
A critical reading of the Third Manifesto

Maurice Gittens <maurice at gittens dot nl>

14th July 2003

Abstract

According to the authors, Hugh Darwen and C.J. Date, of the book entitled“Foundation
for Future Database Systems; The Third Manifesto” the maxim: All logical differ-
ence are big differences and its corollary All logical mistakes are big mistakes has
been central to their work on this book. Respecting the standard set by this maxim
and its corollary, this paper will proceed to identify a number of issues with the
logical consistency of the dissertation presented in The Third Manifesto, using
maxims such as: logical conclusions should only be drawn from premises which
are both valid and relevant.

The copyright of this document belongs to its author. Making complete
and unmodified copies of this document is allowed.

Status: draft

Revision history
• July 14 2003; Fix typo in the title of the document

• April 7 2003; More cleanups

• February 26 2003; Based on comments by Hugh Darwen I reworded a few sen-
tences which seemed to cause confusion; I also fixed a few typographical errors

• January 8 2003; Rene Jansen made me aware of another reason for the dismissal
of ObjectIDs provided by The Third Manifesto. Add this to the section about the
alleged second great blunder. Thanks Rene.

• January 6 2003; A first draft of this document

Contents
1 Introduction 2

1.1 Background information . 2
1.2 On a personal note . 3

1

2 About the claims made by the author 3
2.1 Regarding the first great blunder . 3
2.2 Regarding the second great blunder 4

3 About Predicates, Relations and their identity 6
3.1 Some examples . 6
3.2 Introduction to predicate logical models 7
3.3 Why is identity deemed a necessity? 8
3.4 Summary . 9

4 On the expressive equivalence of relation values and tuple values 10
4.1 Introduction . 10
4.2 Defining tuple values . 11
4.3 Defining relation values . 11
4.4 Showing that all relation values are tuple values 11
4.5 Showing that all tuple values are relation values 12
4.6 Summary . 12

5 Conclusions 12

1 Introduction

1.1 Background information
A web page at http://www.gittens.nl/OOR.html raised a number of issues the author
found with the logical consistency of the dissertation presented in the second edition of
the book “Foundation for Future Database Systems”1 by C.J. Date and Hugh Darwen.
In a personal communication Mr. Hugh Darwen, requested I clarify my use of certain
English words and also that I be more specific as to the issues I found with the disser-
tation presented in The Third Manifesto. This paper is written as an attempt to comply
with the request of Mr. Darwen.

The main issue and my primary claim
The main issue I perceive, with the logical consistency of the dissertation presented in
the The Manifesto, follows from the maxim Date and Darwen presented as central to
their work in The Third Manifesto. Date and Darwen presented the maxim: All logical
difference are big differences and its corollary All logical mistakes are big mistakes as a
guiding principle in their work on the Third Manifesto. The Third Manifesto proceeded
to identify what it refers to as the Two Great Blunders :

• Equating relvars and classes

• Mixing pointers and relations (or more specifically allowing database relvars to
contain object IDs)

1This paper will refer to this book as “The Third Manifesto”.

2

However, in my humble opinion, the argumentation used to substantiate the claim that
the alleged blunders are truly to be viewed as blunders is somewhat weak.2 This opin-
ion is based on the following maxim: logical conclusions should only be drawn from
premises which are both logically valid3 and relevant. Put another way, keeping in
mind the maxim, All logical differences are big differences, logically valid conclusions
are conclusions based on premises free of fallacies, including fallacies of relevance.4

I think it important to state explicitely, that my claim in this regard, is not that
Date and Darwen are wrong in their opinions. My claim, in this regard, is that the
substantiation they provide as justification for their statement that the alleged great
blunders are indeed great blunders is rather weak, relative to the high standard they
claim to be central to their work.

Secondary issues and my secondary claims
In this regard the question is asked whether or not the alleged two great blunders are
indeed blunders. This subject matter will be addressed in subsequent sections of this
paper.

1.2 On a personal note
I think it appropriate to state my appreciation for the fact that Mr. Hugh Darwen has
thought it appropriate to spend time communicating with me about the issues I raised.

