
1

1

The Askew Wall

Hugh Darwen
HD@TheThirdManifesto.com

Last updated: January 2006

(background to The Third Manifesto)
SQL and The Relational Model

2

Terminological Equivalences (?)

(data) typeDomain

(object) classDomain

ColumnAttribute
Row(n-)tuple
TableRelation

Cuddly termPosh term

The table represents a relation! Its predicate:
Cuddly term is the SQL counterpart of Relationland’s Posh term.

3

The Perversity of SQL
SELECT CityName
FROM City C1
WHERE 4 > (SELECT COUNT(*)

FROM City C2
WHERE C1.Population < C2. Population)

The Unperversified Version
SELECT CityName
FROM City C1
WHERE (SELECT COUNT(*)

FROM City C2
WHERE C2. Population > C1. Population) < 4

4

or
Date
and Darwen’s
Database Dream

The Third Manifesto

5

References

Relational Database Writings 1985-1989
by C.J.Date with a special contribution

“Adventures in Relationland”
by H.D. (as Andrew Warden)

Relational Database Writings 1989-1991
by C.J.Date with Hugh Darwen

Relational Database Writings 1991-1994
by C.J.Date

Databases, Types, and The Relational Model :
The Third Manifesto

by C.J. Date and Hugh Darwen (to appear 2006)

Introduction to Database Systems
(8th edition) by C.J. Date

6

A Brief History of Data
1960: Punched cards and magnetic tapes
1965: Disks and ‘direct access’
1970: E.F. Codd’s great vision:

“A Relational Model of Data
for Large Shared Data Banks”

1970: C.J. Date starts to spread the word
1975: Relational Prototypes in IBM:

PRTV (ISBL), QBE, System R
1980: First SQL products: Oracle, SQL/DS
1986: SQL an international standard
1990: OODB – didn’t come to much in the end
2000: XML? (shudder!)

2

7

A Brief History of Me

1967 : IBM Service Bureau, Birmingham
1969 : "Terminal Business System" – putting users in

direct contact with their databases.
1972 : Attended Date's course on database (a personal

watershed)
1978 : "Business System 12"

- a relational dbms for the Bureau Service
1985 : Death of Bureau Service (and of BS12)
1987 : Joined IBM Warwick dev. lab. Attended a Codd &

Date database conference in December
1988 : “Adventures in Relationland” by Andrew Warden.

Joined SQL standardization committee.
2004 : Retired from IBM

8

The

Wall

The Wall Around Relationland

9

Lots of Good Things, to be sure, but ...

• Untold damage to the Relational Model’s reputation.

• Stifled research in the relational field.

People even think the Wall is Relationland.

There have even been moves back to the
“Higgledy-Piggledy Model of Data” (Object
Oriented Databases) and the hierarchical
model (XML).

What The Askew Wall Has Done

10

Codd's vision has come true in the following respects:

• TABLE as the only available structure.

• Value at row/column intersection the ONLY method of storing
information.e.g., no pointers, no ordering of rows.

• Orthogonality of tables with respect to data types (domains) over
which their columns are defined.

• The catalogue is made of tables, too.

• Query language ALMOST closed over tables and does embrace
relational algebra/calculus principles (as well as regrettably departing
from them).

• Constraints expressed declaratively, in the schema, and enforced by
the dbms.

• No "record-level" (or other) subversion. but...

The Good Things The Askew Wall Has Done

11

• Anonymous columns (partly addressed in 1992)

• FROM clause restricted to named tables (fixed in 1992)

• Duplicate column names

• Order of columns is significant

• Duplicate rows

• NULL

• Failure to support degenerate cases (e.g. columnless

tables)

• Failure to support “=“ properly

• and lots more, and probably to come

The Fatal Flaws of SQL

12

COLUMN NAMING
FLAWS

3

13

Ref: "The Naming of Columns", chapter 17 in RDBW 1985-89

Given :

84Relational DBDave
56Object DBCindy
68Object DBBoris
92Relational DBAnne

MarkSubjectName

To derive:

84
56
68
92

Mark

Relational DB
Object DB
Object DB
Relational DB
Subject

88Dave
62Cindy
62Boris
88Anne
AvgName

A Thematic Query Example

ExamMarks

14

Ref: "The Naming of Columns", chapter 17 in RDBW 1985-89

Example 3:

Show the average exam mark obtained by
all students in each subject.

SELECT Subject, AVG(Mark)
FROM ExamMarks
GROUP BY Subject

The "second" column of this table has no name!

