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Abstract 
 

Before an application modelled as a Directed Acyclic 
Graph (DAG) is executed on a heterogeneous system, a 
DAG mapping policy is often enacted. After mapping, the 
tasks (in the DAG-based application) to be executed at 
each computational resource are determined. The tasks 
are then sent to the corresponding resources, where they 
are orchestrated in the pre-designed pattern to complete 
the work. Most DAG mapping policies in the literature 
assume that each computational resource is a processing 
node of a single processor, i.e. the tasks mapped to a re-
source are to be run in sequence. Our studies demon-
strate that if the resource is actually a cluster with multi-
ple processing nodes, this assumption will cause a mis-
perception in the tasks’ execution time and execution or-
der. This will disturb the pre-designed cooperation 
among tasks so that the expected performance cannot be 
achieved. In this paper, a DAG mapping algorithm is pre-
sented for multicluster architectures. Each constituent 
cluster in the multicluster is shared by background work-
load (from other users) and has its own independent local 
scheduler. The multicluster DAG mapping policy is based 
on theoretical analysis and its performance is evaluated 
through extensive experimental studies. The results show 
that compared with conventional DAG mapping policies, 
the new scheme that we present can significantly improve 
the scheduling performance of a DAG-based application 
in terms of the schedule length. 
 
1. Introduction 
 

Clusters are becoming popular platforms for the proc-
essing of scientific and commercial applications. Multiple 
separate clusters can be further interconnected to obtain 
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multicluster computing architectures (or grids) [8]. These 
constituent clusters may locate within a single organiza-
tion or across wide geographical sites [2][9].  

In this paper, a DAG mapping algorithm is presented 
for multicluster architectures. Each constituent cluster is 
shared by background workload (from other users) and 
has its own independent local scheduler. Such an archi-
tecture is often encountered in grid environments.  

Studies on the mapping of DAG-based applications to 
heterogeneous systems have received a good deal atten-
tion [4][5][6][7][10]. Most DAG mapping algorithms can 
be classified into two categories: list scheduling [5][7] 
and graph partitioning [1][4][16]. 

A list scheduling algorithm gathers all current schedul-
able tasks (a task is schedulable if all of its parents have 
completed execution or it has no parent) and maps each 
task to a suitable resource according to a certain policy; 
this policy differentiates the list scheduling algorithms 
from one another. A large number of list scheduling algo-
rithms for heterogeneous systems have been presented in 
the literature [3][5][7][11][14][15]. However, they are not 
suitable for solving the scheduling problems in the sce-
nario considered in this paper. 

First, these previous approaches consider each re-
source as a single processor, and tasks are mapped to 
every single resource in the heterogeneous system. In this 
paper, however, a cluster consisting of multiple process-
ing nodes has its own independent local scheduler and the 
DAG mapping algorithm cannot specify the processing 
node which a task should be mapped to.  

Second, if a cluster is regarded as a single resource to 
which tasks are allocated, these algorithms assume that 
the tasks mapped to each resource are to be run in se-
quence. This assumption may cause a misperception in 
the tasks’ execution time and execution order [12]; this is 
illustrated in this paper through a supportive case study.  

Finally, in the scheduling scenario presented here, 
background workload and the tasks from the DAG com-
pete for the cluster resources. This complicates the map-
ping design and makes the list scheduling algorithms pre-
sented in the literature even less effective.  

 



A case study is described to illustrate the mispercep-
tion caused by regarding a cluster as a single processing 
node. Suppose three tasks v1, v2, v3 are schedulable. Their 
computational volume is 6, 3 and 6 respectively. Now 
consider a multicluster consists of two clusters C1 and C2, 
each with 3 processing nodes, and assume the service rate 
of each processing node is 1. We also assume that map-
ping a task to C2 incurs the inter-cluster communication 
cost of 1 time unit. 
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(c) Optimal mapping and execution 

Fig.1. A case study for the misperception caused by 
regarding each cluster as a single processing node. 