2 About the claims made by the author

2.1 Regarding the first great blunder
The first alleged great blunder identified in The Third Manifesto follows:

Equating relvars and classes

Now please consider the question: What arguments that adhere to the strict discipline
of logic does The Third Manifesto provide for the claim that this equation is indeed
a blunder? In considering an answer to this question it is noted that this claim5 is
first made on page 15 of second edition of the Third Manifesto, which by its own
admission (on page 14) is informal in nature. Still lacking a mathematically sound
definition of what an object class is, page 21 decides that object classes and domains
are, I quote: “the same thing”. Since the statement is made in an informal context,
one wonders if classes and domains are informally the same thing or also formally6 the
same thing. The reason given to substantiate the claim that object classes and domains

2I invite the reader to verify for herself or himself, that The Third Manifesto provides no logically valid
arguments justify the labeling the presented propositions as “blunders”.

3A logically valid premise is one that is substantiated in terms of mathematical logic.
4or layering violations, if you prefer.
5Also much of the argumentation which supports this claim is in this section of the book
6as in mathematically equivalent abstractions

3

are determined to be the same thing is presented as the fact that for both, domains and
object classes, it holds that their values are manipulated by operators defined for the
type in question. However, the same argument can be made for relations. Is it not the
case that relations values are manipulated by a set of operators defined specifically
for their types. Yes, relation types have a set of pre-defined operators, does this make
them logically different from a specific class of domains which have a pre designated
set of operators? No, it does not! OK, since this argumentation is said to be informal,
the author proceeded to seek out, the formal arguments presented, for labeling the first
great blunder as such. Apart from reiterations of the alleged first great blunder, no such
argument has currently been found by the author7. Additionally, Date and Darwen,
seem to assume8 that there is one so-called right way, in which objects and relations
should be integrated. Does not the discipline of logic dictate that one must prove, that
there exists only one right way, before one could even claim to provide the one right
way? Is it not possible that there are different ways, each with its own merit, to achieve
the integration between objects and relations?

2.2 Regarding the second great blunder
The Third Manifesto identifies the second great blunder as:

Mixing pointers and relations (or more specifically allowing database rel-
vars to contain object IDs).

Using the index of The Third Manifesto I have found the following reasons why object
IDs or references9 are unwanted by Date and Darwen.

1. Codd’s information principle: All information in the database at any time must
be cast explicitly in terms of values in relations and in no other way or All inter-
relating between different parts of a database must be achieved by comparison
of value.

2. The reason Codd removed pointers from the relational model is stated as: It is
safe to assume that all kinds of users [including end users in particular] under-
stand the act of comparing values, but that relatively few understand the com-
plexities of pointers [including the complexities of referencing and dereferencing
in particular]. The relational model is based on this fundamental principle...
[The] manipulation of pointers is more bug-prone than is the act of comparing
values, even if the user happens to understand the complexities of pointers.

3. On page 417 of the second edition, the paragraph entitled : “OBJECT IDS UN-
DERMINE INHERITANCE “

7I will gracefully, acknowledge being in error if such arguments do exist.
8on page 14 of the second edition of the Third Manifesto
9There seems to be some confusion that object IDs, references and pointers represent one and the same

thing. It should for example, be recognized that identity is a property of every element of a mathematical set.
Confusing the identity of an object and the notion of a pointer is a logical error

4

Concerning the first two points I ask the question: Of what logical value are these ar-
guments?10The fact that Codd rejects pointers on the grounds that they are "difficult
to understand" and "bug-prone" is of no logical value, and as such in the context of
providing a justification for the so-called second great blunder, these arguments rep-
resent a fallacy of relevance. This is not to say that the statement is not true by some
measure. It is only to say that such statements do not provide logically valid grounds
for the dismissal of object-IDs.

Concerning the third point, the following issues:

• First, a fallacy is exposed by this quote from the page referenced: “Pointers can
lead to a serious problem if type inheritance is also supported”. This provides
the in-site that Date and Darwen confuse object identity and pointers.

