
Dynamic Scheduling of Parallel Real-time Jobs by Modelling Spare Capabilities
in Heterogeneous Clusters

Ligang He, Stephen A. Jarvis, Daniel P. Spooner and Graham R. Nudd
Department of Computer Science, University of Warwick

Coventry, United Kingdom, CV4 7AL
{liganghe, saj, dps, grn}@dcs.warwick.ac.uk

Abstract

In this research, a scenario is assumed where periodic
real-time jobs are being run on a heterogeneous cluster
of computers, and new aperiodic parallel real-time jobs,
modelled by Directed Acyclic Graphs (DAG), arrive at
the system dynamically. In the scheduling scheme pre-
sented in this paper, a global scheduler situated within
the cluster schedules new jobs onto the computers by
modelling their spare capabilities left by existing periodic
jobs. Admission control is introduced so that new jobs are
rejected if their deadlines cannot be met under the pre-
condition of still guaranteeing the real-time requirements
of existing jobs. Each computer within the cluster houses
a local scheduler, which uniformly schedules both peri-
odic job instances and the subtasks in the parallel real-
time jobs using an Early Deadline First policy. The mod-
elling of the spare capabilities is optimal in the sense that
once a new task starts running on a computer, it will util-
ize all the spare capability left by the periodic real-time
jobs and its finish time is the earliest possible. The per-
formance of the proposed modelling approach and
scheduling scheme is evaluated by extensive simulation;
results show that the system utilization is significantly en-
hanced, while the real-time requirements of the existing
jobs remain guaranteed*.

1. Introduction

Cluster systems are gaining in popularity for process-
ing scientific and commercial applications [6]. They are
also increasingly used for processing applications with
time constraints [1] as the work has been done to extend
conventional operating systems, such as Linux, to support

* This work is sponsored in part by grants from the NASA AMES Re-
search Center (administrated by USARDSG, contract no. N68171-01-C-
9012), the EPSRC (contract no. GR/R47424/01) and the EPSRC e-
Science Core Programme (contract no. GR/S03058/01).

real-time scheduling (for example, the preemptive sched-
uling based on the Earliest-Deadline-First policy) [5][16].
Real-time processing can often be represented abstractly
as the hybrid execution of existing periodic jobs together
with newly arriving aperiodic jobs. An example of this is
in the reservation-based scheduling of multimedia appli-
cations, where the reservation of processor times can be
expressed per period, so as to ensure that the processor
utilization for an application is maintained above a de-
sired level [9]. These reserved executions can be viewed
as periodic jobs and besides the reserved executions, the
processors have also to deal with other newly arriving
jobs. This scenario presents the challenge of devising
scheduling schemes which judicially deal with the hybrid
execution of existing jobs (or reserved executions) to-
gether with newly arriving jobs. This task is complicated
when the objective is to reduce the response times of
newly arriving jobs while maintaining the time con-
straints of existing periodic jobs.

The dynamic scheduling technique presented in this
paper addresses this issue, aiming to allocate newly arriv-
ing Aperiodic Real-time Jobs (ARJ) to a heterogeneous
cluster of computers on which Periodic Real-time Jobs
(PRJ) are running. In this paper, an ARJ is assumed to be
a parallel job with time constraints, which is modeled as a
real-time Directed Acyclic Graph (DAG) [11]. In this
scheduling framework, a global scheduler located on one
of the computers in the heterogeneous cluster analyzes the
execution of PRJs in the remaining computers and models
the initial distribution of their spare capabilities off-line.
When a new ARJ arrives at the system dynamically, the
global scheduler releases the precedence constraints
among the tasks in the ARJ, adjusts the initial distribution
of spare capabilities on-line (which may be altered due to
the dynamic arrivals of the preceding ARJs) and tries to
fit the execution of tasks in the new ARJ into spare time
slots in the computers. The global scheduling for ARJs
takes both task and message scheduling into account. In
the local scheduling (at each computer), a uniform Early
Deadline First (EDF) policy is used for both the PRJ in-

stances and the tasks in the ARJs so as to reduce the local
scheduling complexity.

The approach for modelling spare capabilities pro-
posed in this paper does not invoke any communication
overhead between the global scheduler and the remaining
computers in the cluster. The approach is optimal in the
sense that once a new task starts running, it will utilize all
the spare capability left by the PRJs, and its finish time is
the earliest possible.

The rest of the paper is organized as follows. Section 2
presents related work. Section 3 describes the workload
and system model. In section 4, a novel approach is pre-
sented to enable the global scheduler to model spare ca-
pabilities of computers in a cluster. Section 5 proposes a
global dynamic scheduling algorithm for parallel real-
time jobs. The performance evaluation is presented in
Section 6 and Section 7 concludes the paper.

2. Related work

Studies on heterogeneous clusters or networks of
workstations have received a good deal attention [7][17].
The scheduling of tasks with precedence constraints,
which are usually represented by Directed Acyclic
Graphs (DAG), has also been documented in a number of
papers [2][11][19][20]. An off-line algorithm is presented
in [2] to schedule communicating tasks with precedence
constraints in distributed systems. However, the algorithm
belongs to the static category. Paper [20] describes a run-
time incremental DAG scheduling approach on parallel
machines. The approach is however limited to homoge-
nous systems. Two low-complexity heuristics, the Het-
erogeneous Earliest-Finish-Time Algorithm and the Criti-
cal-Path-on-a-Processor Algorithm are proposed in [19]
for scheduling DAGs on heterogeneous processors. How-
ever, the heuristics are designed for non-real-time task al-
location. In [11] non-real-time DAGs are extended to in-
clude real-time information, and the scheduling of parallel
tasks with real-time DAG topologies onto heterogeneous
systems is proposed. This technique however is not aimed
at using spare system capabilities. The scheduling scheme
presented in this paper dynamically schedules parallel
real-time jobs with real-time DAGs on heterogeneous
clusters. Both task scheduling and message scheduling are
taken in account in the algorithm design.