This is a CORRECTABLE flaw (well, NEARLY
correctable). It was corrected (kind of) in 1992.

It is NOT BYPASSABLE

Anonymous Columns

15

Example 4:

This is a correctable flaw (and was corrected in 1992). It is not generally
bypassable, though sometimes you can create a named view for the
“nested” query.

Show for each student in each subject the mark obtained and the average
mark by all students in that subject.

SELECT Name, E.Subject, E.Mark, S.??? -- unnamed column
FROM ExamMarks E,

(SELECT Subject, AVG(Mark)
FROM ExamMarks
GROUP BY Subject) S

WHERE E.Subject = S.Subject

Actually, this particular query CAN be done without nesting (exercise for
reader!), but the solution cannot be generalized.

FROM Clause Restricted to Named Tables

16

Example 4 (fixed):

Show for each student in each subject the mark
obtained and the average mark obtained by all
students in that subject.

SELECT Name, E.Subject,E.Mark,S.Avg
FROM ExamMarks AS E,

(SELECT Subject, AVG(Mark) AS Avg
FROM ExamMarks
GROUP BY Subject) AS S

WHERE E.Subject = S.Subject

This is still only an optional conformance feature in
SQL:2003. I think it is very important. Without it SQL is
relationally incomplete.

The FROM clause fix

But it’s clunky!

17

Example 4 (fixed and made possibly a bit more digestible):

WITH AvgMarks AS
(SELECT Subject, AVG(Mark) AS Avg
FROM ExamMarks
GROUP BY Subject)

SELECT Name, E. Subject,E.Mark,A.Avg
FROM ExamMarks AS E, AvgMarks AS A
WHERE E.Subject = A. Subject

WITH is an optional conformance feature in SQL:2003. Not
many implementations have it, and even those that do have
it do so only with unpleasant restrictions.

With WITH

18

Example 5:

A very natural-looking join, but there are two columns called Name.
These are also duplicate columns, as it happens.

SELECT *
FROM ExamMarks E, Student S
WHERE E.Name = S.Name

Sometimes such joins generate two columns both called,
e.g., Remarks, that are not duplicate columns.

Ref: “In Praise of Marriage", chapter 18 in RDBW 1985-89

Duplicate column names (1)

4

19

SELECT Col1 AS X, Col2 AS X
FROM T

Enjoy!

Thanks to AS you can now even do this :

Duplicate Column Names (2)

20

NATURAL JOIN was added to SQL in 1992 but not widely
implemented.

A Fix for Duplicate Column Names (1)

SELECT *
FROM ExamMarks NATURAL JOIN Student

Note elimination of:
• need to write a joining condition in the WHERE clause
• need to write a possibly long list of column names to avoid having the
same column twice

21

Relational JOIN is the relational counterpart of logical AND.

ExamMarks JOIN Student

Assume predicates:
ExamMarks “Name scored Mark in Subject”.
Student “Name joined in Year, was born on DoB [etc.]”

Then the predicate for

is “Name scored Mark in Subject and Name joined in Year, was born on DoB [etc.]”

Why NATURAL JOIN is “Natural”

The two Names are the same variable!

22

DUPLICATE ROWS

23

Snark

24

“If something is true, saying it again doesn’t make it any truer”
(E.F. Codd)

• Declare at least one candidate key for every base table.
and ask for support for system-generated keys.

• Always write DISTINCT after the word SELECT
and complain to supplier if this makes duplicate-free queries go slower.

• Never write the word ALL after UNION
and demand decent optimization here, too.

but, alas, it is not a correctable flaw.

Ref: "The Duplicity of Duplicate Rows", chapter 5 in RDBW 89-91 "The Keys of the Kingdom",
chapter 19 in RDBW 85-89, and:

This is a bypassable flaw:

Usability problems should be recognized and solved, but
NOT by departing from fundamental principles.

Duplicate Rows

5

25

Are Duplicate Rows Really Harmful?

Well, they needlessly complicate the language, making it more difficult than it ought
to be to define, teach, and learn.

And they allow the implementation to place some of the performance burden
needlessly on its users (when is it safe to write UNION ALL or to omit DISTINCT?)

SELECT COUNT(*) AS HowMany, AVG (Age) AS HowOld
FROM

(SELECT Emp#, Age FROM Emp NATURAL JOIN
(SELECT Emp#
FROM WorksIn
WHERE Dept# IN (‘D3’, ‘D7’)) AS dummy) AS dummy

But look at the trap somebody fell into here:

“How many people work in departments 3 and 7, and what is their average age?”