• Second, they proceed to describe a problem with object identity and their inher-
itance model. It is a fallacy to assume that this problem would exist with some
other inheritance model.

These two points identify the third reason supplied for the dismissal of ObjectIDs as a
fallacy.

More on identity
Please consider the position of Hugh Darwen on identity as it was presented in a per-
sonal communication [ref 3].

We do not recognize any concept of identity of a value v other than v
itself. A truth-valued expression of the form x = y is true if and only if
the values denoted by the expressions x and y are identical are in fact one
and the same value. Given equality, we do not need any other concept
to do with distinction of values. In case the distinction you are referring
to is the one found in some OO programming languages, I remark that in
such languages equality is as in our definition (though "=" is sometimes
sacrificed, with unpleasant consequences, in favor of an operator with the
same name but meaning "approximately equal to"), whereas what you call
identity is equality of pointers (usually called object identifiers), and a
pointer points to a variable, not a value. As you note in your very next
section, we do not admit pointers.

Identity is a fundamental property of all things by which they can be counted. If el-
ements of mathematical sets did not have identity they would be not be countable11.
To put this another way, Identity can be viewed as a property of an element of a set.
Equality on the other hand, is a correspondence between two or more elements of a

10The reference to logical value of an argument refers to the degree in which an argument can be used to
draw logically valid conclusions

11Similarly, symbols in mathematical strings also have identity. In the string ”aaa” there are three in-
stances of the symbol a each with their own identity. The fact that the symbols are all the same, is not
relevant to their identity in this string.

5

set. For example, if {v1,v2,
...,vn} represents a set of relation variables. Each variable

in this set has a distinct identity, otherwise it would not be possible to distinguish it
from other variables in this example set. The identity of these variables is orthogonal
to the issue of whether or not some of these relation variables are equal or not. And for
the sake of completeness I wish to state that it should be evident that the fundamental
concept of identity has nothing to do with the concept of pointers as they are know in
different programming languages12.

3 About Predicates, Relations and their identity
This section presents what is in the opinion of the author a logically sound motivation
for the support of identity in future databases. To comply with Hugh Darwen’s request
for specific examples I start with some examples.

3.1 Some examples
Consider some example functionality. Let rv1,rv2...,rvk be relation variables of the
same relation type. Let v1,v2...,vk be the relation values of rv1,rv2...,rvk. I would like
to be able to ask the equivalent of following questions in the query language of the
database: Which set of relation variables has the value v2. Or which relation variable
has the greatest number of tuples with a particular property? The database system
would in turn respond with a properly typed set of identities corresponding with the
result of the query. The catalog of common SQL-databases might be used for such pur-
poses however, in current relational database systems the types of the objects returned
would, as you know, be incorrect. This forces people working on business-repositories,
data-mining applications etc, to build much logic into their applications which, in my
opinion, should be gracefully handled by databases of the future. If the result of a query
can be an entity representing a relation variable, or a type, or a tuple variable etc, the
logical expressiveness13 of the database is increased. If the information in the catalog
of relational databases were properly typed much of the necessary machinery would be
present in database systems.

A new operator
An operator which in my opinion is necessary, in one form or the other, in future
database is the f oreach operator. This would be the database counter part of the uni-
versal quantifier operator known from predicate logic. 14Hopefully self-explanatory,
informal15 examples, using this operator in an SQL like language follow:

12Of course, based on the identity of objects, pointers can distinguish between them. But this does not
equate pointers to identity.

13In this regard a formalism f1 is said to be more expressive than a formalism f2 when the set of statements
that can be represented using f1 is a super set of the statements that can be represented using f2.

14In the context of databases I would suggest this operator be used for quantifying objects which are
elements of the domain of predicate logical interpretation functions.

