
Mapping DAG-based Applications to Multiclusters with Background Workload *

Ligang He, Stephen A. Jarvis, Daniel P. Spooner, David Bacigalupo, Guang Tan
and Graham R. Nudd

Department of Computer Science, University of Warwick
Coventry, CV4 7AL, United Kingdom

liganghe@dcs.warwick.ac.uk

Abstract

Before an application modelled as a Directed Acyclic
Graph (DAG) is executed on a heterogeneous system, a
DAG mapping policy is often enacted. After mapping, the
tasks (in the DAG-based application) to be executed at
each computational resource are determined. The tasks
are then sent to the corresponding resources, where they
are orchestrated in the pre-designed pattern to complete
the work. Most DAG mapping policies in the literature
assume that each computational resource is a processing
node of a single processor, i.e. the tasks mapped to a re-
source are to be run in sequence. Our studies demon-
strate that if the resource is actually a cluster with multi-
ple processing nodes, this assumption will cause a mis-
perception in the tasks’ execution time and execution or-
der. This will disturb the pre-designed cooperation
among tasks so that the expected performance cannot be
achieved. In this paper, a DAG mapping algorithm is pre-
sented for multicluster architectures. Each constituent
cluster in the multicluster is shared by background work-
load (from other users) and has its own independent local
scheduler. The multicluster DAG mapping policy is based
on theoretical analysis and its performance is evaluated
through extensive experimental studies. The results show
that compared with conventional DAG mapping policies,
the new scheme that we present can significantly improve
the scheduling performance of a DAG-based application
in terms of the schedule length.

1. Introduction

Clusters are becoming popular platforms for the proc-
essing of scientific and commercial applications. Multiple
separate clusters can be further interconnected to obtain

 * This work is sponsored in part by grants from the NASA AMES Re-
search Center (administrated by USARDSG, contract no. N68171-01-C-
9012), the EPSRC (contract no. GR/R47424/01) and the EPSRC e-
Science Core Programme (contract no. GR/S03058/01).

multicluster computing architectures (or grids) [8]. These
constituent clusters may locate within a single organiza-
tion or across wide geographical sites [2][9].

In this paper, a DAG mapping algorithm is presented
for multicluster architectures. Each constituent cluster is
shared by background workload (from other users) and
has its own independent local scheduler. Such an archi-
tecture is often encountered in grid environments.

Studies on the mapping of DAG-based applications to
heterogeneous systems have received a good deal atten-
tion [4][5][6][7][10]. Most DAG mapping algorithms can
be classified into two categories: list scheduling [5][7]
and graph partitioning [1][4][16].

A list scheduling algorithm gathers all current schedul-
able tasks (a task is schedulable if all of its parents have
completed execution or it has no parent) and maps each
task to a suitable resource according to a certain policy;
this policy differentiates the list scheduling algorithms
from one another. A large number of list scheduling algo-
rithms for heterogeneous systems have been presented in
the literature [3][5][7][11][14][15]. However, they are not
suitable for solving the scheduling problems in the sce-
nario considered in this paper.

First, these previous approaches consider each re-
source as a single processor, and tasks are mapped to
every single resource in the heterogeneous system. In this
paper, however, a cluster consisting of multiple process-
ing nodes has its own independent local scheduler and the
DAG mapping algorithm cannot specify the processing
node which a task should be mapped to.

Second, if a cluster is regarded as a single resource to
which tasks are allocated, these algorithms assume that
the tasks mapped to each resource are to be run in se-
quence. This assumption may cause a misperception in
the tasks’ execution time and execution order [12]; this is
illustrated in this paper through a supportive case study.

Finally, in the scheduling scenario presented here,
background workload and the tasks from the DAG com-
pete for the cluster resources. This complicates the map-
ping design and makes the list scheduling algorithms pre-
sented in the literature even less effective.

A case study is described to illustrate the mispercep-
tion caused by regarding a cluster as a single processing
node. Suppose three tasks v1, v2, v3 are schedulable. Their
computational volume is 6, 3 and 6 respectively. Now
consider a multicluster consists of two clusters C1 and C2,
each with 3 processing nodes, and assume the service rate
of each processing node is 1. We also assume that map-
ping a task to C2 incurs the inter-cluster communication
cost of 1 time unit.

