symbols T and T' generically to refer to a pair of
types such that T' is a subtype of T (equivalently, such that T is
a supertype of T'). You might find it helpful to think of T and T'
as ELLIPSE and CIRCLE, respectively. Keep in mind, however, the
fact that, in general, they are not limited to being scalar types
specifically, barring explicit statements to the contrary.

IM PRESCRIPTIONS

1. T and T' shall indeed both be types; i.e., each shall be a
named set of values.

2. Every value in T' shall be a value in T; i.e., the set of
values constituting T' shall be a subset of the set of values
constituting T (in other words, if a value is of type T', it
shall also be of type T). Moreover, if T and T' are distinct
(see IM Prescriptions 3 and 4), then there shall exist at least
one value of type T that is not of type T'.

3. T and T' shall not necessarily be distinct; i.e., every type
shall be both a subtype and a supertype of itself.

Copyright (c) 2005 C. J. Date and Hugh Darwen page 13.2

4. If and only if types T and T' are distinct, T' shall be a
proper subtype of T, and T shall be a proper supertype of T'.

5. Every subtype of T' shall be a subtype of T. Every supertype
of T shall be a supertype of T'.

6. If and only if T' is a proper subtype of T and there is no type
that is both a proper supertype of T' and a proper subtype of
T, then T' shall be an immediate subtype of T, and T shall be
an immediate supertype of T'. A type that is not an immediate
subtype of any type shall be a root type. A type that is not
an immediate supertype of any type shall be a leaf type.

7. If T1 and T2 are distinct root types, then they shall be
disjoint; i.e., no value shall be of both type T1 and type T2.

8. Every set of types T1, T2, ..., Tn shall have a common subtype
T' such that a given value is of each of the types T1, T2, ...,
Tn if and only if it is of type T'.

9. Let scalar variable V be of declared type T. Because of value
substitutability (see IM Prescription 16), the value v assigned
to V at any given time can have any subtype T' of type T as its
most specific type. We can therefore model V as a named
ordered triple of the form <DT,MST,v>, where:

a. The name of the triple is the name of the variable, V.

b. DT is the name of the declared type for variable V.

c. MST is the name of the most specific type──also known as the
current most specific type──for, or of, variable V.

d. v is a value of most specific type MST──the current value
for, or of, variable V.

We use the notation DT(V), MST(V), v(V) to refer to the DT,
MST, v components, respectively, of this model of scalar
variable V.

Now let X be a scalar expression. By definition, X
specifies an invocation of some scalar operator Op (where the
arguments, if any, to that invocation of Op are specified as
expressions in turn). Thus, the notation DT(V), MST(V), v(V)
just introduced can be extended in an obvious way to refer to
the declared type DT(X), the current most specific type MST(X),
and the current value v(X), respectively, of X──where DT(X) is
DT(Op) and is known at compile time, and MST(X) and v(X) refer

Copyright (c) 2005 C. J. Date and Hugh Darwen page 13.3

to the result of evaluating X and are therefore not known until
run time (in general).

10. Let T be a regular proper supertype (see IM Prescription 20),
and let T' be an immediate subtype of T. Then the definition
of T' shall specify a specialization constraint SC, formulated
in terms of T, such that a value shall be of type T' if and
only if it is of type T and it satisfies constraint SC. There
shall exist at least one value of type T that does not satisfy
constraint SC.

11. Consider the assignment

V := X

(where V is a variable and X is an expression). DT(X) shall be
a subtype of DT(V). The assignment shall set MST(V) equal to
MST(X) and v(V) equal to v(X).

12. Consider the equality comparison

Y = X

(where Y and X are expressions). DT(X) and DT(Y) shall have a
nonempty common subtype. The comparison shall return TRUE if
MST(Y) is equal to MST(X) and v(Y) is equal to v(X), FALSE
otherwise.

13. Let rx and ry be relations with a common attribute A, and let
the declared types of A in rx and ry be DTx(A) and DTy(A),
respectively. Consider the join of rx and ry (necessarily over
A, at least in part). DTx(A) and DTy(A) shall have a nonempty
common subtype and hence shall also have a most specific common
supertype, T say. Then the declared type of A in the result of
the join shall be T.

Analogous remarks apply to union, intersection, and
difference operators. That is, in each case:

a. Corresponding attributes of the operands shall be such that
their declared types have a nonempty common subtype.

b. The declared type of the corresponding attribute of the
result shall be the corresponding most specific common
supertype.