A number of scheduling algorithms for periodic real-
time jobs on multi-computer or multiprocessor systems
have also been presented [3][12]. A task duplication tech-
nique combined with pipelined execution is presented in
[12], allowing the scheduling of time critical periodic ap-
plications on heterogeneous systems. [3] addresses the
reward-based scheduling problem for periodic tasks,
which assumes that a periodic task comprises a manda-
tory and an optional part. While these techniques are ef-

fective, they are unable to deal with the hybrid execution
of periodic and aperiodic tasks.

Scheduling systems for processing both periodic and
aperiodic real-time tasks can be classified into fixed or
dynamic priority systems. Dynamic priority systems typi-
cally attain higher processor utilization than fixed ones.
Slack Stealing policies have been designed for fixed pri-
ority systems [8] while the Background (BG), Deadline
Deferrable Server (DDS), Total Bandwidth Server (TBS)
and Improved Priority Exchange (IPE) algorithms have
been designed for dynamic priority systems [4][13][15].
These techniques are widely used in embedded real-time
systems, such as robot control systems. All these algo-
rithms have been developed for uniprocessor architectures
and aperiodic tasks are assumed independent without
precedence constraints. The techniques presented in [8]
and [18] run aperiodic tasks by using the spare capability
left by periodic tasks. Unfortunately, such schemes are
limited to uniprocessor scenarios.

It is a non-trivial task to extend the modelling of spare
capability from uniprocessor architectures to cluster envi-
ronments. A uniprocessor system only models the spare
capability in itself. In a cluster scenario however, a cen-
tral node models the spare capabilities of other nodes, so
the information needed for calculating spare capabilities
is far more difficult to attain. An efficient modelling ap-
proach for clusters that avoids significant communication
overheads among nodes is therefore needed. The model-
ling approach in this paper is able to model spare capabil-
ity of computers in a heterogeneous cluster and is free of
additional communication overheads. The scheme in this
paper is also designed for dynamic priority systems and
an EDF policy is used in the local scheduling.

3. Workload and system model

A heterogeneous cluster of computers is modeled as
P={p1, p2,..., pm}, where pi is an autonomous computer.
Each computer pi is weighted pwi, which represents the
time it takes to perform one unit of computation. The
computers in the heterogeneous cluster are connected by a
multi-bandwidth local network. Each communication link
between computer pi and pj, denoted by lij, is weighted
lwij, which models the time it takes to transfer one unit of
message between pi and pj.

Each computer runs a set of PRJs, all of which are in-
dependent of one another. On a computer with n PRJs, the
i-th periodic real-time job PRJi (1≤i≤n) is defined as (Si,
Ci, Ti), where Si is PRJi’s start time, Ci is PRJi’s execution
time on the computer, and Ti is PRJi’s period. An execu-
tion of PRJi is called a Periodic Job Instance (PJI) and
the j-th execution is denoted by PJIij. PJIij is ready at time
(j-1)*Ti, termed the ready time (Rij, Ri1=Si), and must be
complete before j*Ti, termed the deadline (Dij). All PJIs

must meet their deadlines and are scheduled using an
EDF policy. Fig.1 shows two PRJs and their execution on
a single computer; all the illustrations in this paper use
these two PRJs as a working example.

PRJ1

0 2 4 6 8 10 12

PRJ11 12 13

0 2 4 6 8 10 12

PRJ21 22 23 24 PRJ2

0 2 4 6 8 10 12

 2212 1324 23PRJ2111

 (a) (b) (c)
Figure 1. A case study of PRJs (a) PRJ1 with a pe-
riod of 4 and an execution time of 1, (b) PRJ2
with a period of 3 and an execution time of 1, (c)
execution of PRJ1 and PRJ2 under EDF

ARJs arrive at the heterogeneous cluster dynamically.
If accepted, an ARJ is run once. An ARJ is modeled as
(avt, J), where avt is the ARJ’s arrival time and J defines
the tasks and their topology in the ARJ. J={V, E}, where
V={v1, v2,…, vr}, which defines r real-time tasks that con-
stitute the ARJ. dt(vi) and cvi are denoted as vi’s deadline
and computational volume; E represents the communica-
tion relationship and the precedence constraints among
tasks; eij=(vi, vj)∈E represents a message sent from task vi
to vj and it also suggests vj can start running only after vi
is complete and vj receives message eij; vi is called vj’s
predecessor and mvij is denoted as message eij’s volume.

Fig.2 depicts the components of the scheduler model in
the heterogeneous cluster environment. It is assumed that
PRJs are active across the constituent computers, and a
central computer in the cluster, the global scheduler, re-
cords Si, Ci and Ti of all PRJs. The global scheduler mod-
els the cluster spare capacities left by the PRJs.

Schedulable Tasks Queue

Global Schedule
Queue

•
•
•

Global
Scheduler

Pm

P2

P1

Local Schedule Queue
Local

Scheduler

Local
Scheduler

Local
Scheduler

PACE

Figure 2. The scheduler model in the heterogene-
ous cluster environment

When the global scheduler fetches a newly arriving
ARJ from the head of the global schedule queue, it inserts
the schedulable tasks in the ARJ into the schedulable task
queue. The global scheduler then picks a task from the
head of the schedulable task queue and schedules it glob-
ally. Once an ARJ is accepted, tasks in the ARJ are sent
to the local schedulers of the designated computers. At
each computer, the local scheduler uniformly schedules
both the ARJs’ tasks and the PRJs’ PJIs using EDF. The
local schedule is preemptive.