0 1 2 3 4 5 6 7

v3

v2 v1 C1
C2

(a) Expected mapping and execution pattern

0 1 2 3 4 5 6 7

C1

v1

v2

C2 v3

(b) Actual mapping and execution

v1

v2

v3

0 1 2 3 4 5 6 7

C1

C2

(c) Optimal mapping and execution

Fig.1. A case study for the misperception caused by
regarding each cluster as a single processing node.

If each cluster is regarded as a single processing node,
whose service rate is 3, the execution time of the three
tasks (the execution time equals the computational vol-
ume divided by the service rate) will be 2, 1 and 2, re-
spectively.

From this perspective, the optimal mapping and exe-
cution of these three tasks should be as in Fig.1.a, where
v3 starts from time 1 due to the inter-cluster communica-
tion delay. The expected schedule length is 3 (the sched-
ule length is the duration from the time when the first task
starts running to the time when all tasks are completed).
However, if these three tasks are mapped as in Fig.1.a,
their actual execution will be as in Fig.1.b, if both C1 and
C2 consist of 3 processing nodes with the service rate of 1.
As a result, the actual schedule length is 7. Moreover, the

algorithm expects that v2 finishes first, followed by v1 and
v3. In the actual execution, however, the order in which
the tasks finish is v1, v2 and v3.

Considering the parallelism provided by the resource
C1, the optimal mapping and corresponding execution
should be as in Fig.1.c, where the schedule length is 6 and
is therefore better than that seen in Fig.1.b.

Graph partitioning adopts another approach to map-
ping DAGs to heterogeneous systems. It analyses the
DAG's topology and partitions the graph into several sub-
graphs according to a certain metric (e.g., the least
amount of communication costs among the different sub-
graphs). Each sub-graph is then mapped to a resource for
execution. Graph partitioning policies have also been pre-
sented in a number of research papers [1][4][16]. How-
ever, these graph partitioning algorithms also assume that
the sub-graph can be mapped to a specified resource, and
that the tasks in the sub-graph will be run in sequence,
which is not necessary the case for the scheduling scenar-
iosconsidered in this paper. Furthermore, these graph par-
titioning algorithms do not take into account background
workload on the resources.

The multicluster DAG mapping algorithm presented
here can be categorized as a list scheduling algorithm.
The algorithm aims to achieve the optimised schedule
length, which is defined as the duration between the time
when the first task starts and the time by which all tasks
are completed. It performs the mapping operation before
the application starts running. After mapping, the tasks to
be run in each cluster are determined. The tasks are then
sent to the corresponding clusters where they are further
scheduled by a local scheduler together with any back-
ground workload.

An approach is developed in this paper to compute
the finish time of a task in a cluster with background
workload. An admission control mechanism is also intro-
duced to map as many tasks as possible to the same clus-
ter until a pre-defined condition is broken. The goal for
this is to fully utilize the parallel processing capability,
and at the same time reduce the inter-cluster communica-
tion.

The rest of this paper is organised as follows. Section 2
presents the system and workload model. The multicluster
DAG mapping algorithm is proposed in Section 3. A per-
formance evaluation is conducted in Section 4. Finally,
Section 5 concludes the paper.

2. System and workload model

An application consists of a set of tasks with prece-
dence constraints, which is modelled as a Directed
Acyclic Graph (DAG). A DAG is denoted as J={V, E},
where V={v1, v2,…, vr}, which defines r tasks that consti-
tute the application. αp is denoted as vp’s computational
volume; E represents the communication relationship and

the precedence constraints among tasks; epq=(vp, vq)∈E
represents a message sent from task vp to vq and it also
suggests vq can start running only after vp is complete and
vq receives message epq; vp is called vq’s parent and βpq is
denoted as message epq’s volume. It is assumed in this
paper that a DAG has only one entry task, which has no
parents, and one exit task, which has no children.

The multicluster consists of n clusters, C1, C2,…, Cn;
where a cluster Ci (1≤i≤n) consists of mi homogeneous
processing nodes (the size of cluster Ci is mi), each with a
service rate of ui. The nodes in the different clusters may
have different performance. The processing nodes in a
homogeneous cluster are connected by an intra-cluster
network. In cluster Ci, each communication link among
processing nodes is weighted li, which models the time it
takes to transfer one unit of a message between two proc-
essing nodes. Two clusters are connected by an inter-
cluster communication network. The communication link
between cluster Ci and Cj is weighted wij.