If each cluster is regarded as a single processing node, 
whose service rate is 3, the execution time of the three 
tasks (the execution time equals the computational vol-
ume divided by the service rate) will be 2, 1 and 2, re-
spectively.  

From this perspective, the optimal mapping and exe-
cution of these three tasks should be as in Fig.1.a, where 
v3 starts from time 1 due to the inter-cluster communica-
tion delay. The expected schedule length is 3 (the sched-
ule length is the duration from the time when the first task 
starts running to the time when all tasks are completed). 
However, if these three tasks are mapped as in Fig.1.a, 
their actual execution will be as in Fig.1.b, if both C1 and 
C2 consist of 3 processing nodes with the service rate of 1. 
As a result, the actual schedule length is 7. Moreover, the 

algorithm expects that v2 finishes first, followed by v1 and 
v3. In the actual execution, however, the order in which 
the tasks finish is v1, v2 and v3.  

Considering the parallelism provided by the resource 
C1, the optimal mapping and corresponding execution 
should be as in Fig.1.c, where the schedule length is 6 and 
is therefore better than that seen in Fig.1.b. 

Graph partitioning adopts another approach to map-
ping DAGs to heterogeneous systems. It analyses the 
DAG's topology and partitions the graph into several sub-
graphs according to a certain metric (e.g., the least 
amount of communication costs among the different sub-
graphs). Each sub-graph is then mapped to a resource for 
execution. Graph partitioning policies have also been pre-
sented in a number of research papers [1][4][16]. How-
ever, these graph partitioning algorithms also assume that 
the sub-graph can be mapped to a specified resource, and 
that the tasks in the sub-graph will be run in sequence, 
which is not necessary the case for the scheduling scenar-
iosconsidered in this paper. Furthermore, these graph par-
titioning algorithms do not take into account background 
workload on the resources.  

The multicluster DAG mapping algorithm presented 
here can be categorized as a list scheduling algorithm.  
The algorithm aims to achieve the optimised schedule 
length, which is defined as the duration between the time 
when the first task starts and the time by which all tasks 
are completed. It performs the mapping operation before 
the application starts running. After mapping, the tasks to 
be run in each cluster are determined. The tasks are then 
sent to the corresponding clusters where they are further 
scheduled by a local scheduler together with any back-
ground workload. 

An approach is developed in this paper to compute 
the finish time of a task in a cluster with background 
workload. An admission control mechanism is also intro-
duced to map as many tasks as possible to the same clus-
ter until a pre-defined condition is broken. The goal for 
this is to fully utilize the parallel processing capability, 
and at the same time reduce the inter-cluster communica-
tion.  

The rest of this paper is organised as follows. Section 2 
presents the system and workload model. The multicluster 
DAG mapping algorithm is proposed in Section 3. A per-
formance evaluation is conducted in Section 4. Finally, 
Section 5 concludes the paper. 

 
2. System and workload model 
 

An application consists of a set of tasks with prece-
dence constraints, which is modelled as a Directed 
Acyclic Graph (DAG). A DAG is denoted as J={V, E}, 
where V={v1, v2,…, vr}, which defines r tasks that consti-
tute the application. αp is denoted as vp’s computational 
volume; E represents the communication relationship and 

 



the precedence constraints among tasks; epq=(vp, vq)∈E 
represents a message sent from task vp to vq and it also 
suggests vq can start running only after vp is complete and 
vq receives message epq; vp is called vq’s parent and βpq is 
denoted as message epq’s volume. It is assumed in this 
paper that a DAG has only one entry task, which has no 
parents, and one exit task, which has no children.  