PACE is a performance prediction toolkit [10]. In this
scheduler model, PACE accepts ARJs, predicts the execu-
tion time of each task in the ARJs on each computer and
returns the predicted time to the global scheduler. After
the global scheduler decides to schedule task vi on com-

puter ps, assuming message eij=(vi, vj)∈E, PACE is called
to predict eij’s communication time on each link between
ps and any other computer. The efficiency of the PACE
evaluation engine enables the real-time production of per-
formance data [14].

4. Spare capability modelling

In this section, the initial distribution of idle time left
by the PRJs running on the computers is modelled. The
idle time distribution will be altered by the dynamic arri-
vals of ARJs. Hence, an on-line mechanism is presented
for adjusting the initial idle time distribution when the
global scheduler schedules a newly arriving ARJ.

4.1. Off-line modelling of the initial distribution
of spare capabilities

As an example, consider the two PRJs found in Fig.1
that are mapped to a single computer. Consider the case
for PRJ1 where there are 4 time units before PJI11’s dead-
line and there are two tasks, PJI11 and PJI21, which must
be completed before that time. There are therefore 2 idle
time units before PJI11’s deadline. In the case of PRJ2
there are 6 time units before PRJ22’s deadline and 3 tasks,
PJI11, PJI21 and PJI22, which must be completed before
that time. In this case, 3 idle time units are available be-
fore the deadline.

S1(t) 2

5
4

0 4 8 12

S2(t)

5

2
4

3

0 4 8 12

 (a) (b)

S(t)

5 4
3 2

0 4 8 12

0 4 8 12

PRJ 21 11 22 12 23 13 24

New
task

 (c) (d)

Figure 3. A case study of the function of idle time
units (a) Function of idle time units for PRJ1 (b)
Function of idle time units for PRJ2 (c) Function
of idle time units for both PRJ1 and PRJ2 (d) The
joint execution of PRJ1, PRJ2 and a new task
with an execution time of 4 starting at 0

The above calculation can be performed for all PJIs of
any PRJi running on the same computer, and a function
constructed of idle time units corresponding to PRJi, de-
noted as Si(t), is defined in Eq.1, where Dij is PJIij’s dead-
line (let Di0 be 0), Pij is the sum of execution time of PJIs
that must be completed before Dij.

Si(t)= Dij-Pij Di(j-1)<t≤Dij, 1≤ i≤n, j≥1 (1)
Pij can be computed as Eq.2 (Sk is PRJk’s start time).

 ∑
=

=
n

k

kkij CTP
1

*/α , where,
kij

kijkij

SD
SDSD

≤
>



 −

=
0

α (2)

Fig.3.a and Fig.3.b show the functions of idle time
units within a certain time period, S1(t) and S2(t), corre-
sponding to PRJ1 and PRJ2 in Fig.1 respectively. In the
figures, the time points, except zero, at which the function
value increases, are called Jumping Time Points (JTP). A
JTP is a PJI’s deadline. In Fig.3.a, the JTPs are 4 and 8.
If the number of time units that are used to run new tasks
between time 0 and any JTP is less than Si(JTP), the
deadlines of all PJIs of PRJi can be guaranteed.

Suppose n PRJs (PRJ1,..., PRJi,..., PRJn) are running
on a single computer, then the distribution function of idle
time left by the PRJs, denoted as S(t), can be derived from
the individual Si(t) (1≤i≤n). For any time t, S(t) obtains its
value from the minimum of all Si(t), shown in Eq.3.

S(t)=min{Si(t)|1≤i≤n} (3)
JTPs are also defined in S(t), as with Si(t). S(t) suggests

that idle time units of S(JTP) are available in [0, JTP].
Thus, in order to satisfy the real-time requirements of all
PRJs, for any JTP, at most S(JTP) time units can be used
to run new tasks in [0, JTP]. The initial distribution of
spare capabilities in each computer is constructed off-line.

S(t) corresponding to the PRJ set consisting of PRJ1
and PRJ2, is plotted in Fig. 3.c. Fig.3.d illustrates the exe-
cution of a new task in which the real-time requirements
of PRJ1 and PRJ2 is still guaranteed. The execution coin-
cides with function S(t) in Fig.3.c, that is, between time 0
and any JTP there are exactly S(JTP) time units used to
run the new task.

4.2. On-line modelling of the spare capability
distribution

If a new task starts running at any time t0, the number
of idle time units in [t0, JTP] (t0<JTP), denoted by S(t0,
JTP), needs to be calculated on-line. In order to do this, it
is necessary to calculate the proportion of workload that
all PJIs which are to complete in [0, JTP] have finished
before t0, and also how much finishes in [t0, JTP]. The
remaining time in [t0, JTP] will then be spare. This calcu-
lation involves identifying what PJIs must be complete
before t0, and what PJIs can start before t0 but must be
complete before the JTP. Some notation is introduced be-
low to classify the PJIs.

PJ(t0) is a set of PJIs whose deadlines are no more than
time t0. Hence, all PJIs in PJ(t0) must be complete before
t0. PJ(t0) is defined in Eq.4.

PJ(t0)={PJIij| Dij≤t0} (4)
P(t0) are denoted as the number of time units in [0, t0]

that are used for running the PJIs in PJ(t0). P(t0) can be
calculated by Eq.5.

 ∑
=

=
n

k
kk CTtP

1
0 */)(α , where,

k

kk

St
StSt

≤
>



 −

=
0

00

0
α (5)

Let JTP1, JTP2,..., JTPk be a sequence of JTPs after t0
in the spare capability distribution function S(t) and JTP1
the nearest to t0. LJk(t0) is a set of PJIs, whose ready times
are less than t0, and whose deadlines are more than t0 but
no more than JTPk. LJk(t0) is defined in Eq.6. All PJIs in
LJk(t0) can start running before t0 but must be complete
before JTPk. Lk(t0) is denoted as the number of time units
in [0, t0] that are used to run the PJIs in LJk(t0).