SUMMARIZE
(((WorksIN WHERE Dept# = ‘D3’ OR Dept# = ‘D7’) { Emp# }

JOIN Emp) { Emp#, Age })
ADD (COUNT AS HowMany, AVG(Age) AS HowOld)

In Tutorial D:

26

NULL

27

Ref: "Into the Unknown", chapter 23 in RDBW 85-89. See also chapters 8 ("NOT" is not 'Not'!")
and 13 ("EXISTS is not 'Exists'!“ and the whole of part IV(chapters 17-21) in RDBW 89-91

Cause of much debate and anguish.

There's even a split in the relational camp (E.F. Codd
proposed "A-marks", "I-marks" and a 4-valued logic).

How many different things can NULL mean? Is it valid to
treat all nulls alike?

NULL ruins everything –
- UNION of sets, cardinality of sets.

Destruction of functional dependency theory
SQL’s implementation of NULL is even worse than the best
suggested by theoreticians. And it’s not completely
BYPASSABLE, because SQL thinks that the sum of the empty
set is NULL! Nor is it CORRECTABLE.

NULL

28

Is NULL a Value?

CREATE TABLE NT (N INTEGER) ;
INSERT INTO NT VALUES NULL;
INSERT INTO NT VALUES NULL;

(a) SELECT * FROM NT WHERE N = N
(b) SELECT * FROM NT WHERE N <> N
(c) SELECT DISTINCT * FROM NT

What difference would it have made if it had been a value?

Now, what is the cardinality of:

Which answers are consistent with NULL being a value?

29

3-Valued Logic: The Real Culprit

Relational theory is founded on classical, 2-valued logic.

A relation r is interpreted as a representation of the extension of some
predicate P.

Let t be a tuple with the same heading as r.

If tuple t is a member of r, then the proposition P(t) is taken to be TRUE;
otherwise (t is not a member of r), P(t) is taken to be FALSE.

There is no middle ground. The Law of The Excluded Middle applies.

There is no way of representing that the truth of P(t) is unknown, or
inapplicable, or otherwise concealed from us.

SQL’s WHERE clause arbitrarily splits at the TRUE/UNKNOWN divide.

30

Surprises Caused by SQL’s NULL

1. SELECT * FROM T WHERE X = Y OR NOT (X = Y)
is not equivalent to SELECT * FROM T

2. SELECT SUM(X) + SUM(Y) FROM T
is not equivalent to

SELECT SUM(X + Y) FROM T

3. IF X = Y THEN ‘Yes’; ELSE ‘No’
is not equivalent to
IF NOT (X = Y) THEN ‘No’; ELSE ‘Yes’

Thanks to Lex de Haan
for these, from his
collection.

�����������			
�����
���������������������������������������
����

6

31

Suppose “x = x” returns “unknown”

Can we safely conclude “x IS NULL” ?

Why NULL Hurts Even More Than It Once Did

Suppose x “is not the null value”?

Can we conclude “x IS NOT NULL”?

Not in modern SQL!

32

For example:

1. x is ROW (1, null) - or even ROW(null, null)

How x= x Unknown Yet x NOT NULL

2. x is POINT (1,null)

3. x is ROW (POINT(1,1), POINT(null,3))

POINT(a,b) is a “constructor” for values in the
user-defined data type POINT.

ROW(...) is a row “constructor”.

Consequences?

33

Latest example:

SQL> SELECT * FROM T WHERE C=C OR NOT C=C;

C(X, Y)

POINT(1, 2)
POINT(1, 2)

NULL Misleads Optimisers!

SQL> SELECT * FROM T WHERE (NOT C=C) OR C=C;

C(X, Y)

POINT(1, NULL)
POINT(1, 2)
POINT(1, NULL)
POINT(1, 2)

(Oracle9i Enterprise Edition Release 9.2.0.7.0)

34

TABLE_DEE
AND

TABLE_DUM

35

Ref: “TABLE_DEE and TABLE_DUM”, chapter 22 in RDBW 85-89, and “The Nullologist in
Relationland, or Nothing Really Matters”, chapter 13 in RDBW 89-91

TABLE_DEE and TABLE_DUM

Two very important relations that SQL is unaware of.

Consider the question, “Do we have any students?”

In Tutorial D: Student { }

SQL counterpart would be SELECT DISTINCT FROM Student

The result is a relation of degree 0 (no attributes) and either
one tuple (TABLE_DEE) or none (TABLE_DUM).