The multicluster consists of n clusters, C1, C2,…, Cn; 
where a cluster Ci (1≤i≤n) consists of mi homogeneous 
processing nodes (the size of cluster Ci is mi), each with a 
service rate of ui. The nodes in the different clusters may 
have different performance. The processing nodes in a 
homogeneous cluster are connected by an intra-cluster 
network. In cluster Ci, each communication link among 
processing nodes is weighted li, which models the time it 
takes to transfer one unit of a message between two proc-
essing nodes. Two clusters are connected by an inter-
cluster communication network. The communication link 
between cluster Ci and Cj is weighted wij.  

It is assumed that a local scheduler is located at each 
cluster and adopts a centralised queueing architecture, i.e., 
a single waiting queue is used by each local scheduler to 
accommodate the DAG-based application and the work-
load from other users (called the background workload). 
The mean arrival rate of background workload arriving at 
cluster Ci is λi and their mean task size is δi. Each local 
scheduler schedules the tasks in the waiting queue based 
on a First-Come-First-Served policy; where the task at the 
head of the queue is sent to a free processing node for 
execution.  

All tasks placed in the waiting queue are ready to be 
executed. When a set of tasks with precedence constraints 
(including the tasks in the DAG-based application) arrive, 
these tasks are first placed into a schedule queue. A task 
is placed into the waiting queue as soon as it becomes 
schedulable (a task is considered schedulable if all of its 
parents have finished and the task has received all mes-
sages from its parents). 

 
3. DAG mapping algorithm for multiclusters 

 
In this section, an approach is presented to predict the 

finish time of a task in the DAG. An admission control 
mechanism is also introduced to exploit the parallel proc-
essing capabilities of the resources and guarantee that a 
cluster does not become overloaded. The DAG mapping 
algorithm for multiclusters is consequently presented. 

 
3.1 Calculating a task’s finish time in a cluster 

 
Many list scheduling algorithms need to know a 

task’s start/finish time to make scheduling decisions 
[3][5][7][11]. If the tasks are scheduled to every single 
processing node, the start/finish time of a task is easy to 

compute since the tasks at the processing node are run in 
sequence, which is the case for the list algorithms in the 
literature. In this paper, however, the tasks mapped to a 
cluster are further scheduled by the local scheduler. It is 
therefore a non-trivial task to compute the start/finish 
time in a cluster. The task is further complicated by the 
presence of background workload. Theoretical analysis is 
conducted and a new approach is developed in this sub-
section to predict a task’ finish time in a cluster with 
background workload.  

Suppose the tasks currently allocated to cluster Ci are 
ordered in increasing time when they become schedulable. 
The sequence of tasks is denoted as <vi1, … vik>. 

sum_et[i][j] and sum_msg[i][j] are the sums of the 
execution time and the communication time of tasks 
vi1, …vij (1≤j≤k) in cluster Ci. idle_cap[i][j] is the idle 
processing capability (measured by time unit) before the 
time when task vij becomes schedulable in cluster Ci.  

The algorithm for computing the finish time of a task 
in cluster Ci is shown in Algorithm 1.  
Algorithm 1. Computing the finish time of task vp, de-
noted as ft(vp), in cluster Ci
Input: array sum_et, sum_msg, idle_cap and j (task vij is 
the last task in the sequence of tasks <vi1, … vik> that be-
comes schedulable before vp in Ci) 
Output: ft(vp) 
1. get the maximum of the finish time of vp's parents, 

denoted as ft_par; 
2. if(λiδi×ft_par+sum_et[i][j]≤miui×(ft_par−

il
jimsgsum ]][[_ )−idle_cap[i][j]) 

3.     st(vp)=ft_par+ }'|max{ parentssvisv
bwid pq

qpβ , 

where bwid is li if vq is scheduled to Ci and bwid is 
wji if vq is scheduled to Cj (i≠j); 

4. else 
5.      st(vp)=ft_par+(λiδi×ft_par+sum_et[i][j]−miui× 

(ft_par−
il

jimsgsum ]][[_ )+idle_cap[i][j])/miui+

i

pqqp

l
parentssvisv )'|max(β ; 

