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Abstract. In a multicluster architecture, where jobs can be submitted through 
each constituent cluster, the job arrival rates in individual clusters may be un-
even and the load therefore needs to be balanced among clusters. In this paper 
we investigate load balancing for two types of jobs, namely non-QoS and QoS-
demanding jobs and as a result, two performance-specific load balancing strate-
gies (called ORT and OMR) are developed. The ORT strategy is used to obtain 
the optimised mean response time for non-QoS jobs and the OMR strategy is 
used to achieve the optimised mean miss rate for QoS-demanding jobs. The 
ORT and OMR strategies are mathematically modelled combining queuing 
network theory to establish sets of optimisation equations. Numerical solutions 
are developed to solve these optimisation equations, and a so called fair work-
load level is determined for each cluster. When the current workload in a cluster 
reaches this pre-calculated fair workload level, the jobs subsequently submitted 
to the cluster are transferred to other clusters for execution. The effectiveness of 
both strategies is demonstrated through theoretical analysis and experimental 
verification. The results show that the proposed load balancing mechanisms 
bring about considerable performance gains for both job types, while the job 
transfer frequency among clusters is considerably reduced. This has a number 
of advantages, in particular in the case where scheduling jobs to remote re-
sources involves the transfer of large executable and data files. 

1. Introduction 

As grid technologies gain in popularity, separate clusters are increasingly being inter-
connected to create multicluster computing architectures for the processing of scien-
tific and commercial applications [1][2][5]. These constituent clusters may be located 
within a single organization or across different geographical sites [3][6]. Load balanc-
ing across such architectures is recognised as a key research issue. If users located at 
different administrative domains submit jobs through domain-specific portals, there 
may be different submission patterns. Without intervention, this may lead to an un-
balanced workload distribution among different domains; and the overall performance 
may be compromised.  
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Performance requirements are likely to vary depending on the job type. When the 
jobs have associated QoS demands (which we call QoS-demanding jobs or QDJs), 
performance is usually used to measure the extent of QoS-demand compliance; when 
jobs have no associated QoS demands (which we call non-QoS jobs or NQJs), a 
common performance criteria is to reduce the mean response time [9][12]. An exam-
ple of the QoS is job slack [10][14]. The QoS of a job is satisfied if the job' waiting 
time (in the system) is less than its slack [15]; otherwise, the QoS is failed. Mean miss 
rate captures the aggregate slack failure and is therefore used as a performance metric 
to measure the proportion of jobs whose QoS demands fail. 

In this paper, load balancing techniques are addressed for both QoS-demanding 
jobs (QDJs) and non-QoS demanding jobs (NQJs) to improve the job type-specific 
performance requirements in a multicluster. Two multicluster load balancing strate-
gies, Optimised mean Response Time (ORT) and Optimised mean Miss Rate (OMR), 
are developed. The aim of ORT is to achieve optimised mean response time for NQJ 
workloads and the aim of OMR is to achieve the optimised mean miss rate for QDJ 
workloads. The ORT and OMR strategies are mathematically modelled combining 
queuing network theory to establish sets of optimisation equations. Numerical solu-
tions are developed to solve the optimisation equation sets and determine a fair work-
load level for each cluster. When the current workload in a cluster reaches the pre-
calculated fair workload level, the jobs subsequently submitted to the cluster are 
transferred to remote less-loaded clusters for execution. 

There are a number of established workload allocation techniques in parallel and 
distributed systems [12][9]. A static workload allocation strategy is investigated in 
[12] to achieve the optimised mean response time; this strategy is specifically limited 
to a single cluster environment. Workload allocation techniques for multiclusters are 
addressed in [9] where it is assumed that the multicluster has a central entry point for 
the receipt of submitted jobs. In this paper, we assume that jobs can be submitted 
through each local cluster, and therefore the further problems brought about by the 
uneven submission patterns of jobs at the clusters also needs to be considered. 

The problem of uneven job arrival patterns in different resources is addressed in a 
number of load balancing techniques [8][13]. A load balancing mechanism is pre-
sented in [8] for multi-domain environments. The mechanism identifies the least 
loaded computer among all domains and when a job is submitted to the system it is 
scheduled on that computer, whichever domain the job is actually submitted to. 
Hence, a job has to be transferred to a remote domain if the local domain does not 
contain the current least loaded computer. 