Interesting property of TABLE_DEE: for every relation r, r JOIN TABLE_DEE = r

36

Consequences of SQL’s failure to recognise DEE and DUM:

* Can’t have a table with no columns.
* Can’t DROP the only remaining column.

Correctable, not bypassable.
* Can’t SELECT no columns at all.

Correctable, somewhat bypassable.

* FROM clause can’t specify “no tables”.
Correctable, somewhat bypassable.

* Primary and foreign keys can’t be empty.
An empty PK implies at most one row.
Correctable, not bypassable.

and the above set of nullological observations is still growing.

Failure to Recognise DEE and DUM

7

37

“Did any student obtain more than 75 marks in Relational DB?”

Example 6:

SELECT DISTINCT ‘Yes!’
FROM ExamMarks
WHERE Mark > 75 AND Subject = ‘Relational DB’

“What’s the time?”
Example 7:

SELECT DISTINCT CURRENT_TIME
FROM Student

Bypasses for Absence of DEE and DUM

38

It Could Have Been Worse ...
... if SQL had paid proper attention to degenerate cases.

SQL fails to recognise TABLE_DEE and TABLE_DUM. These in turn depend
on the existence of the 0-tuple. Suppose SQL had not made this oversight.
Then …

CREATE TABLE T (C1 ROW ()) ;
INSERT INTO T VALUES (ROW ()) ;

SELECT * FROM T WHERE C1 IS NOT NULL

Query Result Cardinality

1

C1 “is not the null value”; also, no field of C1 “is the null value”.

SELECT * FROM T WHERE C1 IS NULL 1

But it is also true that every field of C1 “is the null value”!

At least 5 errors of language design are involved in this little example!

39

MISCELLANEOUS
FURTHER FLAWS

40

Modern SQL supports user-defined “equals”
functions, for user-defined data types.

We would like to require these to honour the rule
that if a=b then for all f, f(a) = f(b)

Unfortunately SQL itself already fails to honour it:
‘A’ = ‘A ’, but Length(‘A’) < Length(‘A ’)

Unpleasant consequences for GROUP BY,
NATURAL JOIN, DISTINCT, foreign keys, etc.

“=” Is Not “equals”

41

(yet)
In the Relational Model, the only method of
representing information is by a value at some
row/column intersection in some table.

The proponents of TSQL2 (temporal
extensions to SQL) want "hidden" timestamps.

Violation of Relationland’s uniformity of
representation of information - hidden data
needs additional operators to access it.

The Sin SQL Has Not Committed

42

In SQL:

SELECT Name, Total_Pay FROM
(SELECT E.*,

Salary + Bonus AS Total_Pay
FROM Emp E) AS dummy

WHERE Total_Pay > 1000

Clunkiness of SELECT-FROM-WHERE

Required but useless name!

Must qualify * here!

In Tutorial D:

EXTEND Emp ADD
(Salary + Bonus AS Total_Pay)

WHERE Total_Pay > 1000 {Name, Total_Pay}

8

43

On the subject of:
SELECT E.*, Salary + Bonus AS Total_Pay
...

A Murky Story

Must qualify * here!

In 2005 a UK proposal to correct the silly mistake and allow
SELECT *, Salary + Bonus AS Total_Pay
was vigorously opposed by the USA, led by Oracle and IBM,
and consequently defeated. Why?

Because “* ���������������������������������	���� �����	����!����

��������������������������������!�������!�����" ���#���������������$��

����������"

44

Why “Maintenance Nightmare”

Because of yet another violation by SQL of the
relational model, which stipulates that there is no
significance to any order in which the attributes of a
relation might appear.

But for getting data out of and into a table, SQL uses

SELECT/FETCH INTO :v1, :v2, … and INSERT INTO target source

The mapping from source columns to target columns is by column number.

Defining the order means defining it for every query operator, including FROM
and UNION, which thus fail to be commutative (as they should be, as relational
counterparts of AND and OR). Are they associative?

The correct approach is to map columns to variables by name, not by order.

45

“Nobody Ever Asked For It”

A couple of other nice ideas from ISBL that “nobody
has ever asked for” :

SELECT all columns except specified one. In Tutorial D:

r { ALL BUT a, b, … }

Very often you know the ones you don’t want and there aren’t so many of
them either. (In 2005 a UK proposal to add * EXCEPT (…) to SQL was
also rejected on the grounds that it would encourage use of the hated *.)

