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In the big data era, much real-world data can be naturally represented as graphs. Consequently, many ap-

plication domains can be modeled as graph processing. Graph processing, especially the processing of the

large-scale graphs with the number of vertices and edges in the order of billions or even hundreds of billions,

has attracted much attention in both industry and academia. It still remains a great challenge to process such

large-scale graphs. Researchers have been seeking for new possible solutions. Because of the massive degree

of parallelism and the high memory access bandwidth in GPU, utilizing GPU to accelerate graph processing

proves to be a promising solution. This article surveys the key issues of graph processing on GPUs, including

data layout, memory access pattern, workload mapping, and specific GPU programming. In this article, we

summarize the state-of-the-art research on GPU-based graph processing, analyze the existing challenges in

detail, and explore the research opportunities for the future.
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1 INTRODUCTION

A graph is a mathematical structure that consists of a set of vertices and edges connecting certain
pairs of them (Bondy and Murty 1976). Much real-world data can be naturally represented as
graphs, and therefore the concept of graphs has been applied to various applications, where the
relationships among objects play an important role. Below are some examples of real-world graph
applications:

—In chemistry, graphs are widely used to model the molecule structures, where the vertices
and the edges represent atoms and the chemical bonds between them. Such graph repre-
sentation of the molecular structures forms the basis of building the software for searching
molecules.

—In physics, graph theory is widely used in the study of three-dimensional structures of
atoms, where each vertex stands for an atom and an edge connects a pair of atoms if there
is interaction between them. The edges are weighted by the interaction strength between
two vertices. Such a graph model provides an intuitive representation that facilitates the
research of atomic structures.

—In computational neuroscience, graphs are used to represent the functional connections
between brain areas that interact with each other in various cognitive processes. In such
graph models, the vertices and edges represent different brain areas and their connections,
respectively.

—In social sciences, graphs are also widely used, for example, for the social network analysis.
The relationship among people can be naturally modeled as graphs, where an edge between
two persons means they know each other and the edge weight indicates the influence of
their relationship or the frequency of their interactions. Researchers can then extract inter-
esting information from such graphs, such as measuring the actors’ prestige (Polites and
Watson 2008), exploring the way of rumor spreading (Azad et al. 2015), and so on.

—In the study of the World Wide Web, researchers use directed graphs to represent the linked
structure of web pages in the whole web, where a vertex represents a web page and a di-
rected edge stands for the referencing relation between two web pages.

—In computational linguistics, it has been proved that graph models are particularly use-
ful in natural language processing (NLP), information retrieval, web link predictions, and
many other applications. For instance, syntax and compositional semantics are often rep-
resented as tree-based structures, which greatly facilitate the formulation of the analysis
tasks and is hence widely used in many NLP systems, such as CoreNLP (Manning et al.
2014), TextGraphs (Hahn and Reimer 1984), WordNet (Miller 1995), and so on.

—In addition, graphs are also used to abstract and represent various structures in computer
systems, such as computation flows, data organizations, and so on (WU et al. 2015). For
example, in compiler optimization, graphs are often used to express the code structures,
where vertices and edges represent functions (or classes) and function call relationships,
respectively.

Given the wide applicability of graph models, developing graph analytic algorithms to explore
and discover the underlying knowledge within graphs has been of great interest for a very long
time (Lee and Messerschmitt 1987; Hall et al. 2009; Jordan and Mitchell 2015). However, the rapidly
growing sizes of real-world graphs calls for new technologies to support the analysis of very large-
scale graphs. For example, there are 342 million active users on Twitter,1 and the Word Wide Web

1http://www.statisticbrain.com/twitter-statistics/.
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graph contains more than 4.75 billion pages and 1 trillion URLs.2 To address the challenge of scal-
ability, the researchers have been making extensive efforts in developing scalable graph traversal
algorithms, such as BFS (Liu and Huang 2015; Liu et al. 2016), and iterative graph analysis algo-
rithms, such as PageRank (Mitliagkas et al. 2015; Richardson and Domingos 2001). To facilitate
the development of arbitrary large-scale graph analysis applications, researchers have also devel-
oped generic graph programming frameworks both in the context of a single machine such as
GraphChi (Kyrola et al. 2012), X-Stream (Roy et al. 2013), and GridGraph (Zhu et al. 2015), and in
a cluster, such as Pregel (Malewicz et al. 2010) and PowerGraph (Gonzalez et al. 2012).