It is assumed that a local scheduler is located at each
cluster and adopts a centralised queueing architecture, i.e.,
a single waiting queue is used by each local scheduler to
accommodate the DAG-based application and the work-
load from other users (called the background workload).
The mean arrival rate of background workload arriving at
cluster Ci is λi and their mean task size is δi. Each local
scheduler schedules the tasks in the waiting queue based
on a First-Come-First-Served policy; where the task at the
head of the queue is sent to a free processing node for
execution.

All tasks placed in the waiting queue are ready to be
executed. When a set of tasks with precedence constraints
(including the tasks in the DAG-based application) arrive,
these tasks are first placed into a schedule queue. A task
is placed into the waiting queue as soon as it becomes
schedulable (a task is considered schedulable if all of its
parents have finished and the task has received all mes-
sages from its parents).

3. DAG mapping algorithm for multiclusters

In this section, an approach is presented to predict the

finish time of a task in the DAG. An admission control
mechanism is also introduced to exploit the parallel proc-
essing capabilities of the resources and guarantee that a
cluster does not become overloaded. The DAG mapping
algorithm for multiclusters is consequently presented.

3.1 Calculating a task’s finish time in a cluster

Many list scheduling algorithms need to know a

task’s start/finish time to make scheduling decisions
[3][5][7][11]. If the tasks are scheduled to every single
processing node, the start/finish time of a task is easy to

compute since the tasks at the processing node are run in
sequence, which is the case for the list algorithms in the
literature. In this paper, however, the tasks mapped to a
cluster are further scheduled by the local scheduler. It is
therefore a non-trivial task to compute the start/finish
time in a cluster. The task is further complicated by the
presence of background workload. Theoretical analysis is
conducted and a new approach is developed in this sub-
section to predict a task’ finish time in a cluster with
background workload.

Suppose the tasks currently allocated to cluster Ci are
ordered in increasing time when they become schedulable.
The sequence of tasks is denoted as <vi1, … vik>.

sum_et[i][j] and sum_msg[i][j] are the sums of the
execution time and the communication time of tasks
vi1, …vij (1≤j≤k) in cluster Ci. idle_cap[i][j] is the idle
processing capability (measured by time unit) before the
time when task vij becomes schedulable in cluster Ci.

The algorithm for computing the finish time of a task
in cluster Ci is shown in Algorithm 1.
Algorithm 1. Computing the finish time of task vp, de-
noted as ft(vp), in cluster Ci
Input: array sum_et, sum_msg, idle_cap and j (task vij is
the last task in the sequence of tasks <vi1, … vik> that be-
comes schedulable before vp in Ci)
Output: ft(vp)
1. get the maximum of the finish time of vp's parents,

denoted as ft_par;
2. if(λiδi×ft_par+sum_et[i][j]≤miui×(ft_par−

il
jimsgsum]][[_)−idle_cap[i][j])

3. st(vp)=ft_par+ }'|max{ parentssvisv
bwid pq

qpβ ,

where bwid is li if vq is scheduled to Ci and bwid is
wji if vq is scheduled to Cj (i≠j);

4. else
5. st(vp)=ft_par+(λiδi×ft_par+sum_et[i][j]−miui×

(ft_par−
il

jimsgsum]][[_)+idle_cap[i][j])/miui+

i

pqqp

l
parentssvisv)'|max(β ;

6. endif
7. ft(vp)=st(vp)+

i

p

u
α ;

Algorithm 1 is analyzed as follows. It computes Ci's
total computing capabilities (i.e., total computational vol-
ume that Ci is able to finish) and the idle computing capa-
bilities (because the system utilization is less than 1) dur-
ing the period between the time when starting mapping
the DAG-based application and the time when task vp be-
comes schedulable. The algorithm also calculates the
newly generated workload (including the tasks from the
DAG and background workload) during this period. If the

generated workload is less than the available computing
capabilities of Ci, which is the difference between Ci's to-
tal and idle computing capabilities, the workload can be
completed in a timely fashion and therefore, task vp’s ac-
tual start time equals its earliest start time, which is the
time when vp becomes schedulable. Otherwise, the unfin-
ished workload will queue (in the waiting queue) so as to
delay the start of task vp.

When computing the generated workload in Algo-
rithm 1, all tasks from the DAG which become schedul-
able before task vp are counted. The calculation is correct
for the following reason. The local scheduler in each clus-
ter places a task in the DAG into the central waiting
queue as soon as it becomes schedulable. Therefore, task
vp’s actual start time will be later than those tasks that be-
come schedulable before vp (although vp’s finish time may
not be later since the tasks are run in parallel).