Rename selected columns and keep the others. In Tutorial D:

r RENAME (a AS x, b AS y, …)

Handy for getting the right attributes to match up for JOIN, UNION, etc.
46

In old SQL, the WHERE clause could not be used on
results of aggregation, so they had to invent HAVING (with
same meaning as WHERE):

SELECT D#, AVG(Salary) AS Avg_Sal
FROM Emp
GROUP BY D#
HAVING AVG(Salary) >999

The Folly of “Structured Queries”

But would we ever have had HAVING if in 1979 one could write:
SELECT * FROM

(SELECT D#, AVG(Sal) AS Avg_Sal
FROM Emp
GROUP BY D#) AS dummy

WHERE Avg_Sal > 999 ?

47

The Clunkiness Again

In SQL (as just seen):

SELECT * FROM
(SELECT D#, AVG(Sal) AS Avg_Sal

FROM Emp
GROUP BY D#) AS dummy

WHERE Avg_Sal > 999

In Tutorial D:

SUMMARIZE Emp BY { D# } ADD (AVG(Sal) AS Avg_Sal)
WHERE Avg_Sal > 999

48

Consider the so-called scalar subquery, expressed by
placing a query inside parentheses:

SELECT D#, (SELECT E#
FROM Emp E
WHERE E.D#=D.D#) AS Emps

FROM Dept D

Scalar subquery or nested table ?
I.e., is Emps an employee number or a set of
employee numbers? (loosely speaking)

(Answer: an employee number)

The Folly of Coercion

9

49

� The Shackle of Compatibility
(existing syntax cannot be deleted)

� The Growth of Redundancy
(plugging holes gives new solutions where existing
solutions already available)

� Desired extensions can be difficult or
impossible to specify
(e.g., because of nulls)

� Also shackled by existing style

Why The Flaws Are “Fatal”

50

* Duplicate Rows

* NULL

* Columns being ordered

* SELECT-FROM-WHERE

* scalar subqueries

(and probably many others)

Errors Here to Stay

51

Since SQL:1992, the following features (e.g.)
have been redundant:

• subqueries

• correlation names

• doing joins in longhand

• the HAVING clause

• the GROUP BY clause

The Growth of Redundancy

52

OBJECT SUPPORT

53

Object Oriented Databases
A couple of good ideas:

A questionable idea:

Bad ideas (for relational database purposes):

• Database variable types available for local variables too
(but a relational database must be restricted to relation variables)

• User-defined types (classes)

• Type inheritance via extension rather than by specialisation
(e.g., 3D_POINT subtype of 2D_POINT ???)

• “Persistence is orthogonal to type” (see first good idea)
• Object identifiers (because they are pointers)
• Class extents (when used for the purpose of relations)
• Operator (“method”) definitions bundled with type definitions
• “Selfish methods” (I.e., the “distinguished parameter”)

54

A bringing together of objects and relations.
Widely sought, because:

* Some Objectlanders wanted to be
able to do what Relationlanders
do with tables - specially ad hoc
queries and declarative constraints.

* Some Relationlanders wanted to do
some more complicated things that
require user-defined data types of
arbitrary complexity.

Rapprochement

10

55

Predicate:
Info is information about bird BirdName, and
Pic is a picture of BirdName, and
Video is a video of BirdName, and
Song is BirdName’s song, and
Migr is BirdName’s migration route.

Pic Video SongInfo

Sparrow

Thrush

Robin
MigrBirdName

A Multimedium Relation

56

SQL for The Bird Table

CREATE TYPE Text (T CLOB);
CREATE TYPE Picture (P ROW (R INT, G INT, B INT) ARRAY);
CREATE TYPE Sound (…)
CREATE TYPE Movie (Vid PICTURE ARRAY, Aud SOUND);
CREATE TYPE Map (…) ;

CREATE TABLE Bird (Birdname VARCHAR(30),
Info Text,
Pic Picture,
Video Movie,
Song Sound,
Migr Map,

PRIMARY KEY Birdname) ;

Correct (and supported):

All fine and reasonable so far. BUT …

57

The New Fatal Flaw

CREATE TYPE BirdStuff (Birdname VARCHAR,
Info Text,
Pic Picture,
Video Movie,
Song Sound,
Migr Map) ;

Incorrect (and not only supported, but encouraged by the vendors):

CREATE TABLE Bird OF BirdStuff
(Info NOT NULL,

Pic NOT NULL,
[etc.]
REF IS Birdref SYSTEM GENERATED) ;

How could such a stupid mistake have arisen?