In this paper however, a fair workload level is calculated for each cluster. Only 
when the current workload in a cluster exceeds its specified fair workload, does the 
cluster transfer the newly submitted job to a remote cluster. Although the load balanc-
ing technique presented in this paper may not achieve the best possible response time 
for a specific job, theoretical analysis and experimental studies show that considerable 
performance gains are still achieved in terms of the jobs' mean response time. More-
over, the job transfer frequency among clusters is dramatically reduced. This is desir-
able when jobs require the transfer of large executable and data files.  

The workload allocation and load balancing techniques referenced above are ap-
plied to non-QoS jobs (NQJs). In this paper, techniques for allocating QoS-
demanding jobs (QDJs) in multiclusters are also presented. The technique is similar to 



that for NQJs, except that a fair workload level for each cluster is otherwise calculated 
to obtain the optimised mean miss rate for the QDJs. 

The rest of the paper is organized as follows. The system and workload model is 
discussed in Section 2. Section 3 presents the load balancing techniques for NQJs and 
QDJs in multiclusters. The performance of these techniques is evaluated in Section 4. 
Section 5 concludes the paper. 

2. System and workload model 
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Fig. 1. The multicluster architecture 

The multicluster architecture assumed in this paper is shown in Fig.1. The system 
consists of n different clusters, where each cluster comprises a set of homogeneous 
computers. Cluster i (1≤i≤n) is modelled using an M/M/mi queue, where mi is the 
number of computers in cluster i. Jobs can be submitted through each local cluster, 
where they are queued for scheduling. The clusters in the multicluster are intercon-
nected through an agent system [7], which is able to monitor the job submission in 
each cluster and determine the mean arrival rate of the jobs submitted to the entire 
multicluster. The mean arrival rate is utilized by the multicluster workload manager 
(which we call MUSCLE) to calculate the fair workload level for each cluster through 
the ORT and OMR strategies (for NQJs and QDJs, respectively).  

The fair workload level for each cluster is measured by the mean number of jobs in 
its waiting queue. The local scheduler in each cluster is informed of its fair workload 
level. When the current number of jobs in the waiting queue in a cluster reaches its 
specified fair workload level, subsequent jobs are then transferred by MUSCLE (and 
the supporting agent system) to other suitable clusters. Each local scheduler processes 
locally submitted and remotely transferred jobs based on a First-Come-First-Served 
basis. The scheduling itself is non-preemptive. The jobs investigated in this paper are 
independent and each QDJ has a slack which follows a uniform distribution in [sl, su]. 



3. Load Balancing Techniques 

Suppose that the mean arrival rate of the jobs submitted to the multicluster is λ. The 
overall performance of the job execution depends on the workload distribution among 
the clusters. The fair workload level for each cluster, measured by the mean number 
of jobs in its waiting queue, is determined in this section. The approaches for NQJs 
and QDJs differ as they have different performance requirements. 

3.1 ORT (Optimised mean Response Time) strategies for NQJs 

The ORT strategy aims to optimise the mean response time of the NQJs in the multi-
cluster. The response time of a job is defined as the time from when the job arrives at 
the system until it is completed. The following analysis first establishes the optimisa-
tion equations for the mean response time, then a numerical solution to the optimisa-
tion equations is developed and the fair workload level is determined. 

The response time of a job is its waiting time in the queue plus its execution time. 
Hence, the average response time of the jobs in cluster i, denoted as Ri, can be com-
puted using Eq.1, where  is the mean waiting time of the jobs in cluster i and uiW i is 
the service rate of the computers in cluster i. 
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Cluster i, containing mi computers, is modelled using an M/M/mi queue (1≤i≤n). 
According to queueing theory [11], the mean waiting time of jobs, , is computed 
using Eq.2, where ρ

iW
i is the utilization of cluster i and W0i is the mean remaining exe-

cution time of the jobs in service when a new job arrives.  
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The formula for W0i is given in Eq.3 [4], where Pmi is the probability that the sys-
tem has no less than mi jobs.  
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Suppose that in the total workload in the entire multicluster, the fraction of work-
load allocated to cluster i is αi, then, 
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Pmi in Eq.3 is given in Eq.5 [4][11]. 
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Using Eqns.1-5, the formula for Ri, in terms of αi, is derived and is shown in Eq.6. 
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Thus, the mean response time of the incoming jobs over these n clusters, denoted 
by R, can be computed - see Eq.7. 
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Hence, in order to achieve the optimal mean response time of the job stream in the 
multicluster, the aim is to find a workload allocation {α1, α2…,αn} that minimizes 