3.2 Admission control mechanism

Since the inter-cluster communication is less efficient

than the intra-cluster communication, the multicluster
DAG mapping algorithm tries to map as many tasks as
possible to the same cluster until the capacity of the clus-
ter is reached. This policy can also make full use of the
parallel processing capabilities in a cluster.

In this paper, an admission control mechanism is in-
troduced to ensure that a cluster’s parallel processing ca-
pability can be effectively exploited, while at the same
time ensuring that the cluster is not overloaded in terms of
a particular metric. The metric used here is the expected
schedule length of a DAG. The expected schedule length
is changeable and it may be updated throughout the map-
ping procedure.

The multicluster mapping algorithm maps as many
tasks as possible to a cluster as long as the current ex-
pected schedule length is not exceeded. If the expected
schedule length cannot be met, the mapping algorithm
seeks to find another cluster which can do so. If no cluster
can be found, the task is mapped to the cluster which of-
fers the smallest excess and the expected schedule length
is then updated.

The initial value of the expected schedule length is
important. If the initial value is set too high, the admis-
sion control mechanism will not be effective, while a
cluster’s parallel processing capability cannot be fully ex-
ploited if the value is set too low.

The lower bound of a DAG's schedule length is the
longest path in the DAG (called the critical path). When
only the tasks in the critical path are submitted to a cluster
with background workload, their schedule length can be
viewed as the lower bound of the DAG’s schedule length
in that cluster.

Suppose a DAG's critical path consists of k tasks, ,

, …, . If these k tasks are submitted to be run in
cluster C

cv1
cv2

c
kv

i, then their schedule length SL can be computed
as in Eq.1, where W0 is the mean waiting time encoun-
tered by the first task in the critical path.

⎪
⎪
⎩

⎪
⎪
⎨

⎧

−>+++
−−

+

−≤++

=

∑

∑
−

=

+

−

=

+

)()1()()1
)1(

(

)()1()(

1

1

1,
0

1

1

1,

bum
uluum

um
W

aum
ulu

SL

iiii
i

k
k

p i

pp

i

p

ii

iiii

k

p
iiii

i

k

i

pp

i

p

δλ
αβαδλ

δλ
αβα

(1)

The equation is explained as follows. At any one
time, only one task in the critical path can be executed
because of precedence constraints. Hence the remaining
(mi-1) processing nodes are still available for processing
background workload. Suppose task vk is running. If the
background workload is low, all background workload ar-
riving during vk's execution can be completed by these
(mi-1) processing nodes. Therefore, vk's child can be exe-
cuted as soon as it becomes schedulable. This is the case
for Eq.1.a. However, if the background workload is too
high to be completed in a timely fashion, the tasks will be
queued in the waiting queue so as to delay the execution
of vk's child. This is the case for Eq.1.b. Eq.1 also gives
the conditions for differentiating between these two cases.

In Eq.1.b, W0 is the mean waiting time encountered
by the first task in the critical path. There are two ap-
proaches for obtaining the value of W0. First, if the arrival
process of the background workload follows a certain
probability distribution (e.g., Poisson process), the value
of W0 can be obtained through theoretical analysis (for
example, if background workload follows the Poisson ar-
rival, W0 is calculated as in [13]). Second, W0 can be
computed by gathering the workload information in the
cluster just before mapping the DAG.

The lower bound of the DAG is set to be the initial
value of the expected schedule length. This is reasonable
since it is possible that the actual schedule length of the
DAG is just the lower bound in a cluster.

In order to meet the initial expected schedule length,
any task vp in the DAG has a latest finish time (be-
cause of precedence constraints), which is calculated in
Eq.2, where et'(v

)(pvlt

p) is the earliest finish time of task vp,
which itself is a task in the critical path. et'(vp) can be cal-
culated when computing the lower bound of the schedule
length of the DAG using Eq.1.

⎪
⎩

⎪
⎨

⎧

−−

′

=
otherwisechildsvisv

lu
vlt

pathcriticaltheintaskaisvvte
vlt

pq
i

pq

i

q
q

pp

p }'|)(max{

)(
)(βα

(2)

If a task’s actual finish time is after its latest finish
time, the current expected schedule length cannot be met.
The actual finish time can be calculated using Algorithm
1. The new value of the expected schedule length is up-
dated using its current value plus the excess of the task’s

22. obtain the cluster Ck with the least excessi, vp
is mapped to Ck;

actual finish time over its latest finish time. The new
value of the latest finish time of each remaining un-
mapped task is also updated using its current value plus
the excess. The feasibility of these calculations is shown
in Theorem 1 (the proof is omitted).