6. endif 
7. ft(vp)=st(vp)+

i

p

u
α ; 

Algorithm 1 is analyzed as follows. It computes Ci's 
total computing capabilities (i.e., total computational vol-
ume that Ci is able to finish) and the idle computing capa-
bilities (because the system utilization is less than 1) dur-
ing the period between the time when starting mapping 
the DAG-based application and the time when task vp be-
comes schedulable. The algorithm also calculates the 
newly generated workload (including the tasks from the 
DAG and background workload) during this period. If the 

 



generated workload is less than the available computing 
capabilities of Ci, which is the difference between Ci's to-
tal and idle computing capabilities, the workload can be 
completed in a timely fashion and therefore, task vp’s ac-
tual start time equals its earliest start time, which is the 
time when vp becomes schedulable. Otherwise, the unfin-
ished workload will queue (in the waiting queue) so as to 
delay the start of task vp. 

When computing the generated workload in Algo-
rithm 1, all tasks from the DAG which become schedul-
able before task vp are counted. The calculation is correct 
for the following reason. The local scheduler in each clus-
ter places a task in the DAG into the central waiting 
queue as soon as it becomes schedulable. Therefore, task 
vp’s actual start time will be later than those tasks that be-
come schedulable before vp (although vp’s finish time may 
not be later since the tasks are run in parallel).  
 
3.2 Admission control mechanism 

 
Since the inter-cluster communication is less efficient 

than the intra-cluster communication, the multicluster 
DAG mapping algorithm tries to map as many tasks as 
possible to the same cluster until the capacity of the clus-
ter is reached. This policy can also make full use of the 
parallel processing capabilities in a cluster.  

In this paper, an admission control mechanism is in-
troduced to ensure that a cluster’s parallel processing ca-
pability can be effectively exploited, while at the same 
time ensuring that the cluster is not overloaded in terms of 
a particular metric. The metric used here is the expected 
schedule length of a DAG. The expected schedule length 
is changeable and it may be updated throughout the map-
ping procedure. 

The multicluster mapping algorithm maps as many 
tasks as possible to a cluster as long as the current ex-
pected schedule length is not exceeded. If the expected 
schedule length cannot be met, the mapping algorithm 
seeks to find another cluster which can do so. If no cluster 
can be found, the task is mapped to the cluster which of-
fers the smallest excess and the expected schedule length 
is then updated.  

The initial value of the expected schedule length is 
important. If the initial value is set too high, the admis-
sion control mechanism will not be effective, while a 
cluster’s parallel processing capability cannot be fully ex-
ploited if the value is set too low.  

The lower bound of a DAG's schedule length is the 
longest path in the DAG (called the critical path). When 
only the tasks in the critical path are submitted to a cluster 
with background workload, their schedule length can be 
viewed as the lower bound of the DAG’s schedule length 
in that cluster.  

Suppose a DAG's critical path consists of k tasks, , 

, …, . If these k tasks are submitted to be run in 
cluster C

cv1
cv2

c
kv

i, then their schedule length SL can be computed 
as in Eq.1, where W0 is the mean waiting time encoun-
tered by the first task in the critical path. 
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The equation is explained as follows. At any one 
time, only one task in the critical path can be executed 
because of precedence constraints. Hence the remaining 
(mi-1) processing nodes are still available for processing 
background workload. Suppose task vk is running. If the 
background workload is low, all background workload ar-
riving during vk's execution can be completed by these 
(mi-1) processing nodes. Therefore, vk's child can be exe-
cuted as soon as it becomes schedulable. This is the case 
for Eq.1.a. However, if the background workload is too 
high to be completed in a timely fashion, the tasks will be 
queued in the waiting queue so as to delay the execution 
of vk's child. This is the case for Eq.1.b. Eq.1 also gives 
the conditions for differentiating between these two cases.  