14. Let X be an expression, let T be a type, and let DT(X) and T
have a nonempty common subtype. Then an operator of the form

TREAT_AS_T (X)

Copyright (c) 2005 C. J. Date and Hugh Darwen page 13.4

(or logical equivalent thereof) shall be supported. We refer
to such operators generically as "TREAT" or "TREAT AS"
operators; their semantics are as follows. First, if MST(X) is
not a subtype of T, then a type error shall occur. Otherwise:

a. If the TREAT invocation appears in a "source" position (for
example, on the right side of an assignment), then the
declared type of that invocation shall be T, and the
invocation shall yield a result, r say, with MST(r) equal to
MST(X) and v(r) equal to v(X).

b. If the TREAT invocation appears in a "target" position (for
example, on the left side of an assignment), then that
invocation shall act as a pseudovariable reference, which
means it shall actually designate its argument X (more
precisely, it shall designate a version of X for which DT(X)
is equal to T but MST(X) and v(X) are unchanged).

15. Let X be an expression, let T be a type, and let DT(X) and T
have a nonempty common subtype. Then a logical operator of the
form

IS_T (X)

(or logical equivalent thereof) shall be supported. The
operator shall return TRUE if v(X) is of type T, FALSE
otherwise.

16. Let Op be a read-only operator, let P be a parameter to Op, and
let T be the declared type of P. Then the declared type (and
therefore, necessarily, the most specific type) of the argument
A corresponding to P in an invocation of Op shall be allowed to
be any subtype T' of T. In other words, the read-only operator
Op applies to values of type T and therefore, necessarily, to
values of type T'──The Principle of (Read-only) Operator
Inheritance. It follows that such operators are polymorphic,
since they apply to values of several different types──The
Principle of (Read-only) Operator Polymorphism. It further
follows that wherever a value of type T is permitted, a value
of any subtype of T shall also be permitted──The Principle of
(Value) Substitutability.

17. Any given operator Op shall have exactly one specification
signature, a nonempty set of version signatures, and a nonempty
set of invocation signatures. For definiteness, assume the
parameters of Op and the arguments appearing in any given
invocation of Op each constitute an ordered list of n elements
(n 0), such that the ith argument corresponds to the ith
parameter. Then:

Copyright (c) 2005 C. J. Date and Hugh Darwen page 13.5

a. The specification signature shall denote Op as perceived by
potential users. It shall consist of the operator name Op,
the declared types (in order) of the parameters to Op, and
the declared type of the result, if any, of executing Op.

b. There shall be one version signature for each implementation
version V of Op. Each such signature shall consist of the
operator name Op (and possibly the version name V), the
declared types (in order) of the parameters to V, and the
declared type of the result, if any, of executing V.

c. There shall be one invocation signature for each possible
combination of most specific argument types to an invocation
of Op. Each such signature shall consist of the operator
name Op and the pertinent combination of most specific
argument types (in order). Note: The invocation signatures
for Op can easily be derived from the corresponding
specification signature, but the concepts are logically
distinct.

Every version of Op shall implement the same semantics.

18. Let Op be an update operator and let P be a parameter to Op
that is not subject to update. Then Op shall behave as a read-
only operator as far as P is concerned, and all relevant
aspects of IM Prescription 16 shall therefore apply, mutatis
mutandis.

19. Let Op be an update operator, let P be a parameter to Op that
is subject to update, and let T be the declared type of P.
Then it might or might not be the case that the declared type
(and therefore, necessarily, the current most specific type) of
the argument A corresponding to P in an invocation of Op shall
be allowed to be a proper subtype of type T. It follows that
for each such update operator Op and for each parameter P to Op
that is subject to update, it shall be necessary to state
explicitly for which proper subtypes of the declared type T of
parameter P operator Op shall be inherited──The Principle of
(Update) Operator Inheritance. (And if update operator Op is
not inherited in this way by type T', it shall not be inherited
by any proper subtype of type T' either.) Update operators
shall thus be only conditionally polymorphic──The Principle of
(Update) Operator Polymorphism. If Op is an update operator
and P is a parameter to Op that is subject to update and T' is
a proper subtype of the declared type T of P for which Op is
inherited, then by definition it shall be possible to invoke Op
with an argument corresponding to parameter P that is of
declared type T'──The Principle of (Variable) Substitutability.