Recently, the technical advance of the General-Purpose Graphics Processing Units (GPG-
PUs) (Owens et al. 2007), especially the features of massive parallelism and high memory access
bandwidth, has attracted a lot of researchers to investigate how to apply GPGPUs to accelerate
computations in various applications including graph processing (Merrill et al. 2012; He et al. 2010;
Li and Becchi 2013; Ashari et al. 2014). More recently, efforts have been devoted to building gen-
eral graph-processing systems on GPUs, such as TOTEM (Gharaibeh et al. 2012), CuSha (Khorasani
et al. 2014), GunRock (Wang et al. 2016), and Frog (Shi et al. 2015).

GPU adopts a SIMD-based (Single Instruction Multiple Data) architecture, which gains high
performance through massive parallelism. In GPU, most of the die area is used by the Arithmetic
Logic Units (ALUs), while a small proportion of the area is contributed to the control units and
caches. Furthermore, GPU usually has a very high memory access bandwidth, but a limited mem-
ory space. This architecture enables GPU to perform regular computations in very large degree of
parallelism (Colic et al. 2010; Lu et al. 2010).

On the contrary, modern multi-core CPUs adopt the MIMD (Multiple Instruction Multiple Data)
architecture and the control units and caches take up most of the die area, with less remaining for
ALUs. Comparing to GPUs, CPUs are better at performing tasks that demand short latency, which
requires the support of complicated control units and large cache.

Although GPUs can offer a high degree of parallelism, their restrictions mean that it is a non-
trivial task to use GPUs to accelerate large-scale graph computations. Graph computations often
exhibit irregular data access patterns, due to which the applications may not reach the peak perfor-
mance in GPU. Furthermore, due to the fact that the memory size of GPU is very limited compared
with CPU memory and moving data from the host memory to the GPU memory causes the ex-
tra overhead, the GPU memory may become a potential bottleneck. In addition, the condition
branches (e.g., the if-else statement) in graph computations do not fully exploit the high degree of
parallelism offered by the SIMD executions in GPU, which leads to the so-called branch divergence
and may dramatically degrade the performance. In this article, we attempt to write a comprehen-
sive survey of the existing efforts in addressing these challenges, and at the same time discuss the
main opportunities in graph processing on GPUs.

In order to cover the challenges of graph processing on GPUs, we surveyed about 100 papers
published in recent years, as summarized in Table 1. The problems addressed in the existing re-
search on graph processing on GPUs can be categorized into the following aspects:

—Data Layout. In conventional CPU-based graph-processing algorithms and systems, it is
important to design a data layout to achieve contiguous memory access to enhance Trans-
lation Lookaside Buffer (TLB) and cache hit rates. But in a GPU, there is a global memory
shared by all GPU processors, and for each memory access, it is beneficial to feed data to
more than one SIMD thread. Threads in a GPU are executed in groups (a group is called a
warp in Compute Unified Device Architecture (CUDA)). The accesses to the global memory

2http://www.worldwidewebsize.com/.
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Table 1. Optimization Aspects on Graph Processing on GPUs

Aspects Concerns Related Work

Data Layout

regularity

CuSha (Khorasani et al. 2014),
GStream (Seo et al. 2015),
GTS (Kim et al. 2016)

memory bandwidth
MapGraph (Fu et al. 2014),
SPMV (Ashari et al. 2014),
Frog (Shi et al. 2015)

data-dependent parallelism
TOTEM (Gharaibeh et al. 2012),
ExContract (Merrill et al. 2012),
SBI (Brunie et al. 2012)