In Eq.1.b, W0 is the mean waiting time encountered 
by the first task in the critical path. There are two ap-
proaches for obtaining the value of W0. First, if the arrival 
process of the background workload follows a certain 
probability distribution (e.g., Poisson process), the value 
of W0 can be obtained through theoretical analysis (for 
example, if background workload follows the Poisson ar-
rival, W0 is calculated as in [13]). Second, W0 can be 
computed by gathering the workload information in the 
cluster just before mapping the DAG.  

The lower bound of the DAG is set to be the initial 
value of the expected schedule length. This is reasonable 
since it is possible that the actual schedule length of the 
DAG is just the lower bound in a cluster. 

In order to meet the initial expected schedule length, 
any task vp in the DAG has a latest finish time (be-
cause of precedence constraints), which is calculated in 
Eq.2, where et'(v

)( pvlt

p) is the earliest finish time of task vp, 
which itself is a task in the critical path. et'(vp) can be cal-
culated when computing the lower bound of the schedule 
length of the DAG using Eq.1.  
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If a task’s actual finish time is after its latest finish 
time, the current expected schedule length cannot be met. 
The actual finish time can be calculated using Algorithm 
1. The new value of the expected schedule length is up-
dated using its current value plus the excess of the task’s 

 



22.           obtain the cluster Ck with the least  excessi, vp 
is mapped to Ck;  

actual finish time over its latest finish time. The new 
value of the latest finish time of each remaining un-
mapped task is also updated using its current value plus 
the excess. The feasibility of these calculations is shown 
in Theorem 1 (the proof is omitted). 

23.           i=k; excess+=min{excessi};  
24.      insert task vp into the task sequence <vi1,…, vik> 

and update arrays sum_et, sum_msg and idle_cap; 
Theorem 1. Suppose task vp’s latest finish time is lt(vp) 
and the expected schedule length of the DAG is sl. If vp’s 
actual finish time is lt(vp)+a (a>0), then the earliest possi-
ble schedule length of the DAG is sl+a, and in order to 
meet this earliest possible schedule length, the latest fin-
ish time of an arbitrary task vq is lt(vq)+a. 

25.      update schedulable tasks; 
26.      go to Step 6; 
 
4. Experimental Studies 

 
An experimental simulator has been developed to 

evaluate the performance of the Multicluster DAG Map-
ping algorithm (denoted as MDM) presented in this paper. 
The experiments are conducted under a wide range of 
system configurations and workload levels.  

When task vp is allocated to a cluster, vp may become 
schedulable before some of the tasks that have been pre-
viously allocated to the cluster. Hence the execution of 
these tasks may be delayed since a cluster has its inde-
pendent local scheduler and task vp will be placed into the 
waiting queue before those tasks. Hence, when the current 
expected schedule length of the DAG is computed, the 
impact of vp on other previously allocated tasks should be 
taken into account.   

The multicluster consists of a collection of clusters; 
and the number of processing nodes in each cluster is uni-
formly chosen between MIN_M and MAX_M. In every 
cluster a central computer acts as the local scheduler and 
schedules workload on a First-Come-First-Served basis.  

The multicluster mapping algorithm is outlined in 
Algorithm 2. Its time complexity is O((n(r+1)r/2+3r+g), 
where n is the number of clusters, r is the number of tasks 
and g is the number of edges in the DAG. 

In a DAG, task vp’s execution time on cluster Ci is 
calculated as

ip u/α . Similarly, message epq’s communica-
tion time is , if both vipq l/β p and vq are scheduled to Ci; 
otherwise, the communication time is ijpq w/β , if vp is 
scheduled to Ci and vq to Cj. Cluster Ci’s service rate is 
uniformly chosen between MIN_U and MAX_U. This 
range reflects the level of computational heterogeneity. 
The bandwidth of a intra-cluster network is uniformly 
chosen between MIN_L and MAX_L. This range reflects 
the level of communicational heterogeneity in the clusters. 
The ratio of the bandwidth of a inter-cluster network to 
the mean bandwidth of all local networks is uniformly 
chosen between MIN_W and MAX_W.  