LJk(t0)={ PJIij | Rij<t0<Dij and Dij≤JTPk} (6)
In Theorem 1, S(t0, JTPk) is related to S(JTPk). S(JTPk)

is obtained directly from the initial spare capability distri-
bution function established off-line in subsection 4.1.
Theorem 1. Suppose t0 is any time point in [0, JTPk],
then S(JTPk) and S(t0, JTPk) satisfy the following equation:

S(t0, JTPk)=S(JTPk)−t0+P(t0)+Lk(t0) (7)
Proof: PJIs whose deadlines are less than JTPk must be
completed in [0, JTPk]. Their total workload is P(JTPk)
(see Eq.5). The workload of P(t0) and Lk(t0) has to been
finished before t0, so the workload of

P(JTPk)−P(t0)−)(0tLk
must be done in [t0, JTPk]. Hence, the maximal number of
time units that can be spared to run new tasks in [t0, JTPk],
i.e. S(t0,JTPk), is (JTPk-t0)−(P(JTPk)−P(t0)−)(0tLk). Thus,
the following equation exists:

S(t0,JTPk)=JTPk−P(JTPk)−t0+P(t0)+Lk(t0)
In addition, JTPk−P(JTPk)=S(JTPk). Hence Eq.7 holds. �

Lk(t0) in Eq.7 still remains unknown. The rest of the
subsection documents the calculation of Lk(t0).

If there are new tasks running before t0, the execution
process of PJIs in PJ(t0) may change so that they may not
retain the same execution pattern as the case when PRJs
alone are executing. Theorem 2 is introduced to reveal the
distribution property of the remaining time units before t0
after running PJIs in PJ(t0) as well as the new tasks.
Theorem 2. Suppose the last executed new task is com-
pleted at time f, then there exists such a time point ts in [f,
t0] (t0>f), where

1. either PJIs in PJ(t0) retain the same execution pat-
tern in [ts, t0] as the case when no new tasks are run be-
fore t0, or all PJIs in PJ(t0) are completed before ts,

2. there are no idle time slots in [f, ts],
3. ts can be determined by Eq.8, where),(0

0 ttI s
t
p repre-

sents the number of time units left in [ts, t0] after execut-
ing PJIs in PJ(t0);),(0,

0 tfIt
AP represents the number of time

units left in [f, t0] after executing both PJIs in PJ(t0) and
also the new tasks.

),(),(0,0
00 tfIttI t

APs
t
p = (8)

Proof: The execution of the last new tasks may delay the
execution of PJIs in PJ(t0). The delayed PJIs may also de-
lay other PJIs in PJ(t0) further. The delay chain will how-
ever cease when the delayed PJIs no longer delay other
PJIs, or all the PJIs in PJ(t0) are complete. Since all PJIs

PJ(t0) must be complete before t0, such a time point, ts,
must exist that satisfies Theorem 2.1. Since there are un-
finished workloads before ts, Theorem 2.2 also exists.
Eq.8 is a direct derivation from Theorem 2.1 and 2.2. �

Theorem 2 is illustrated by comparing the PJIs’ execu-
tion in Fig.1.c and 3.d. In Fig.1.c, PJI12 and PJI23 finish at
time 5 and 7 respectively. Due to the execution of the new
task, PJI12 and PJI23 are delayed to finish at times 8 and 9,
respectively, shown in Fig.3.d. PJI23’s delay, further de-
lays PJI13, and PJI24 is then delayed by PJI13. In Fig.3.d
however, PJIs ready after time 11 can be run without fur-
ther disruption. Time 11 can be set as ts in the example.

As shown in Theorem 2, PJIs in PJ(t0) running in [ts, t0]
retain the original execution pattern (as though there were
no preceding new tasks). Hence the remaining time units
in [ts, t0] after running these PJIs can be calculated; these
time units can only be occupied by PJIs in LJk(t0). Conse-
quently, Lk(t0) in Eq.7 can be calculated. The algorithm
for computing Lk(t0) is omitted in this paper.

5. Scheduling algorithm

Let vi be a task in an ARJ. Denote stk(vi) and ftk(vi) as
task vi’s earliest possible start time and its finish time on
computer pk. It is assumed that tasks vi1, vi2,…, viq (viq is
the last task) have been scheduled on pk. stk(vi) can be cal-
culated using Eq.9, where, mltk(vi) is the latest time when
all messages from vi’s predecessors arrive at pk.

otherwise
rspredecessohasv

vftavt
vftvmlt

vst
i

iq
k

iq
k

i
k

i
k







=
))(,max(

))(),(max(
)((9)

Suppose vi is scheduled on computer pk. The arrival
time of the message from vi’s predecessor vj to vi (i.e.
message eji) is denoted by matk(vj, vi). If vj is also sched-
uled on pk, then matk(vj, vi) equals ftk(vj). Suppose vj is
scheduled on ps (s≠k) and there exists a message schedule
sequence, (skmst1 , skmft1), (skmst 2 , skmft2),…, (sk

amst , sk
amft),

in the communication link between ps and pk, where
sk
imst and sk

imft are the starting time and finish time of a
message transferring in the communication link; then the
first idle time slot in the communication link satisfying
Eq.10 is used to send eji, where comsk(eji) is the communi-
cation time of eji in the communication link between ps
and pk; this idle slot is supposed to be (sk

bmft , sk
bmst 1+).

sk
qmst -max(sk

qmft 1− , fts(vj))≥ comsk(eji) (1≤q≤a+1, let
skmft0 =0, sk

amst 1+ =∞) (10)
Thus, matk(vj, vi) can be calculated by Eq.11.