23. i=k; excess+=min{excessi};
24. insert task vp into the task sequence <vi1,…, vik>

and update arrays sum_et, sum_msg and idle_cap;
Theorem 1. Suppose task vp’s latest finish time is lt(vp)
and the expected schedule length of the DAG is sl. If vp’s
actual finish time is lt(vp)+a (a>0), then the earliest possi-
ble schedule length of the DAG is sl+a, and in order to
meet this earliest possible schedule length, the latest fin-
ish time of an arbitrary task vq is lt(vq)+a.

25. update schedulable tasks;
26. go to Step 6;

4. Experimental Studies

An experimental simulator has been developed to

evaluate the performance of the Multicluster DAG Map-
ping algorithm (denoted as MDM) presented in this paper.
The experiments are conducted under a wide range of
system configurations and workload levels.

When task vp is allocated to a cluster, vp may become
schedulable before some of the tasks that have been pre-
viously allocated to the cluster. Hence the execution of
these tasks may be delayed since a cluster has its inde-
pendent local scheduler and task vp will be placed into the
waiting queue before those tasks. Hence, when the current
expected schedule length of the DAG is computed, the
impact of vp on other previously allocated tasks should be
taken into account.

The multicluster consists of a collection of clusters;
and the number of processing nodes in each cluster is uni-
formly chosen between MIN_M and MAX_M. In every
cluster a central computer acts as the local scheduler and
schedules workload on a First-Come-First-Served basis.

The multicluster mapping algorithm is outlined in
Algorithm 2. Its time complexity is O((n(r+1)r/2+3r+g),
where n is the number of clusters, r is the number of tasks
and g is the number of edges in the DAG.

In a DAG, task vp’s execution time on cluster Ci is
calculated as

ip u/α . Similarly, message epq’s communica-
tion time is , if both vipq l/β p and vq are scheduled to Ci;
otherwise, the communication time is ijpq w/β , if vp is
scheduled to Ci and vq to Cj. Cluster Ci’s service rate is
uniformly chosen between MIN_U and MAX_U. This
range reflects the level of computational heterogeneity.
The bandwidth of a intra-cluster network is uniformly
chosen between MIN_L and MAX_L. This range reflects
the level of communicational heterogeneity in the clusters.
The ratio of the bandwidth of a inter-cluster network to
the mean bandwidth of all local networks is uniformly
chosen between MIN_W and MAX_W.

Algorithm 2. The multicluster DAG mapping algorithm
1. calculate the lower bound of the critical path in each

cluster using Eq.1;
2. calculate tasks’ latest finish time using Eq.2;
3. obtain the cluster with the least lower bound of the

schedule length, suppose it is C1;
4. initialize all emements in arrays sum_et, sum_msg

and idle_cap to zero;
5. i=1; excess=0;
6. if there are schedulable tasks
7. get task vp, which becomes schedulable first in

cluster Ci among all current unallocated and schedul-
able tasks;

In the experiments, a DAG has a randomly generated
topology with a given number of tasks. The number of a
task’s children is uniformly chosen between MIN_CH and
MAX_CH, which reflects the degree of parallelism. The
greater the value of MAX_CH, the more tasks in the DAG
can potentially be run in parallel. A task’s computational
volume is uniformly chosen between MIN_CV and
MAX_CV and the volume of a message among tasks is
uniformly chosen between MIN_ MV and MAX_MV.

8. count=1; T={Ci};
9. while(count≤n)
10. get the greatest j so that vij becomes schedul-

able before vp;
11. call Algorithm 1 to compute fti(vp);
12. call Algorithm 1 to compute fti(viq), 1≤q≤j;
13. excessi=max(fti(vs)−(lt(vs)+excess)),where

vs∈{vp}∪{vi1,…, vij};
In the experimental studies, the background workload
(sequential tasks) arrives at cluster Ci following a Poisson
process and the workload’s computational volume fol-
lows an exponential distribution. The average arrival rate
is uniformly chosen from MIN_ARV and MAX_ARV and
the mean workload volume from MIN_VOL and
MAX_VOL. The system utilization (SU) provided by the
background workload for cluster Ci is used as the metric
for measuring the background workload level in Ci.