Eq.7 subject to ∑  and 0≤α
=

=
n

i

i

1

1α i≤
λ

iium  (the constraint αi≤
λ

iium  is used to ensure 

that cluster i does not become saturated). This is a constrained-minimum problem and 
according to the Lagrange multiplier theorem, solving this problem is equivalent to 
solving the following equation set.  
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Since αi is the only unknown variable in the expression of Ri, Eq.8 can be reduced 
to Eq.9 by solving the partial differential equations in Eq.8.b. 
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It is impossible to find the general symbolic solution {α1, α2…,αn} from Eq.9,  
however, we identify a property of Eq.9.b that enables us to develop a numerical solu-
tion. The property is shown in Theorem 1 (the proof is omitted). Based on this prop-
erty, we develop a numerical solution to solve Eq.9 and therefore derive the optimised 
workload allocation {α1, α2…,αn}. The numerical solution is shown in Algorithm 1. 
Theorem 1. )( kk

k
Rα

α∂
∂  is a monotonically increasing function of αk. 

Algorithm 1 Computation of workload allocation among 
clusters for optimised mean response time 
1.   Let lower and upper limits of the mean response 
time be v_lower and v_upper; 
2.   while (v_lower≤v_upper) 
3.        v_mid=(v_lower+ v_upper)/2; 
4.        for each cluster i (1≤i≤n) do 
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6.                αi=0; 
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8.        v_upper=v_mid; 
9.            continue; 
10.            while (α_lower≤α_upper) 
11.                α_mid=(α_lower+α_upper)/2; 
12.              v_cur=

midii
i

i
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∂ ; 

13.              if (the difference between v_cur and 
v_mid is less than v_valve) 
14.                  αi=α_mid; 
15.              if (v_cur is less than v_mid) 
16.                  α_lower=α_mid; 
17.              else  
18.                  α_upper=a_mid; 
19.      end for 

20.      α_sum=∑ ; 

21.      if (the difference between α_sum and 1 is less 
than α_valve) 
22.          the current set of α

=

n

i
i

1

α

i (1≤i≤n) is the cor-
rect workload allocation; 
23.      else if (α_sum is less than 1) 
24.           v_lower= v_mid; 
25.      else  
26.           v_upper= v_mid; 
27.      end while 

Since a binary search technique is used to search for v and αi in their respective 
search spaces [v_lower, v_upper] and [α_lower, α_upper], the time complexity of 
Algorithm 1 is , where k)loglog( αkknO v α and kv are the number of elements in the 

search space of v and αi, which equal 
ϕ

lowervupperv __ −  and 
γ
αα lowerupper __ − , 

respectively (ϕ and γ represent the precision in the calculation). Since ϕ and γ are pre-
defined constants, the time complexity is linear with the number of clusters, that is n. 

The feasibility and effectiveness of Algorithm 1 are shown in Theorem 2. 
Theorem 2. The workload allocation strategy {α1, α2…,αn} computed by Algo-

rithm 1 minimizes the average response time of the incoming job stream in a multi-
cluster system of n clusters. 

After αi (1≤i≤n) is determined, the mean number of jobs in the waiting queue of 
cluster Ci, denoted by Ni, can be calculated using Eq.10 [11]; where Wi is the jobs' 
mean waiting time. Wi can be calculated using the first item to the right of Eq.6. 
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⎡Ni⎤ is regarded as the fair workload level for cluster i. When the current number of 
jobs in the waiting queue of cluster i is less than ⎡Ni⎤, the arriving jobs are scheduled 
locally; otherwise, the local scheduler of cluster i transfers the arriving jobs to the 
supporting agent system where they are further dispatched to the cluster with the least 
load (defined by Eq.11) among those clusters whose current number of jobs in the 
waiting queue is less than its fair workload level (if such a cluster does not exist, the 
jobs are scheduled to the cluster with the least load among all clusters).  
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3.2 OMR (Optimised mean Miss Rate) strategy for QDJs 

The QoS of a QDJ fails if its waiting time is greater than its slack. The performance 
criterion for evaluating the scheduling of QDJs differs from that for NQJs in that it 
typically aims to minimize the fraction of jobs that miss their QoS, termed the miss 
rate. In this subsection, a workload allocation strategy called OMR is developed, 
whose aim is to optimise the mean miss rate of the submitted QDJs in the multiclus-
ter. Every QDJ has some slack that follows a uniform distribution. Its probability den-
sity function S(x) is given in Eq.12, where su and sl are the upper and lower limits of 
the slack, respectively.  
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We continue to model cluster i (of mi computers) as an M/M/mi queue (1≤i≤n). As 
in queuing theory [11], in an M/M/mi queue the probability distribution function of 
the job waiting time, Pw(x) (which means that the probability that the job waiting time 
is less than x), is given by Eq.13 [11], where ρi and Pmi are the same variables as those 
found in Eq.2 and Eq.3.  
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Using the probability density function of slack, the miss rate of the QDJs allocated 
to cluster i, denoted by MRi, and can be computed by Eq.14.  
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Applying Eq.12 and Eq.13 and solving the integral, Eq.14 becomes Eq.15, where 
the workload fraction αi for cluster i is the only unknown variable. 