ks
ks

vft
ecomvftmft

vvmat
j

k

ji
sk

j
s

b
ij

k

=
≠





 +

=
)(

)())(,max(
),((11)

Then, mltk(vi) in Eq.9 can be calculated by Eq.12.
mltk(vi)=max{matk(vj, vi)| vj is vi’s predecessor} (12)

The complete scheduling procedure for ARJs is as fol-
lows. The global scheduler fetches an ARJ from the head
of the global schedule queue, and inserts the schedulable
tasks in the ARJ (a task is schedulable if it either has no
predecessors or all of its predecessors have been sched-
uled) into the schedulable task queue so that the deadlines
of the tasks are in increasing order. The global scheduler
then picks a task from the head of the queue and sched-
ules it globally. The starting time of a task vi is calculated
as Eq.9. Suppose that vi starts at t0 on computer pj, using
Eq.7, the global scheduler can calculate in pj how many
idle time units there are between t0 and any JTP following
t0, which can be used to run vi. Therefore, it can be deter-
mined before which JTP vi can be completed. Conse-
quently, vi’s finish time at any computer can be deter-
mined. This is shown in Algorithm 1.
Algorithm 1. Calculating the finish time of task vi
starting at t0 in computer pj
1. cj(cvi)← vi’s execution time on pj (predicted by PACE);
2. Calculate P(t0) using Eq.5; Get ts using Eq.8;
3. Get the first JTP after t0;
4. Call Algorithm 1 to calculate the corresponding Lk(t0);
5. Calculate S(t0, JTP) using Eq.7;
6. while (S(t0, JTP)<cj(cvi))
7. OJTP←JTP; Get the next JTP;
8. Calculate S(t0, JTP) by Eq.7;
9. end while
10.ftj(vi)←OJTP+cj(cvi)-S(t0, OJTP);

If vi’s finish time on any computer in the cluster is
greater than its deadline, the ARJ that vi belongs to is re-
jected. The admission control is shown in Algorithm 2.
Algorithm 2. Admission Control
1. PC←Φ;
2. for each computer pj in the cluster do
3. Calculate vi’s starting time on pj, stj(vi), using Eq.9;
4. Call Algorithm 1 to calculate vi’s finish time on pj,

ftj(vi);
5. if (ftj(vi)≤dt(vi)) then
6. PC=PC∪{pj};
7. end for
8. if PC=Φ then reject vi and the ARJ that vi belongs to;
9. else accept vi;

When vi’s deadline can be met in more than one com-
puter, two possible Second-level Selection Policies are of-
fered to choose a final computer. One is a Response First
(RF) policy, which selects the computer on which vi has
the earliest finish time. The other is Utilization First (UF)
policy, which selects the computer on which vi has the
longest execution time. The two policies have different
selection inclinations. In section 6 the performance of
these two policies is evaluated.

After deciding which computer the task vi should be
scheduled to, the global scheduler resets vi’s deadline to
its finish time on that computer. If all tasks in an ARJ are
accepted, these tasks are sent to the designated computers.

When the local scheduler in any computer receives the
allocated ARJs’ tasks or the PJIs of the PRJs are ready, it
inserts them into the Local Schedule Queue ordered in in-
creasing deadlines. A local scheduler fetches a task
(ARJ’s task or PJI) from the head of the queue and the
task is then executed. Once the task with the lower dead-
line is ready, the current execution is preempted.

Assume that the initial distribution of spare capabilities
on each computer in the heterogeneous cluster is con-
structed off-line. The on-line global dynamic scheduling
algorithm (GDS) is shown in Algorithm 3.
Algorithm 3. Global dynamic scheduling for parallel
real-time jobs
1. if global scheduler queue=Φ then wait until a new ARJ

arrives, then go to step 3;
2. else
3. Get a job from the head of global scheduler queue and

insert its schedulable tasks into the schedulable task
queue;

4. for each task vi in the schedulable task queue do
5. Call Algorithm 2 to exert admission control;
6. if accept vi then
7. Call a second-level selection policy to choose a

computer pj;
8. Reset vi’s deadline to be its computed finish time

ftj(vi);
9. Search for new schedulable tasks in the ARJ and

insert them into the schedulable task queue;
10. else go to step 1;
11. end if
12. end for
13. Dispatch the tasks in the ARJ to designated computers;

go to step 1;
14.end if

Since vi’s deadline is reset to its finish time, vi will be
forced to run between its starting time and the deadline.
As the modelling analysis suggests in Section 4, vi cannot
be finished earlier on the computer on which it is sched-
uled. Otherwise, the deadlines of some PJIs on that com-
puter must be missed. In this sense, the modelling ap-
proach is optimal. When the global scheduler models
spare capacities in other computers, no information has to
be transferred among them in order to make scheduling
decisions. Hence no communication overhead is incurred
by the modelling approach.

6. Performance evaluation

The experimental parameters in our simulation studies
are chosen either based on those used in the literature
[8][11] or to represent a realistic workload.

Sets of 40 PRJs are randomly generated with periods
ranging from 42 to 15015. The level of PRJ workloads
(PLOAD) is set by varying PRJs’ execution times. Three

levels of PLOAD, light, medium and heavy, are generated
for each computer, which provides 10%, 40% and 70%
system utilization, respectively.

In the simulation, task vi’s execution time on computer
pj is calculated as cvi*pwj; similarly, message eij’s
communication time on link lst is mvij*lwst. In a hetero-
geneous cluster, computer pi’s weight pwi is uniformly
chosen between MIN_PW and MAX_PW. This range re-
flects the level of computational heterogeneity. The
weight of a communication link is uniformly chosen be-
tween MIN_LW and MAX_LW. This range reflects the
level of communication heterogeneity.