Algorithm 2. The multicluster DAG mapping algorithm 
1. calculate the lower bound of the critical path in each 

cluster using Eq.1; 
2. calculate tasks’ latest finish time using Eq.2; 
3. obtain the cluster with the least lower bound of the 

schedule length, suppose it is C1;  
4. initialize all emements in arrays sum_et, sum_msg 

and idle_cap to zero; 
5. i=1; excess=0; 
6. if there are schedulable tasks 
7.      get task vp, which becomes schedulable first in 

cluster Ci among all current unallocated and schedul-
able tasks; 

In the experiments, a DAG has a randomly generated 
topology with a given number of tasks. The number of a 
task’s children is uniformly chosen between MIN_CH and 
MAX_CH, which reflects the degree of parallelism. The 
greater the value of MAX_CH, the more tasks in the DAG 
can potentially be run in parallel. A task’s computational 
volume is uniformly chosen between MIN_CV and 
MAX_CV and the volume of a message among tasks is 
uniformly chosen between MIN_ MV and MAX_MV. 

8.      count=1; T={Ci}; 
9.      while(count≤n) 
10. get the greatest j so that vij becomes schedul-

able before vp; 
11.           call Algorithm 1 to compute fti(vp); 
12.       call Algorithm 1 to compute fti(viq), 1≤q≤j; 
13. excessi=max(fti(vs)−(lt(vs)+excess)),where 

vs∈{vp}∪{vi1,…, vij}; 
In the experimental studies, the background workload 
(sequential tasks) arrives at cluster Ci following a Poisson 
process and the workload’s computational volume fol-
lows an exponential distribution. The average arrival rate 
is uniformly chosen from MIN_ARV and MAX_ARV and 
the mean workload volume from MIN_VOL and 
MAX_VOL. The system utilization (SU) provided by the 
background workload for cluster Ci is used as the metric 
for measuring the background workload level in Ci. 

14.           if(excessi<0) 
15.                task vp is mapped to Ci; 
16.                break; 
17.           else 
18.                get such Ck that the bandwidth between Ck 

and Ci is the highest and Ck is not in T;  
19.                i=k; count++; T=T∪{Ck}; 
20.      end while The values of the simulation parameters are given in 

Table 1 unless otherwise stated. 21.      if(count>n) 

 



Table 1. Parameters for the simulation studies 
Parameter Explanation Value 

MAX_U/MIN_U Max/min service rate 1.0/0.2 
MAX_M/MIN_M The number of processing nodes in a cluster 16/4 
MAX_L/MIN_L Max/min bandwidth for intra-cluster network 1.0/0.5 

MAX_W/MIN_W Max/min ratio of intra- to inter-cluster bandwidth 10.0/1.0 
MAX_CV/MIN_CV Max/min computation volume 25/1 
MAX_MV/MIN_MV Max/min message volume 5/1 

SU Utilization by background workload 0.5 
TASKNUM Task number in a DAG 60 

Multicluster size The number of clusters in the multicluster 4 
MAX_CH/MIN_CH Max/min degree of parallelism used to generate a DAG 16/1 

The performance metric evaluated in these experi-
ments is the schedule length of a DAG. The experimental 
results demonstrate the performance advantages of the 
multicluster DAG mapping algorithm over the scheduling 
policies that regard each resource as a single processor. 
The DAG scheduling algorithm presented in [7] (denoted 
as SDS) is selected as a representative. The SDS also 
aims to reduce a DAG’s schedule length. It schedules a 
task to the single-processor node that is able to offer the 
shortest response time in a heterogeneous cluster.  