Copyright (c) 2005 C. J. Date and Hugh Darwen page 13.6

20. A union type is a type T such that there exists no value that
is of type T and not of some immediate subtype of T (i.e.,
there is no value v such that MST(v) is T). A dummy type is a
union type that has no declared possible representation (and
hence no selector); a given union type shall be permitted to be
a dummy type if and only if it is empty or it has no regular
immediate supertype (where a regular type is a type that is not
a dummy type). Moreover:

a. Conceptually, there is a special scalar dummy type, alpha,
that contains all scalar values. Type alpha is the maximal
type with respect to every scalar type; by definition, it
has no declared possible representation and no immediate
supertypes.

b. Conceptually, there is a special scalar dummy type, omega,
that contains no values at all. Type omega is the minimal
type with respect to every scalar type; by definition, it
has no declared possible representation and no immediate
subtypes.

21. Let types T and T' be both tuple types or both relation types,
with headings

{ <A1,T1>, <A2,T2>, ..., <An,Tn> }

{ <A1,T1'>, <A2,T2'>, ..., <An,Tn'> }

respectively. Then type T' is a subtype of type T
(equivalently, type T is a supertype of type T') if and only
if, for all i (i = 1, 2, ..., n), type Ti' is a subtype of type
Ti (equivalently, type Ti is a supertype of type Ti').

22. Let {H} be a heading defined as follows:

{ <A1,T1>, <A2,T2>, ..., <An,Tn> }

Then:

a. t is a tuple that conforms to heading {H} if and only if t
is of the form

{ <A1,T1',v1>, <A2,T2',v2>, ..., <An,Tn',vn> }

where, for all i (i = 1, 2, ..., n), type Ti' is a subtype
of type Ti and vi is a value of type Ti'.

b. r is a relation that conforms to heading {H} if and only if
r consists of a heading and a body, where:

Copyright (c) 2005 C. J. Date and Hugh Darwen page 13.7

■ The heading of r is of the form

{ <A1,T1'>, <A2,T2'>, ..., <An,Tn'> }

where, for all i (i = 1, 2, ..., n), type Ti' is a
subtype of type Ti.

■ The body of r is a set of tuples, all of which conform to
the heading of r.

23. Let types T, T_alpha, and T_omega be all tuple types or all
relation types, with headings

{ <A1,T1>, <A2,T2>, ..., <An,Tn> }

{ <A1,T1_alpha>, <A2,T2_alpha>, ..., <An,Tn_alpha> }

{ <A1,T1_omega>, <A2,T2_omega>, ..., <An,Tn_omega> }

respectively. Then types T_alpha and T_omega are the maximal
type with respect to type T and the minimal type with respect
to type T, respectively, if and only if, for all i (i = 1, 2,
..., n), type Ti_alpha is the maximal type with respect to type
Ti and type Ti_omega is the minimal type with respect to type
Ti.

24. Let {H} be a heading defined as follows:

{ <A1,T1>, <A2,T2>, ..., <An,Tn> }

Then:

a. If t is a tuple that conforms to H──meaning t is of the form

{ <A1,T1',v1>, <A2,T2',v2>, ..., <An,Tn',vn> }

where, for all i (i = 1, 2, ..., n), type Ti' is a subtype
of type Ti and vi is a value of type Ti'──then the most
specific type of t is

TUPLE { <A1,MST1>, <A2,MST2>, ..., <An,MSTn> }

where, for all i (i = 1, 2, ..., n), type MSTi is the most
specific type of value vi.

b. If r is a relation that conforms to H──meaning the body of r
is a set of tuples, each of which has as its most specific
type a type that is a subtype of the type TUPLE{H}, and
meaning further that each such tuple can be regarded without
loss of generality as being of the form

Copyright (c) 2005 C. J. Date and Hugh Darwen page 13.8

{ <A1,T1',v1>, <A2,T2',v2>, ..., <An,Tn',vn> }

where, for all i (i = 1, 2, ..., n), type Ti' is a subtype
of type Ti and is the most specific type of value vi (note
that distinct tuples in the body of r will be of distinct
most specific types, in general; thus, type Ti' varies over
the tuples in the body of r)──then the most specific type of
r is

RELATION { <A1,MST1>, <A2,MST2>, ..., <An,MSTn> }

where, for all i (i = 1, 2, ..., n), type MSTi is the most
specific common supertype of those most specific types Ti',
taken over all tuples in the body of r.