15and thus appealing to the goodwill of the reader

6

Example statement Description
foreach relation r select * from r; select all tuples in the default schema

foreach relation r in schema example_schema delete from r; remove all tuples from relation variables in a schema
foreach relation r in schema example_schema delete r; drop all relations from a schema
foreach schema s foreach relation r in s select * from r select all tuples in the database

foreach relation r select * from attributes(r) select the attributes of all relations
foreach relation r where r.someProperty() == true select * from r select all attributes of relations with some property

It is important to note that the type of r in a statement like: foreach relation r is a
relation type. The logical variable r is said to be bound to a predicate constant, repre-
senting the identity but not the propositional value of the predicate16.

Please note that supporting the f oreach operator, SQL statements like ALTER and
DROP statements may be replaced by appropriate uses of UPDATE and DELETE state-
ments. Thus showing, these and similar, statements to be redundant.

3.2 Introduction to predicate logical models
A model M for a first order predicate logical language L is a pair (D, I) such that :

• D represents the domain of discourse of the model M. This is the set of objects
which can be bound to variables in L. In relational systems, objects in the domain
of discourse may be viewed as domain values. In relational systems, domains
partition the domain of discourse into a set of of disjoint subsets. Such that the
union of the set of all domain values in a RM database is exactly equal to the set
of objects in D.

• I represents the interpretation function of the model M. Since I is a mathematical
function it by definition has a domain and a co-domain, denoted dom(I) and
codom(I) respectively.

In first order predicate logic each object d in the domain of discourse D has an associ-
ated constant c in the predicate logical language L which represents it in the language L.
Using the interpretation function I, each predicate P of arity n in the predicate logical
language L assigns the property represented by P to a set of n tuples {t1, ..., tk} where
each ti (1 ≤ i ≤ k) can be written as ti = (d1, ...,dn) where each d j is an object in the
domain of discourse D. As an example let us consider a model M for a predicate logical
language L with constants {a,b,c,Mark,Jane} and predicates {odd, love,miss,rich}.
In this example the domain of discourse D of M is D = {1,2,3,”Mark”,”Jane”},
while an example interpretation function I for M is presented in the following table.

16The following section will elaborate, so that the distinction becomes clear

7

dom(I) codom(I)
a 1
b 2
c 3

Mark ”Mark”
Jane ”Jane”
love {(”Jane”,”Jane”),(”Jane”,”Mark”)}
miss {(”Mark”,”Jane”)}
rich {”Jane”,”Mark””}
odd {1,3}
This example represents statements like:

• Jane loves both herself and Mark

• Mark misses Jane

• Jane and Mark are both rich

The identity of the predicate love captured by the predicate constant love which, in
the example above, appears in domain of the interpretation function I. The propo-
sitional value or the value of the predicate love in this example, is the set of tuples
{(”Jane”,”Jane”),(”Jane”,”Mark”)}. When the Third Manifesto speaks of the rela-
tion value it is referring to the propositional value of a predicate. In this example love
and miss are binary predicates, so the interpretation function I maps them to sets of
binary tuples. The interpretation function I maps the constants in the language L to
elements of D and unary predicates are mapped to subsets of D. The information con-
tained in the interpretation function of a predicate logical model can be viewed as the
predicate logical equivalent of a database. Relational algebra can thus be viewed as
an algebra defining operations on a subset of the co-domain of interpretation functions
of predicate logical models, more specifically relational algebra defines a number of
operations on the propositional value of predicates.

3.3 Why is identity deemed a necessity?
The predicate logical language L in the previous section was based on the object con-
stants {a,b,c,Mark,Jane} and the predicate constants {odd, love,miss,rich}. Now
please notice that the co-domain of the interpretation function I in the previous ex-
ample contains no appearances of either object constants or predicate constants. Put
another way, there are no appearances of elements of dom(I) in codom(I). The reason
for this is quite simply that First Order predicate logic17 does not allow object con-
stants and predicate constants to be part of the domain of discourse D. As far as my
understanding reaches, Codd’s information principle is, at least in spirit, referring to
this fact.