Relationland’s careful and fundamental distinction between types and
relations is muddied (“The First Great Blunder”)

Banishment of pointers was one of Codd’s two main motivations for the
relational model. The REF bit brings them back (“The Second Great Blunder”)

58

Possible Reasons for The “Great Blunders”

Object class definitions have components called attributes.

Hence the wrong equation, class extent = relation variable
instead of the right equation, class = type (= Codd’s “domain”)

Objects have object identifiers (= SQL’s REF values)

But oids are pointers (because they point). There are
no pointers in Relationland (except possibly under the
covers, where they can’t be seen).

59

variable variable
name

Object

oid

“state” (i.e., a value)

name

namename

variablevariable

NOT WHAT WE WANT !
(soon leads to spaghetti)

Object DB Structure

60

relation variable
name

value
(a relation)

What we want instead!
(cannot make spaghetti)

relation variable
name

value

. . .

Relational DB Structure

11

61

Relationnone, and really wanted!

none (& don’t want!)Distinguished parameter

Polymorphism (thanks?)Polymorphism

Inheritance (thanks?)Inheritance

Operator invocationMessage

Function, ProcedureMethod

none (but we have keys)Object identifier

(Variable)Object

Domain (now Type)Class

RelationlandObjectland

Terminological Rapprochement

62

CLOSING REMARKS

63

I solemnly promise …

… cross my heart and hope to die.

… never to use the word “relational” when
I mean SQL, …

The Relationlander’s Promise

64

1. faithfully embraces the Relational Model of Data.
- NO EXTENSION
- NO PERVERSIONS
- NO SUBSUMPTIONS

()

The Dream Database Language

2. supports user-defined types and user-defined
operators of arbitrary complexity

3. allows SQL to be implemented in it for
temporary use (until SQL finally expires)

5. is generically referred to by the name

4. provides unprecedented chivalry

65

D

66

Projects based on TTM

Rel: an implementation of Tutorial D
by Dave Voorhis, University of Derby

D4: a commercial implementation
by Alphora, Utah, USA
front-end to SQL (so includes nulls, alas)

Duro: a C API for relational algebra
and transactions, by René Hartmann

Further info at www.thethirdmanifesto.com

12

67

Some important principles that we have
become particularly conscious of, for
various reasons.

Some have always been with us.

Some arise from a retrospective look at
our manifesto.

Some may even be said to have informed
our manifesto.

Some Guiding Principles

68

Principle #1
(our motto)

“All logical differences are big differences”
(Wittgenstein)

So all logical mistakes are big ones!

And we think all non-logical differences are
small ones. In the database context, at least.

Logical Differences

69

Principle #2

“We retain and embrace a clear
distinction between values and

variables”

(Object Orientation seems to have blurred
this distinction.)

Values and Variables

70

Principle #3
Data types and the relational model are

orthogonal to each other.

Corollary :
The relational model has no jurisdiction
concerning which data types a relational
system should support.

(except we must have relation types, and BOOLEAN!)

Data Types and Relations

71

Principle #4

Types are to tables as nouns are to
sentences!

So we cannot accept the equation
object class = relation

that some ORDBMSs (and SQL!) attempted
to embrace.

“object class = domain” works fine.

Types are Not Tables

72

Questioning Principle #4 some have
asked :

“But aren’t domains predicates, too?”
meaning “aren’t they therefore relations,

too?”

Well, yes - E.g. “i is an integer”

But in that case, what is the domain of i ?

Domains as Predicates

13

73

Principle #5

We retain a strong, clear distinction
between model and implementation.

So, we will not define our abstract
machine in terms of what the system

“really does”.

Model and Implementation

74

Corollary

A database is an account of some
enterprise, not a model of it.

In a relational database, the account is
in the form of tuples, each of which is to

be interpreted as some statement of
belief. Under this interpretation, the

system is able to derive certain other,
non-stated beliefs when asked to do so.

A Database is Not a Model

75

Principle #6
“Conceptual integrity is the most important

property of a software product”
(Fred Brooks, 1975)

Of course, you must have concepts
before you can be true to any. These had
better be:

a.few
b.agreeable to those invited to

share them

Conceptual Integrity

76

Reims
Cathedral

77

Principle #6 (bis)
“This above all: to thine own self be true,
And it must follow, as the night the day,

Thou canst not then be false to any
user.”

(from Polonius’s advice to D, by WS with HD)

Conceptual Integrity

78

The End