The mean miss rate (denoted by MR) of the QDJs over these n clusters can be 
computed using Eq.16. 
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Similar to the case of minimizing the mean response time, this is a constrained-
minimum problem. This requires identifying a workload allocation that minimizes 
MR in Eq.16 subject to  and 0≤α1

1
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following equation set.  
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In the previous subsection, we state that the numerical solution to Eq.9 is based on 
the property that )( kk

k
Rα

α∂
∂  is a monotonically increasing function of αk. Theorem 3 is 

introduced to establish the case that )( kk
k

MR α
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×
∂
∂  in Eq.17 also monotonically in-

creases over αk. The proof of the theorem is omitted for brevity. With this property, a 
numerical solution is also developed to solve Eq.17. The solving algorithm is similar 
to that found in Algorithm 1 and the proof of the algorithms effectiveness is similar to 
Theorem 2. Hence, they are omitted in the paper.  
Theorem 3 )( kk

k
MR α

α
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∂
∂  is a monotonically increasing function of αk. 

As in the case of NQJs, the mean number of jobs in the waiting queue of cluster i 
(i.e. Ni) can be obtained using Eq.10. The fair workload level for cluster i for QDJs 
can be subsequently determined. If the current number of jobs in the waiting queue of 
cluster i is greater than ⎡Ni⎤, then the arriving jobs are transferred to the cluster with 
the least miss rate among those clusters whose number of jobs in the waiting queue is 
less than its fair workload level (if such clusters do not exist, the jobs are scheduled to 
the cluster with the least miss rate among all clusters). 

4. Experimental Evaluation 

An experimental simulator is developed to evaluate the performance of the proposed 
workload allocation techniques under a wide range of system settings and workload 
levels. Two types of job stream (NQJs and QDJs) are generated using the same pa-
rameters, with one exception, in that every QDJ has an additional slack metric which 
follows a uniform distribution. Each job stream includes 500,000 independent jobs. 
The job arrival follows a Poisson process and a job is submitted to the multicluster 
through a randomly selected cluster. The run of the first 100,000 jobs is considered as 



the initiation period, allowing the system to achieve a steady state, and the run of the 
last 100,000 jobs is considered the ending period. Statistical data are collected from 
the middle 300,000 jobs. The job size follows an exponential distribution. The mean 
size of the incoming jobs is set to be the inverse of the average of the speeds of all 
processing computers multiplied by the average of the number of computers in each 
cluster, that is,  
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Based on the mean job size, the job arrival rate at which the system becomes satu-
rated, can be computed. The incoming workload levels in the experiments are meas-
ured using the percentage of the saturated arrival rate. 

An intuitive load balancing strategy, the weighted strategy [12][9], takes into ac-
count the heterogeneity of the clusters' performance. In this strategy, the workload 
fraction αi allocated to cluster i (1≤i≤n) is proportional to its processing capability, 
miui. Hence, αi is computed as Eq.18. 
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Consequently, under the weighted strategy the corresponding fair workload level 
for each cluster can be determined using Eq.10. 

The Multi-domain Load Balancing mechanism (MLB) of [8], which is based on a 
dynamic least load algorithm, can be used as the ideal bound of the mean response 
time obtained by the ORT strategy. Using this approach the arriving jobs are sched-
uled on the computer with the least load. Hence a job is transferred to a remote do-
main while the local domain does not contain the least loaded computer. In the load 
balancing mechanism presented in this paper, the job transfer frequency among clus-
ters can be dramatically reduced so as to improve the scheduling cost. Similarly, a 
dynamic least miss-rate (DLM) strategy is used as the upper bound of the mean miss 
rate of QDJs in the multicluster. The DLM strategy schedules newly arriving QDJs to 
the cluster with the least miss rate. 

These five load balancing strategies (ORT, OMR, Weighted, MLB and DLM) are 
evaluated in these experiments. The performance metrics used in the experiments in-
clude the mean response time (for NQJs) and the mean miss rate (for QDJs). Each 
point in the performance curves are plotted as the average result of 5 independent runs 
of the job streams with different initialisation random numbers. 