17The same is true for higher order predicate logic

8

When value substitution is not enough Now please consider a modified interpre-
tation function as an extension of the previous example. This example will attempt to
illustrate that by allowing so-called predicate constants to appear in the co-domain of
the interpretation function, more sophisticated logical statements can be made18.

dom(I) codom(I)
a 1
b 2
c 3

Mark ”Mark”
Jane ”Jane”
love {(”Jane”,miss),(”Mark”, love)}
miss {(”Mark”,”Jane”)}
rich {”Jane”,”Mark””}
odd {1,3}

In this example the predicate love is used to make the statement that Mark loves
to love and also the statement Jane loves to miss. Notice that it would be incorrect to
substitute {(”Mark”,”Jane”)}, which is the propositional value of the miss relation,
for the predicate constant miss in this example? Such a substitution would represent
the claim Jane loves the set {(“Mark”, “Jane”)}, which is clearly a different statement
than the statement Jane loves to miss.

Of course one could argue that such expressiveness is not necessary. This however,
does not seem prudent when the purpose is to define a foundation for future databases.
By allowing predicate constants into the domain of discourse it now becomes possible
to ask question like: What does Mark love to do? Or Select all the people who like
to love people or miss people and also What do people love to do? I would hope that
models for future databases, how ever they are called, would at least define operators
which allow, the manipulation of and access to, objects in the domain dom(I) of the
interpretation function I. It is also desired that predicate constants are added to the
domain of discourse. 19

Generic data-mining applications which search for “trends” in databases, generic
business repositories, generic database applications, which automatically generate user
interfaces allowing user friendly access to databases, intelligent agents which master
the art of speech, etc. are examples of applications which would benefit from this.

3.4 Summary
The fact that The Third Manifesto rejects constants representing the identity of objects
in databases is in my opinion a logical error and as a consequence a big mistake. This
rejection of identity is a logical error on the following counts:

18A superset of higher order logical called extensional type logic is based on allowing predicate constants
in the domain of discourse.

19This is to say that in my opinion future databases such be firmly based on extensional type or intensional
type logic. At least by supplying the necessary primitives that allow extensional and intensional phenomena
to be captured.

9

• The Third Manifesto rejects identity on grounds which are not relevant in math-
ematical logic20

• Key concepts like relation variables and candidate keys, are not recognized within
the relational algebra of The Third Manifesto. Since these concepts are, accord-
ing to The Third Manifesto, required in future databases, it is an error to not give
them a sound mathematical foundation21.

• In the definition of a tuple value, it is evident that tuple values include an object
identifier called an attribute name. Contrary to what is claimed by Date and
Darwen22, the value of a triple, or tuple with a arity of three, representing an
attribute does not define its identity. The object identifier attribute name defines
the identity of this triple in a tuple because it is the attribute name that must be
unique.23

Adding insult to injury, the rejection of identity also limits the logical expressiveness of
the algebra upon which future databases are might be based. This opinion has been sub-
stantiated by illustrating the correspondence between relational and predicate logical
knowledge representation models. In terms of relational database systems the follow-
ing suggestions are made in this regard:

• Allow for a properly typed equivalent of predicate constants, representing the
identity of a predicate. Properly typed object identifiers serve this purpose well.

• Allow for operators which provide access to, and the manipulation of, the equiv-
alent of the domain of predicate logical interpretation functions24.

4 On the expressive equivalence of relation values and
tuple values

4.1 Introduction
This section will show that every tuple value has a corresponding representation as a
relation value. Conversely every relation value will be shown to have a corresponding
representation as a tuple value. This exercise will be performed using liberties allowed
by The Third Manifesto.

20For some reason unknown to the author, Date and Darwen equate identity to pointers.
21Otherwise, many could claim that The Third Manifesto judges Object Oriented Systems by different

standards than relational ones
22See quote in section 2.2
23Also, please see the next section for an illustration that, given the liberties provided by The Third Man-

ifesto, tuple values and relation values are appearances of one and the same thing
24No, the catalog of commercial relational databases does not get it right. Have you ever noticed that,

given the operators of relational algebra, it is impossible to perform a trivial operation like selecting every
tuple in a relational database?