Each point in the performance curve is plotted as the
average value of the corresponding performance measure
of 10,000 independent ARJs. ARJs are assumed to arrive
following a Poisson process with an arrival rate λ. Each
ARJ has a randomly generated DAG topology with a
given number of tasks (TASKNUM); task vi’s computa-
tional volume cvi is uniformly chosen between MIN_CV
and MAX_CV and the volume of a message among tasks
is uniformly chosen between MIN_ MV and MAX_MV.
vi’s deadline is defined as follows: if vi has no predeces-
sors in the DAG, dt(vi)=avt+cvi* nw *(dr+1), where the
parameter dr is uniformly chosen between MIN_DR and
MAX_DR, and nw is the geometric mean of the weight of
all computers; otherwise,

dt(vi)=max{dt(vj)}+cvi* nw *(dr+1)
where vj is vi’s predecessor.

Table 1 Parameters for simulation studies
Parameter Explanation Value

MAX_PW/MIN_PW Maximum/minimum
computer weight 4.0/1.0

MAX_LW/MIN_LW Maximum/minimum
link weight 4.0/1.0

MAX_CV/MIN_CV Maximum/minimum
computation volume 25/5

MAX_MV/MIN_MV Maximum/minimum
message volume 5/1

MAX_DR/MIN_DR Maximum/minimum
deadline ratio 2.0/0

PLOAD System utilization
provided by PRJs

10%,
40%,
70%

PNUM Computer number in
a cluster 8

TASKNUM Task number in an
ARJ 16

The values of the simulation parameters are given in
Table 1 unless otherwise stated. Three metrics are meas-
ured in the simulation experiments: Guarantee Ratio
(GR), System Utilization (SU) and average Response
Time (RT). The GR is defined as the percentage of jobs
guaranteed to meet their deadlines. The SU of a cluster is

defined as the fraction of busy time for running tasks to
the total time available in the cluster. An ARJ’s response
time is defined as the difference between its arrival time
and the finish time of the last task to be run. RT is the av-
erage response time for all ARJs.

6.1. Job workloads and second-level selection
policies

RT can be viewed as a measure of the capability of the
scheme in utilizing the spare capability in the computers.
Fig.4.a compares the global dynamic scheduling algo-
rithm (GDS) presented in this paper in terms of RT with
four other algorithms for dynamic priority systems in the
literature [4][13][15], i.e. Background (BG), Deadline
Deferrable Server (DDS), Total Bandwidth Server (TBS)
and Improved Priority Exchange (IPE). It is noted that our
GDS algorithm is devised for scheduling parallel real-
time jobs in a cluster scenario, but all other algorithms are
designed for scheduling periodic and independent aperi-
odic tasks (non-parallel tasks) in uniprocessor architec-
tures. In order to make a fair comparison, in this experi-
ment the GDS is downgraded to schedule independent
real-time tasks in a cluster of two computers, one acting
as the global scheduler, the other housing a local sched-
uler and jointly running tasks; the computational volumes
of tasks follow the exponential distribution. To stress the
response performance, the GR of non-periodic real-time
tasks is fixed to be 1.0 by assigning extremely loose dead-
lines. An M/M/1 queuing model is used to compute the
ideal bound for RT of the same workload but in the ab-
sence of PRJs.

5

15

25

35

2 3 4 5 6 7 8 9 10

arrival rate(10-2)

RT BG
DDS
TBS
IPE
GDS
M/M/1

100

150

200

250

300

350

400

6 10 14 18 22 26 30

arrival rate(10-3)

RT 70% PRJ
40% PRJ
10% PRJ
no PRJ

 (a) (b)

Figure 4. (a) Comparison of RT among the down-
graded GDS, other traditional algorithms and an
M/M/1 queuing model; PLOAD=40%, the average
computational volume of tasks is 8, the com-
puter weight is 1.0 (b) Comparison between the
GDS and the ideal bound (no PRJ); RF policy
MAX_CV/MIN_CV=12/4

As can be observed from Fig.4.a, the GDS outperforms
other algorithms and shows the same performance as the
M/M/1 queuing model except the arrival rate λ is greater
than 0.08. The results coincide with the conclusion in
Section 5, i.e. our algorithm is optimal in exploiting spare

capabilities in a computer. Fig.4.b displays under the Re-
sponse-First policy, the RT of parallel real-time jobs as a
function of λ in a heterogeneous cluster of 8 computers
under different levels of PLOAD. An ideal bound of RT is
generated for comparison by running the same ARJ work-
loads in the same heterogeneous cluster in the absence of
PRJs. The GR of the ARJs is also fixed to be 1.0. It is ob-
served from Fig.4.b that in the case of 10% PLOAD, the
RT obtained by the GDS is very close to the ideal bound,
indicating the excellent performance of the GDS in utiliz-
ing spare capabilities to schedule parallel real-time jobs in
a cluster scenario.

20

40

60

80

100

4 6 8 10 12 14 16 18 20 22
arrival-rate(10-3)

GR(%)

20

40

60

80

100

4 6 8 10 12 14 16 18 20 22

arrival-rate(10-3)

SU(%)

(10%,RF)
(10%,UF)
(40%,RF)
(40%,UF)
(70%,RF)
(70%,UF)

 (a) (b)

Figure 5. Effect of job workloads and the second-
level selection policies on (a) GR (b) SU; Leg-
ends for Fig.5.a are the same as those in Fig.5.b

Fig.5.a and b display the metrics GR and SU as the
function of λ under the second-level selection policies of
the Response-First and the Utilization-First, respectively.
The first observation from Fig.5.a is that the GR de-
creases as λ increases in all cases, as expected. A further
observation is that in the case of 10% and 40% PLOAD,
the RF policy outperforms the UF when λ is low, while
when λ exceeds a threshold, the opposite is true. This
may be because that the RF policy is predisposed to first
choose the better computers, whereas UF has the opposite
trait. The experimental results suggest that when the ARJ
workload is so high that all the computers in a heteroge-
neous cluster will be heavily occupied, allocating work-
load to poorer nodes and then to better nodes is more ap-
propriate than allocating in the opposite direction.