25. Let tuple or relation variable V be of declared type T, and let
the heading of T have attributes A1, A2, ..., An. Then we can
model V as a named set of named ordered triples of the form
<DTi,MSTi,vi>, where:

a. The name of the set is the name of the variable (V in the
example).

b. The name of each triple is the name of the corresponding
attribute.

c. DTi is the name of the declared type of attribute Ai.

d. MSTi is the name of the most specific type──also known as
the current most specific type──for, or of, attribute Ai.
(If V is a relation variable, then the most specific type of
Ai is the most specific common supertype of the most
specific types of the m values in vi──see the explanation of
vi below.)

e. If V is a tuple variable, vi is a value of most specific
type MSTi──the current value for, or of, attribute Ai. If V
is a relation variable, then let the body of the current
value of V consist of m tuples; label those tuples (in some
arbitrary sequence) "tuple 1," "tuple 2," ..., "tuple m";
then vi is a sequence of m values (not necessarily all
distinct), being the Ai values from tuple 1, tuple 2, ...,
tuple m (in that order); note that all of those values are
of type MSTi.

We use the notation DT(Ai), MST(Ai), v(Ai) to refer to the DTi,
MSTi, vi components, respectively, of attribute Ai of this
model of tuple or relation variable V. We also use the
notation DT(V), MST(V), v(V) to refer to the overall declared

Copyright (c) 2005 C. J. Date and Hugh Darwen page 13.9

type, overall current most specific type, and overall current
value, respectively, of this model of tuple or relation
variable V.

Now let X be a tuple or relation expression. By definition,
X specifies an invocation of some tuple or relation operator Op
(where the arguments, if any, to that invocation of Op are
specified as expressions in turn). Thus, the notation DTi(V),
MSTi(V), vi(V) just introduced can be extended in an obvious
way to refer to the declared type DTi(X), the current most
specific type MSTi(X), and the current value vi(X),
respectively, of the DTi, MSTi, vi components, respectively, of
attribute Ai of tuple or relation expression X──where DTi(X) is
known at compile time, and MSTi(X) and vi(X) refer to the
result of evaluating X and are therefore not known until run
time (in general).

RECENT INHERITANCE MODEL CHANGES

There are a few differences between the inheritance model as
defined in the present chapter and the version documented in this
book's predecessor (reference [83]). For the benefit of readers
who might be familiar with that earlier version, we summarize the
main differences here.

 The root and leaf type concepts are no longer regarded as
absolutes but are instead defined relative to some given set of
types (which can be thought of, informally, as a type hierarchy
or type graph). This change primarily affects IM Prescriptions
6 and 7.

 The wording of several prescriptions has been changed to cover
(a) both single and multiple inheritance and (b) both scalar
and tuple/relation types. These changes──which are not
intended to affect the model as such──apply primarily to IM
Prescriptions 7 and 8.

 In IM Prescription 12, the requirement that DT(X) and DT(Y)
shall have a common supertype has been replaced by the stronger
requirement that DT(X) and DT(Y) shall have a nonempty common
subtype. (The fact that the new requirement is stronger than
the old one might not be obvious but is proved in Chapter 15.)

 Analogously, in IM Prescription 13, the requirement that DTx(A)
and DTy(A) shall have a common supertype has been replaced by
the stronger requirement that DTx(A) and DTy(A) shall have a
nonempty common subtype.

Copyright (c) 2005 C. J. Date and Hugh Darwen page
13.10

 In IM Prescription 14, TREAT DOWN has been renamed TREAT AS or
(more usually) just TREAT.

 IM Prescriptions 14 and 15 have been generalized slightly
(previously we required T to be a subtype of DT(X); now we
require only that they have a nonempty common subtype).

 IM Prescription 20 has been corrected slightly (previously it
required a dummy type to have no regular immediate supertypes,
but this rule overlooked the possibility that a dummy type
might be empty).

In addition to all of the foregoing, almost all of the
prescriptions have been reworded somewhat. However, those
revisions in themselves are not intended to induce any changes in
what is being described.

*** End of Chapter 13 ***

	T h e I n h e r i t a n c e M o d e l