4.1 Workload 

 
Table 1. System setting in Figure 2 

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 
mi 3 5 7 9 
ui 20 16 12 8 
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Fig. 2. Impact of the incoming workload levels on a) mean response time and b) mean miss rate 

Fig.2.a and Fig.2.b show the impact of the incoming workload levels on the mean re-
sponse time and the mean miss rate of the incoming jobs under these load balancing 
strategies. The multicluster in this experiment consists of 4 clusters whose configura-
tions are listed in Table 1. For QDJs, the job slacks follow a uniform distribution in 
the range [0, 30]. In order to gain insight into the difference of the load balancing be-
haviours between OMR and ORT, the ORT strategy is also used to balance QDJs, and 
OMR is used to balance NQJs. 

It can be observed from Fig.2.a that the ORT strategy performs significantly better 
than the weighted strategy in terms of the mean response time. Furthermore, the per-
formance difference increases as the workload decreases. This trend can be explained 
as follows. The weighted strategy allocates the same fraction of workload to a cluster 
even if the workload varies. However, the waiting time accounts for a lower propor-
tion of the response time as the workload decreases. Hence, in order to reduce the re-
sponse time, a higher proportion of the incoming workload should be allocated to the 
cluster with the greater ui (the number of computers mi in each cluster has less im-
pact). The ORT strategy is able to satisfy this allocation requirement. Fig.2.b shows 
the impact of the incoming workload on the mean miss rate. It can be observed that 
the OMR strategy outperforms the weighted strategy at all incoming workload levels.  

In Fig.2.a, although the MLB outperforms ORT, the performance difference is 
small, especially when the workload is low. A similar pattern can be observed be-
tween the DLM and OMR strategies. This suggests that applying the ORT and OMR 
schemes will achieve competitive performance with relatively low cost, especially 
when the system load is low.  

It can be observed from Fig.2.a and Fig.2.b that in most incoming workload levels, 
the OMR strategy obtains the worst performance in terms of mean response time 
while the ORT strategy obtains the worst performance in terms of mean miss rate. 
These results suggest that the performance-specific load balancing strategies are nec-
essary to achieve good respective performance.  



4.2 Computer speed 
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Fig. 3. The impact of speed difference on a) the mean response time and b) the mean miss rate; 
the arrival rate is 50% of the saturated arrival rate 

Fig.3 demonstrates the impact of the difference of computer speed. Here the multi-
cluster consists of 4 clusters and the number of computers in each cluster is set to be 
4. The speed of the computers in cluster 1 varies from 21 to 6 with a decrement of 3, 
while the speed of all computers in the other three clusters increases from 1 to 6 with 
an increment of 1. Thus, the multicluster ranges from a highly heterogeneous system 
to a homogeneous system, while the average speed of all computers remains constant 
(i.e., 6). The slack of the QDJs follows a uniform distribution in [0, 10]. 

Fig.3.a shows the impact of the difference of computer speed on the mean response 
time. It can be observed in this figure that the mean response time decreases signifi-
cantly under the ORT strategy as the speed difference increases, while it remains ap-
proximately the same under the weighted strategy. This is because as the speed differ-
ence increases, despite the average computer speed remaining constant, a higher pro-
portion of the workload is allocated to cluster 1 under the ORT strategy (higher than 

), while the weighted strategy does not make full use of the computing 

power of cluster 1. This suggests that under the ORT strategy, the speed difference 
among the clusters is a critical factor for the mean response time.  
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The first observation from Fig.3.b is that the OMR strategy performs better than 
the weighted strategy under all speed combinations, as is to be expected. A further 
observation is that under OMR, the mean miss rate remains approximately the same 
as the speed difference varies. The experimental results for other incoming workload 
levels show similar patterns. This suggests that under OMR, the speed difference 
among the clusters is not an important parameter for the mean miss rate. This differs 
from the characteristic of the ORT for mean response time. This divergence may 
originate from the difference between the expressions of the response time and the 
miss rate (see Eq.6 and Eq.15): we note the occurrence of 1/ui in Eq.6 while this is ab-
sent in Eq.15.  



5. Conclusion 

Two load balancing strategies (ORT and OMR) for multicluster architectures are pro-
posed that deal with different types of jobs. The ORT strategy can optimize the mean 
response time of NQJs, while the OMR strategy can optimize the mean miss rate of 
QDJs. The effectiveness of these proposed load balancing strategies is demonstrated 
through theoretical analysis. The proposed strategies are also evaluated through ex-
tensive experimental studies. The results show that the ORT and OMR strategies can 
achieve considerable performance gain with relatively low overhead. 
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