As can be observed from Fig.5.b, SU increases as λ in-
creases, as is to be expected. It is also observed that the
UF policy outperforms RF (in terms of SU) in cases of
10% and 40% PLOAD, especially when λ is low. This
can be explained as follows. Allocating a task on the
poorer computer will lead to more of an increase in SU
than allocating it on the better computer, if the makespan
of the current workloads remains unchanged or increases
just by a small amount. However, if a task allocation will
cause a big increase in the makespan, the allocation may
cause a decrease in SU. Fortunately, such an allocation
has less chance of passing the admission control, since it
implies a very late finish of the task. Hence, through the
filtering of the admission control, the UF policy contrib-

utes more to the improvement of SU than the RF policy.
The experimental results suggest that utilization of the
cluster is significantly enhanced compared with the origi-
nal PLOAD.

6.2. Computation and communication heteroge-
neity

Fig.6.a shows the impact of computational heterogene-
ity on the metrics GR and SU. Fig.6.b and Fig.6.c show
the impact of communicational heterogeneity on GR and
SU, respectively, under different levels of the computa-
tional heterogeneity. Only the results for 40% PLOAD
and the RF policy are shown as the results for the other
cases demonstrate similar patterns.

20

40

60

80

100

[5,5] [4,6] [3,7] [2,8] [1,9]

Computational heterogenity

GR(%) SU(%)

70

76

82

88

94

100

[5,5] [4,6] [3,7] [2,8] [1,9]
Communication heterogeneity

SU(%) CPH=[5,5]
CPH=[3,7]
CPH=[1,9]

 (a) (b)

40
50
60
70
80
90

100

[5,5] [4,6] [3,7] [2,8] [1,9]
Communication heterogeneity

GR(%)

CPH=[5,5]

CPH=[3,7]

CPH=[1,9]

 (c)

Figure 6. Effect of computation heterogeneity and
communication heterogeneity, the RF policy and
PLOAD=40% (a) Effect of computational hetero-
geneity on GR and SU, λ=0.006 (b) Effect of the
communication heterogeneity on SU, λ=0.006 (c)
Effect of the communication heterogeneity on
GR, λ=0.006

The levels of computation and communication hetero-
geneity are measured by the scale of the range from
which computer weights and communication link weights
are selected. Five sets of computer and link weights, all
with the same average, are uniformly chosen from five
ranges, [1,9], [2,8], [3,7], [4,6] and [5,5].

As can be observed from Fig.6.a, GR and SU improve
as the computational heterogeneity increases. The in-
crease in GR may be because as the computation hetero-
geneity increases, the increasing variance in a task’s exe-
cution time provides the task with more chance of fitting
into the idle time slots before its deadline in the cluster.
Under the same workloads, the increase in GR leads to an

increase in SU. It can be observed from Fig.6.b and
Fig.6.c that SU and GR increase as the communication
heterogeneity increases in the case when the computation
heterogeneity is [5,5] (i.e. homogeneity). This may be be-
cause the increasing variance in message transfer time
provides more chance of finding a suitable idle time slot
in the communication channels. However, the communi-
cation heterogeneity has no obvious impact on SU and
GR when the computation heterogeneity increases to [3,7]
or [1,9]. This suggests that the level of computation het-
erogeneity is more critical for scheduling ARJs than the
level of the communication heterogeneity.

6.3 Task size and message size

Fig.7.a shows the impact of the size of tasks in ARJs
on GR and SU. Only the results for 40% PLOAD are
shown; the results for the other levels of PLOAD show
similar patterns. The task size is measured by the average
computational volume of tasks in an ARJ. In this experi-
ment, when the task size increases, the average arrival
rate λ is set to decrease proportionally so as to keep the
total ARJ workload unchanged.

60

70

80

90

100

5 10 15 20 25 30
Task size

(GR,RF) (SU,RF)
(GR,UF) (SU,UF)

20

40

60

80

100

15/3 12/6 9/9 6/12 3/15
Task size/Message size

GR(%) SU(%)

 (a) (b)
Figure 7. Effect of task and message size,
PLOAD=40% (a) Effect of task size on GR and SU,
λ is 0.025 when the task size is 5 (b) Effect of
task-size/message-size ratio on GR and SU,
λ=0.02, RF

As can be observed from Fig.7.a, under RF policy, the
impact of the task size is mixed. On the one hand, GR re-
tains 100% and then decreases as the task size increases.
This is because the longer a task is run, the more chance
there is that the task is disrupted by PRJs. It can be con-
cluded from this result that under the same workloads,
this admission control will favour dense, short new jobs.
On the other hand, SU improves as the task size increases.
This is because under the RF policy, a smaller GR may be
an implication that many tasks are allocated to poorer
computers, which leads to an improvement of SU. Under
the UF policy the GR decreases, but the SU remains sta-
ble as the task size increases. This may be because the UF
policy allocates tasks first on poorer computers, so the
decline in GR has no obvious impact on SU.