10

4.2 Defining tuple values
Let us consider tuple values and relation values as they are defined in chapter 3 of
The Third Manifesto. A tuple t is defined as a set of ordered triples (I,T,V) called
attributes. Such that:

• I is an identifier called the name of an attribute. No two attributes in t share a
common name.

• T is an identifier representing the type of an attribute.

• V is a value of type T , called the attribute value.

The set of pairs obtained by eliminating the attribute value from triples in t is called the
heading of t. The heading of a tuple t will be denoted: heading(t). When the purpose
is to show that Relation values and Domain values are basically appearances of one
and the same thing, one is inclined to demonstrate that any relation value can also be
represented by a set of triples. So, please read on...

4.3 Defining relation values
The Third Manifesto defines a relation r as a pair (h,b) where :

• h represents the heading of r. The heading h is defined to be a tuple heading.

• b represents the body of r. b is a set of tuples all conforming to the heading h.

In the following it will be demonstrated that every relation value25 can be represented
by a mathematically equivalent tuple value26

4.4 Showing that all relation values are tuple values
The purpose of this section is to illustrate that, by the liberties provided by The Third
Manifesto, all relation values are tuple values. Let r = (h,b) be a relation value with
heading h and body b. Since tuple values are sets of ordered triples it becomes neces-
sary to demonstrate that all relation values are similarly representable as sets of ordered
triples. The body b of the relation r will now be defined as a set ts of ordered triples
(I,T,V), such that:

• I is an identifier called an object identifier

• T is an identifier representing name of a type.

• V is a value of type T .

To insure that this set of triples ts forms a valid tuple the following conditions must
hold for all triples (I,T,V) in ts :

25under the definition of relation values dictated by The Third Manifesto
26under the definition of tuple values dictated by The Third Manifesto

11

• no two object identifiers in ts are equal

• the type T is defined to have the same type as the heading the h of r, which is to
say: T = heading(r).

• V is a tuple value of type T .

When these conditions hold, ts will be a valid tuple, containing the same information
found in r. Can this exercise not be performed for any and every relation value?

4.5 Showing that all tuple values are relation values
Let t be a tuple value the heading of which is denoted heading(t). A relation value
r = (heading(t), t) is quickly recognized as a relation value which is in no logically
significant way different from t.

4.6 Summary
This section illustrated that tuples and relations as defined by The Third Manifesto
are appearances of one and the same thing. This implies that from a logical point of
view, only one of the two concepts is a necessity. Noticing that user defined types
in principle, allow types of arbitrary complexity supporting a diverse set of operators,
domains, as defined by the Third Manifesto would seem to be the most general of the
types supported by The Third Manifesto. Domains have been equated to object classes
by The Third Manifesto, it is interesting to contemplate the logical implications these
of findings.

5 Conclusions
With regard to the subject matter of this article the following conclusions are drawn:

• The Third Manifesto, has provided no logically valid substantiation for the claim
that the alleged first great blunder is indeed a blunder.

• The Third Manifesto, has provided no logically valid substantiation for the claim
that the alleged second great blunder is indeed a blunder.

• From the perspective of the relational algebra presented in The Third Manifesto,
the requirement that each relation variable must have at least one candidate key,
is an arbitrary one.

• In the relational algebra of the Third Manifesto identity is rejected by Date and
Darwen, while it is reified, as a requirement, in the form of candidate keys in a
context foreign to this relational algebra. This fact makes the rejection of identity
in relational algebra, an arbitrary one.

12

• Domains, which have been equated to object classes by The Third Manifesto
have been established to represent a more general class of types than relation
types.

• By rejecting identity in the algebra of future database systems The Third Mani-
festo also limits the logical expressiveness of future databases.

References
[1] C.J. Date, Huge Darwen [2000] Foundation for Future Database Systems,

Addison-Wesley Publishing Company.

[2] J. van Eijck, E. Thijsse, [1989], Logica voor alfa’s en informatici,Academic Ser-
vice

[3] Hugh Darwen [2002] “Gittens000.pdf”, a personal communication

[4] Maurice Gittens [2002]An anatomy of knowledge representation and a theory of
meaning, A document available at http://www.gittens.nl

13