In the experimental studies, the SDS algorithm re-
gards a cluster as a single processor node, whose service 
rate is the total service rate of all processing nodes in the 
cluster. The schedule length of a DAG is also obtained by 
scheduling all tasks to the same cluster, that is the one 
with the greatest value of (miui-λiδi). The schedule length 
is used as a base line to measure the extent to which the 
performance is improved by the multicluster DAG map-
ping algorithm presented in this paper.  

 
4.1 Degree of parallelism  
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Fig.2. Performance comparison under the increasing 
degree of parallelism 

The degree of parallelism in a DAG determines 
whether its tasks can be effectively run in parallel. Fig.2 
shows the impact of the degree of parallelism on the 
schedule length under the different scheduling policies. 

The first observation from Fig.2 is that the schedule 
length of the DAG decreases as its degree of parallelism 
increases, as is to be expected. As can be observed further 
from Fig.2, the multicluster DAG mapping algorithm 
(MDM) achieves the same performance as the base line 
when the degree of parallelism is low (from 2 to 4). This 
is because when the degree of parallelism is low, MDM 
also schedules all tasks in the DAG to the same cluster. 
This is verified by our experimental results. However, as 
the degree of parallelism increases further, the MDM 
schedule increasingly allocates more tasks to the other 
clusters so that the tasks are effectively run using a higher 
degree of parallelism. This reduces the schedule length of 
the DAG. 

Another interesting observation is that the schedule 
length achieved by the SDS algorithm is worse than that 
achieved by scheduling all tasks to the same cluster (the 
base line) when the degree of parallelism in the DAG is 
low (from 2 to 6). This result can be explained as follows. 
The SDS algorithm regards a cluster as a single processor 
node and in so doing assumes that all tasks scheduled to a 
cluster will be run sequentially. Because of this, the algo-
rithm may schedule some tasks to different clusters to 
achieve a higher degree of parallelism. However, the par-
allelism is achieved at the expense of higher communica-
tion costs (inter-cluster communication). If these tasks 
can be scheduled to the same cluster, they can be run in 
parallel with lower communication costs (intra-cluster 
communication).  

It can be observed from Fig.2 that MDM outperforms 
SDS significantly in all cases. This is because that the 
MDM algorithm takes into account the parallel process-
ing capability of a cluster and calculates the impact of 
background workload with a greater degree of sensitivity. 

 
4.2 Background workload 

 
Fig.3 shows the impact of the background workload 

on the schedule length. The level of background workload 
is measured by the observed system utilization. Each 

 



cluster is presented with the same level of background 
workload in the experiments.  
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Fig.3. The impact of the background workload on the 
schedule length 

It can be seen from Fig.3 that the schedule length in-
creases as the background workload increases, as is to be 
expected. However, the increase ranges are different for 
different policies. The curve for the base line is the sharp-
est, while the other two curves are relatively even. This 
can be explained as follows. The background workload 
and the tasks from the DAG compete for the resources. 
As the background workload in a cluster increases, it be-
comes increasingly difficult for the DAG tasks to find 
enough free processing nodes so as to be run in parallel. 
Hence, the performance of the base line deteriorates 
sharply. However, the MDM and SDS algorithm can 
schedule the tasks to different clusters so as to gain a 
greater chance of being run in parallel. 

As can be observed from Fig.3, MDM performs sig-
nificantly better than SDS under all levels of background 
workload. This result again shows the benefit of develop-
ing this new DAG mapping algorithm for multiclusters. 
 
4.3. Task and message volume  
 

Fig.4 shows the impact of the ratio of the task vol-
ume to message volume on the schedule length. The task 
volume is uniformly chosen from the range [MIN_CV, 
MAX_CV] and the task volume from [MIN_MV, 
MAX_MV]. In the experiments, both MIN_CV and 
MIN_MV are fixed to be 1. The MAX_CV/MAX_MV ratio 
varies from 25/5 to 5/25, which indicates that the task 
volume in the DAG decreases and the message volume 
increases while their volume sum remains unchanged.  