14. if(excessi<0)
15. task vp is mapped to Ci;
16. break;
17. else
18. get such Ck that the bandwidth between Ck

and Ci is the highest and Ck is not in T;
19. i=k; count++; T=T∪{Ck};
20. end while The values of the simulation parameters are given in

Table 1 unless otherwise stated. 21. if(count>n)

Table 1. Parameters for the simulation studies
Parameter Explanation Value

MAX_U/MIN_U Max/min service rate 1.0/0.2
MAX_M/MIN_M The number of processing nodes in a cluster 16/4
MAX_L/MIN_L Max/min bandwidth for intra-cluster network 1.0/0.5

MAX_W/MIN_W Max/min ratio of intra- to inter-cluster bandwidth 10.0/1.0
MAX_CV/MIN_CV Max/min computation volume 25/1
MAX_MV/MIN_MV Max/min message volume 5/1

SU Utilization by background workload 0.5
TASKNUM Task number in a DAG 60

Multicluster size The number of clusters in the multicluster 4
MAX_CH/MIN_CH Max/min degree of parallelism used to generate a DAG 16/1

The performance metric evaluated in these experi-
ments is the schedule length of a DAG. The experimental
results demonstrate the performance advantages of the
multicluster DAG mapping algorithm over the scheduling
policies that regard each resource as a single processor.
The DAG scheduling algorithm presented in [7] (denoted
as SDS) is selected as a representative. The SDS also
aims to reduce a DAG’s schedule length. It schedules a
task to the single-processor node that is able to offer the
shortest response time in a heterogeneous cluster.

In the experimental studies, the SDS algorithm re-
gards a cluster as a single processor node, whose service
rate is the total service rate of all processing nodes in the
cluster. The schedule length of a DAG is also obtained by
scheduling all tasks to the same cluster, that is the one
with the greatest value of (miui-λiδi). The schedule length
is used as a base line to measure the extent to which the
performance is improved by the multicluster DAG map-
ping algorithm presented in this paper.

4.1 Degree of parallelism

200

300

400

500

600

700

800

2 4 6 8 10 12 14 16

Degree of parallelism

Sc
he

du
le

 le
ng

th

base line

MDM

SDS

Fig.2. Performance comparison under the increasing
degree of parallelism

The degree of parallelism in a DAG determines
whether its tasks can be effectively run in parallel. Fig.2
shows the impact of the degree of parallelism on the
schedule length under the different scheduling policies.

The first observation from Fig.2 is that the schedule
length of the DAG decreases as its degree of parallelism
increases, as is to be expected. As can be observed further
from Fig.2, the multicluster DAG mapping algorithm
(MDM) achieves the same performance as the base line
when the degree of parallelism is low (from 2 to 4). This
is because when the degree of parallelism is low, MDM
also schedules all tasks in the DAG to the same cluster.
This is verified by our experimental results. However, as
the degree of parallelism increases further, the MDM
schedule increasingly allocates more tasks to the other
clusters so that the tasks are effectively run using a higher
degree of parallelism. This reduces the schedule length of
the DAG.

Another interesting observation is that the schedule
length achieved by the SDS algorithm is worse than that
achieved by scheduling all tasks to the same cluster (the
base line) when the degree of parallelism in the DAG is
low (from 2 to 6). This result can be explained as follows.
The SDS algorithm regards a cluster as a single processor
node and in so doing assumes that all tasks scheduled to a
cluster will be run sequentially. Because of this, the algo-
rithm may schedule some tasks to different clusters to
achieve a higher degree of parallelism. However, the par-
allelism is achieved at the expense of higher communica-
tion costs (inter-cluster communication). If these tasks
can be scheduled to the same cluster, they can be run in
parallel with lower communication costs (intra-cluster
communication).

It can be observed from Fig.2 that MDM outperforms
SDS significantly in all cases. This is because that the
MDM algorithm takes into account the parallel process-
ing capability of a cluster and calculates the impact of
background workload with a greater degree of sensitivity.

4.2 Background workload

Fig.3 shows the impact of the background workload

on the schedule length. The level of background workload
is measured by the observed system utilization. Each

cluster is presented with the same level of background
workload in the experiments.