Fig.7.b demonstrates the effect, on GR and SU, of the
ratio of the task size to the size of messages among tasks.
Only the results for 40% PLOAD and the RF policy are
presented since other cases have similar behaviours. The
message size of an ARJ is measured by the average vol-
ume of all messages among tasks in the ARJ. The task-
size/message-size ratio varies from 15/3 to 3/15, all with
the same volume sum. As can be observed from Fig.7.b,
the impact of the task-size/message-size ratio is also
mixed. GR improves but SU decreases as the task-
size/message-size ratio increases. The increase in GR can
be explained as follows. First, it is easier for small tasks
to be admitted as demonstrated above. Second, although
the message size increases as the task-size/message-size
ratio decreases, the scheduling policy may compensate for
this by scheduling two tasks on the same computer if the
communication time between them is too long. Finally,
computers are shared by ARJs and PRJs, while communi-
cation links are exclusively utilized by ARJs. These re-
sults indicate that in an ARJ, the task size is a more criti-
cal parameter than the message size for the ARJ’s admis-
sion and response time.

7. Conclusions

In this paper a scheduling framework is presented to
schedule dynamic aperiodic parallel real time jobs by
modelling spare capabilities of a heterogeneous cluster on
which periodic real-time jobs are running. The approach
of spare-capability modelling is optimal in the sense that
once a new task starts running, it will utilize all spare ca-
pability and its finish time is the earliest possible. No
communication overheads are incurred by this approach.
Scheduling for ARJs takes both task and message sched-
uling into account. Extensive simulations are conducted
that show that system utilization is significantly enhanced
without impacting on the QoS of existing jobs. Future
studies are planed to extend the scheduling scheme to
take the prediction, scheduling and dispatch time of ARJs
into account.

8. References

[1] M. Apte, S. Chakravarthi, J. Padmanabhan and A. Skiellum,
“A Synchronized Real-Time Linux Based Myrinet Cluster for
Deterministic High Performance Computing and MPI/RT,” The
15th International Parallel and Distributed Processing Sympo-
sium, 2001.
[2] T. F. Abdelzaher, K. G. Shin, “Combined Task and Message
Scheduling in Distributed Real-Time Systems,” IEEE Transac-
tions on parallel and distributed systems, 10(11), November
1999.
[3] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez,
“Optimal reward-based scheduling of periodic real-time tasks,”
The 20th IEEE Real-Time Systems Symposium, December 1999.

[4] M. Caccamo, G. Lipari, and G. Buttazzo, “Sharing Re-
sources with the TB* Server,” IEEE Real-Time Systems Sympo-
sium, 1999.
[5] D. B. Golub, “Operating System Support for Coexistence of
Real-Time and Conventional Scheduling,” The 1st Symposium
on Operating Systems Design and Implementation, 1994.
[6] K. Hwang and Z. Xu, Scalable Parallel Computing: Tech-
nology, Architecture, Programming. McGraw Hill, 1998.
[7] D. Kebbal, E.G. Talbi, J.M. Geib, “Building and Scheduling
Parallel Adaptive Applications in Heterogeneous Environ-
ments,” 1st IEEE Computer Society International Workshop on
Cluster Computing, December, 1999.
[8] J. P. Lehoczky and S. Ramos-Thuel, “An Optimal Algorithm
for Scheduling Soft-Aperiodic Tasks in Fixed-Priority Preemp-
tive Systems,” Proc. of Real-Time Systems Symposium, 1992,
pp.110-123.
[9] C.W. Mercer, S. Savage, and H. Tokuda, “Processor Capac-
ity Reserves: Operating System Support for Multimedia Appli-
cations,” Proc of the IEEE International Conference on Multi-
media Computing and Systems, 1994.
[10] G.R. Nudd, D.J.Kerbyson et al, “PACE-a toolset for the
performance prediction of parallel and distributed systems,” Intl
Journal of High Performance Computing Applications, Special
Issues on Performance Modelling, 14(3), 2000, 228-251.
[11] X. Qin and H. Jiang, “Dynamic, Reliability-driven
Scheduling of Parallel Real-time Jobs in Heterogeneous Sys-
tems,” The 30th International Conference on Parallel
Processing, Valencia, Spain, September 3-7, 2001.
[12] S. Ranaweera, and D. P. Agrawal, “Scheduling of Periodic
Time Critical Applications for Pipelined Execution on Hetero-
geneous Systems,” Proceedings of the 2001 International Con-
ference on Parallel Processing, 2001.
[13] D A. E Salaheddine, “Aperiodic Scheduling in a Dynamic
Real-Time Manufacturing System,” IEEE Real-Time Embedded
System Workshop, 2001.
[14] D. P. Spooner, S. A. Jarvis, J. Cao, S. Saini and GR. Nudd,
“Local Grid Scheduling Techniques using Performance Predic-
tion,” IEE Proc-Computers and Digital Techniques, 150(2): 87-
96, 2003.
[15] M. Spuri and G. Buttazzo, “Scheduling Aperiodic Tasks in
Dynamic Priority Systems,” Real-Time Systems 10(2), 1996,
179-210.
[16] B. Srinivasan, S. Pather, F. Ansari, and D. Niehaus, “A
Firm Real-Time System Implementation Using Commercial
Off-The-Shelf Hardware and Free Software,” The 4th IEEE
Real-Time Technology and Applications Symposium, 1998
[17] X.Y. Tang, S.T. Chanson, “Optimizing static job schedul-
ing in a network of heterogeneous computers,” 29th Intl Confer-
ence on Parallel Processing, 2000.
[18] M. Thomadakis and J. Liu, “On the Efficient Scheduling of
Non-periodic Tasks in Hard Real-Time Systems,” IEEE Real-
time System Symposium, 1999.
[19] H. Topcuoglu, S. Hariri and M. Wu, “Task Scheduling Al-
gorithms for Heterogeneous Processors,” The Eighth Heteroge-
neous Computing Workshop, 1999
[20] M. Wu, W. Shu and Y. Chen, “Runtime Parallel Incre-
mental Scheduling of DAGs,” International Conference on
Parallel Processing, 2000.