It can be observed from Fig.4 that the schedule 
length decreases as the task-volume/message-volume ra-
tio increases in all cases. This may be caused by the fact 
that the tasks from the DAG compete for computational 
resources with the background workload. As the task vol-
ume decreases, the competition is gradually moderated so 
that the schedule length is improved.  
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Fig.4. The impact of the ratio of task volume to mes-
sage volume on the schedule length 

A further observation is that the advantage of MDM 
over the base line becomes less prominent as the ratio of 
task volume to message volume decreases. This is be-
cause as the message volume becomes gradually larger, 
MDM tends to schedule the tasks to the same cluster so as 
to reduce the communication cost via the inter-cluster net-
work with lower bandwidth. This leads to similar sched-
uling results as those of the base line, which are verified 
in the experimental results. Under MDM, computation-
intensive applications can achieve a higher degree of par-
allelism than communication-intensive applications. 

As can be observed from Fig.4, when the ratio of 
task-volume to message-volume is small (less than 15/15), 
the performance achieved by SDS is worse than that of 
the base line. This is again because the SDS algorithm 
treats a cluster as a single processing node of higher ser-
vice rate. Hence when SDS schedules a task to a cluster, 
the task is always completed at a much later finish time 
than that expected by SDS. This may cause less effective 
cooperation among tasks (e.g., the tasks’ children have to 
wait longer than expected). The situation becomes in-
creasingly worse when the actual degree of parallelism in 
running tasks is high on one cluster, but low on another, 
which is more likely to happen when the message volume 
is large compared with the task volume. Hence, the per-
formance is impaired. 
 
4.4. Heterogeneity of inter-cluster and intra-
cluster communication 
 

Fig.5 shows the impact of communication heteroge-
neity among the intra- and inter-cluster networks. The 
communication heterogeneity is measured by the ratio of 
the average bandwidth of the inter-cluster network to that 
of the intra-cluster network (the average bandwidth of the 
intra-cluster remains unchanged). 

It is clear that the performance of the based line is not 
influenced by the communication heterogeneity since all 
tasks are scheduled to the same cluster. 
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Fig.5. The impact of the computational heterogeneity 
among the local and inter-cluster networks 

It can be observed from Fig.5 that under MDM, the 
schedule length increases and approaches that of the base 
line as the communication heterogeneity increases. This is 
because it incurs a higher communication cost to schedule 
the tasks to different clusters as the communication het-
erogeneity increases. As a result, the tasks are more likely 
to be scheduled to fewer clusters so as to reduce the ac-
tual degree of parallelism in the running tasks. This result 
suggests that the MDM algorithm is more beneficial in 
multicluster architectures with a smaller heterogeneity be-
tween the inter-cluster and intra-cluster communication.  

As can be observed from Fig.5, the SDS algorithm 
achieves the worse performance as compared to the base 
line when the communication heterogeneity is high 
(higher than 5 in Fig.5).This is consistent with the ex-
perimental results documented in Fig.4, where the per-
formance of SDS is worse than that of the base line when 
the message volume is large.  

It can be observed from Fig.5 that MDM consistently 
outperforms SDS and the advantage becomes increasingly 
prominent as the communication heterogeneity decreases. 
This is because the potential of the MDM algorithm is 
better exploited as the heterogeneity decreases. These ex-
perimental results imply once again that the MDM map-
ping algorithm is a better choice than SDS in multicluster 
architectures. 

 
5. Conclusion 

 
This paper presents a DAG mapping algorithm for 

multiclusters with background workload. Each cluster has 
its own local scheduler. An approach is developed to cal-
culate the finish time of a task in a cluster. An admission 
control mechanism is also introduced to exploit the paral-
lel processing capability and guarantee that a cluster is 
not overloaded. Simulation experiments demonstrate that 
the multicluster DAG mapping algorithm significantly 
improves the scheduling performance in terms of the 
schedule length. 
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