100

200

300

400

500

600

700

800

900

0.125 0.25 0.375 0.5 0.625 0.75 0.875

background workload

Sc
he

du
le

 le
ng

th

base line
MDM
SDS

Fig.3. The impact of the background workload on the
schedule length

It can be seen from Fig.3 that the schedule length in-
creases as the background workload increases, as is to be
expected. However, the increase ranges are different for
different policies. The curve for the base line is the sharp-
est, while the other two curves are relatively even. This
can be explained as follows. The background workload
and the tasks from the DAG compete for the resources.
As the background workload in a cluster increases, it be-
comes increasingly difficult for the DAG tasks to find
enough free processing nodes so as to be run in parallel.
Hence, the performance of the base line deteriorates
sharply. However, the MDM and SDS algorithm can
schedule the tasks to different clusters so as to gain a
greater chance of being run in parallel.

As can be observed from Fig.3, MDM performs sig-
nificantly better than SDS under all levels of background
workload. This result again shows the benefit of develop-
ing this new DAG mapping algorithm for multiclusters.

4.3. Task and message volume

Fig.4 shows the impact of the ratio of the task vol-
ume to message volume on the schedule length. The task
volume is uniformly chosen from the range [MIN_CV,
MAX_CV] and the task volume from [MIN_MV,
MAX_MV]. In the experiments, both MIN_CV and
MIN_MV are fixed to be 1. The MAX_CV/MAX_MV ratio
varies from 25/5 to 5/25, which indicates that the task
volume in the DAG decreases and the message volume
increases while their volume sum remains unchanged.

It can be observed from Fig.4 that the schedule
length decreases as the task-volume/message-volume ra-
tio increases in all cases. This may be caused by the fact
that the tasks from the DAG compete for computational
resources with the background workload. As the task vol-
ume decreases, the competition is gradually moderated so
that the schedule length is improved.

300

400

500

600

700

25/5 20/10 15/15 10/20 5/25
Task volume/Message volume

sc
he

du
le

 le
ng

th

base line

MDM

SDS

Fig.4. The impact of the ratio of task volume to mes-
sage volume on the schedule length

A further observation is that the advantage of MDM
over the base line becomes less prominent as the ratio of
task volume to message volume decreases. This is be-
cause as the message volume becomes gradually larger,
MDM tends to schedule the tasks to the same cluster so as
to reduce the communication cost via the inter-cluster net-
work with lower bandwidth. This leads to similar sched-
uling results as those of the base line, which are verified
in the experimental results. Under MDM, computation-
intensive applications can achieve a higher degree of par-
allelism than communication-intensive applications.

As can be observed from Fig.4, when the ratio of
task-volume to message-volume is small (less than 15/15),
the performance achieved by SDS is worse than that of
the base line. This is again because the SDS algorithm
treats a cluster as a single processing node of higher ser-
vice rate. Hence when SDS schedules a task to a cluster,
the task is always completed at a much later finish time
than that expected by SDS. This may cause less effective
cooperation among tasks (e.g., the tasks’ children have to
wait longer than expected). The situation becomes in-
creasingly worse when the actual degree of parallelism in
running tasks is high on one cluster, but low on another,
which is more likely to happen when the message volume
is large compared with the task volume. Hence, the per-
formance is impaired.

4.4. Heterogeneity of inter-cluster and intra-
cluster communication

Fig.5 shows the impact of communication heteroge-
neity among the intra- and inter-cluster networks. The
communication heterogeneity is measured by the ratio of
the average bandwidth of the inter-cluster network to that
of the intra-cluster network (the average bandwidth of the
intra-cluster remains unchanged).

It is clear that the performance of the based line is not
influenced by the communication heterogeneity since all
tasks are scheduled to the same cluster.

200

300

400

500

600

700

800

1 3 5 7 9
Communication heterogeneity

sc
he

du
le

 le
ng

th

base line

MDM

SDS

Fig.5. The impact of the computational heterogeneity
among the local and inter-cluster networks

It can be observed from Fig.5 that under MDM, the
schedule length increases and approaches that of the base
line as the communication heterogeneity increases. This is
because it incurs a higher communication cost to schedule
the tasks to different clusters as the communication het-
erogeneity increases. As a result, the tasks are more likely
to be scheduled to fewer clusters so as to reduce the ac-
tual degree of parallelism in the running tasks. This result
suggests that the MDM algorithm is more beneficial in
multicluster architectures with a smaller heterogeneity be-
tween the inter-cluster and intra-cluster communication.

As can be observed from Fig.5, the SDS algorithm
achieves the worse performance as compared to the base
line when the communication heterogeneity is high
(higher than 5 in Fig.5).This is consistent with the ex-
perimental results documented in Fig.4, where the per-
formance of SDS is worse than that of the base line when
the message volume is large.

It can be observed from Fig.5 that MDM consistently
outperforms SDS and the advantage becomes increasingly
prominent as the communication heterogeneity decreases.
This is because the potential of the MDM algorithm is
better exploited as the heterogeneity decreases. These ex-
perimental results imply once again that the MDM map-
ping algorithm is a better choice than SDS in multicluster
architectures.

5. Conclusion

This paper presents a DAG mapping algorithm for

multiclusters with background workload. Each cluster has
its own local scheduler. An approach is developed to cal-
culate the finish time of a task in a cluster. An admission
control mechanism is also introduced to exploit the paral-
lel processing capability and guarantee that a cluster is
not overloaded. Simulation experiments demonstrate that
the multicluster DAG mapping algorithm significantly
improves the scheduling performance in terms of the
schedule length.

References

[1] A Aleta, J Codina, J Sanchez, and A Gonzalez, “Graph-
partitioning based instruction scheduling for clustered proces-
sors”, Proceedings of the 34 Annual International Symposium
on Microarchitecture, 2001

th

[2] R Buyya and M Baker, “Emerging Technologies for Multi-
cluster/Grid Computing,” Proceedings of the 2001 IEEE Inter-
national Conference on Cluster Computing, 2001.
[3] J Cao, SA Jarvis, S Saini and GR Nudd, “GridFlow Work-
flow Management for Grid Computing”, 3rd International Sym-
posium on Cluster Computing and the Grid, 2003
[4] M Chu, K Fan and S Mahlke, “Region-based hierarchical
operation partitioning for multicluster processors”, Proceedings
of the ACM SIGPLAN 2003 conference on Programming lan-
guage design and implementation, 2003
[5] MM Eshaghian, YC Wu, “Mapping heterogeneous task
graphs onto heterogeneous system graphs”, 6th Heterogeneous
Computing Workshop, 1997
[6] B Fields, R Bodik, MD Hill, “Slack: maximizing perform-
ance under technological constraints”, 29th international Sympo-
sium on Computer Architecture, 2002
[7] L He, SA Jarvis, DP Spooner, GR Nudd, “Dynamic, capabil-
ity-driven scheduling of DAG-based real-time jobs in heteroge-
neous clusters”, International Journal of High Performance
Computing and Networking, 2004
[8] L He, SA Jarvis, DP Spooner, X Chen, GR Nudd, "Dynamic
Scheduling of Parallel Jobs with QoS Demands in Multiclusters
and Grids", 5th IEEE/ACM International Workshop on Grid
Computing (Grid2004), Pittsburgh, USA, Nov 8, 2004
[9] L He, SA Jarvis, DP Spooner, GR Nudd, "Optimising static
workload allocation in multiclusters", Proceedings of 18th IEEE
International Parallel and Distributed Processing Symposium
(IPDPS'04), April 26-30, 2004, Santa Fe, New Mexico.
[10] L He, SA Jarvis, DP Spooner, GR Nudd, “Dynamic Sched-
uling of Parallel Real-time Jobs by Modelling Spare Capabilities
in Heterogeneous Clusters”, Proceedings of IEEE International
Conference on Cluster Computing (Cluster03), pp. 2-10. Hong
Kong, Dec 1-4, 2003
[11] M Iverson, F Ozguner, “Dynamic, Competitive Scheduling
of Multiple DAGs in a Distributed Heterogeneous Environ-
ment”, Proceedings of the Seventh Heterogeneous Computing
Workshop, 1998
[12] SA Jarvis, L He, DP Spooner, GR Nudd, "The impact of
predictive inaccuracies on execution scheduling", to appear in
International Journal of Performance Evaluation special issue
on Performance Modelling and Evaluation of High-
performance Parallel and Distributed Systems, 2004
[13] L Kleinrock, Queueing system, John Wiley & Sons, 1975.
[14] X Qin, H Jiang, "Dynamic, Reliability-driven Scheduling
of Parallel Real-time Jobs in Heterogeneous Systems," Proceed-
ings of the 30th International Conference on Parallel Process-
ing (ICPP 2001), pp.113-122, Valencia, Spain, September 3-7,
2001.
[15] A Radulescu, A van Gemund: “Fast and Effective Task
Scheduling in Heterogeneous Systems”, 9th Heterogeneous
Computing Workshop, 2000
[16] AG Ranade, “Scheduling loosely connected task graphs”,
Journal of Computer and System Sciences, 2003

	Table 1. Parameters for the simulation studies