Memory Access
Pattern

irregular memory access

In-Cache Query (He et al. 2014),
TOTEM (Gharaibeh et al. 2012),
Hybrid System (Abdullah et al. 2014),
ExContract (Merrill et al. 2012),
Enterprise (Liu and Huang 2015),

non-coalesced memory access

In-Cache Query (He et al. 2014),
Medusa (Zhong and He 2014),
SPMV (Ashari et al. 2014),
DWS (Meng et al. 2010),
CuSha (Khorasani et al. 2014),
MapGraph (Fu et al. 2014),
GunRock (Wang et al. 2016),
iBFS (Liu et al. 2016),
Frog (Shi et al. 2015)

bank conflict
DWS (Meng et al. 2010),
Push-Relabel (Azad et al. 2015),
WLP (Baghsorkhi et al. 2010)

out-of-core processing

Warm-Up (Guha et al. 2015),
GTS (Kim et al. 2016),
Enterprise (Liu and Huang 2015),
Green-Marl (Hong et al. 2012),
PDOM (Fung et al. 2007),
Frog (Shi et al. 2015)

memory-dependent parallelism GBTL-CUDA (Zhang et al. 2016),

memory bandwidth
TOTEM (Gharaibeh et al. 2012),
GTS (Kim et al. 2016),
PDOM (Fung et al. 2007)

Workload Mapping

warp divergence

CuSha (Khorasani et al. 2014),
DWS (Meng et al. 2010),
iBFS (Liu et al. 2016),
Virtual Warp (Hong et al. 2011a),
PDOM (Fung et al. 2007),
Two-Level Warp Scheduling (Narasiman et al. 2011)

task scheduling

FinePar (Zhang et al. 2017),
MapGraph (Fu et al. 2014),
GunRock (Wang et al. 2016),
TOTEM (Gharaibeh et al. 2012),
Hybrid System (Abdullah et al. 2014),
ExContract (Merrill et al. 2012),
Enterprise (Liu and Huang 2015),
SBI (Brunie et al. 2012)

Miscellaneous

branch divergence

DWS (Meng et al. 2010),
Medusa (Zhong and He 2014),
Virtual Warp (Hong et al. 2011a),
PDOM (Fung et al. 2007),
Two-Level Warp Scheduling (Narasiman et al. 2011),
WLP (Baghsorkhi et al. 2010),
SBI (Brunie et al. 2012)

GPU specific programming
GunRock (Wang et al. 2016),
Green-Marl (Hong et al. 2012),
Medusa (Zhong and He 2014)

other aspects
G2 (Zhong and He 2013),
Mars (He et al. 2008; Fang et al. 2011),
Morph (Nasre et al. 2013)
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by the threads of a warp (or half a warp in older devices) will be coalesced into a single mem-
ory access if the consecutive threads are accessing the contiguous memory addresses. By
doing so, the memory access overhead can be minimized. A GPU can reach its peak memory
access bandwidth only when the algorithm has a regular memory access pattern, i.e., the
data accessed by the consecutive threads of a warp occupies the contiguous memory seg-
ment. However, graph data structures and graph algorithms often issue irregular memory
accesses. For instance, in a parallel graph traverse algorithm, when the adjacency-list data
structure is used, different threads will access the data scattered across different memory
locations, which requires the GPU to issue multiple memory accesses to fetch all needed
data. Such irregular data layout substantially limits the degree of parallelism of a GPU and
does not help unleash its full power. In addition, a GPU device typically communicates with
the CPU host by a PCI Express (PCIe) bus or an Accelerated Graphics Port (AGP), which
has a limited bandwidth. Therefore, it is critical to design the appropriate graph data layout
to reduce the amount of data movements between the GPU and the host.

—Memory Access Pattern. CPU is usually equipped with a very large main memory, which is
enough to process most real-world graphs. Furthermore, even with graphs that are larger
than the main memory size, CPU-based systems can efficiently use secondary storage to
handle the problem due to the relatively high bandwidth. But a GPU is usually equipped
with high-speed but small-sized on-chip shared memory, which can be used to cache the
frequently accessed data to reduce the need of accessing the on-device global memory. How-
ever, if many threads access different data in the shared memory concurrently, it will cause
the conflicts of memory bank and hence limit the degree of parallelism. Furthermore, the
access to the global memory in a modern GPU is usually in the unit of blocks. The block
size is usually 64KB, but also depends on the GPU architecture. Therefore, if the accesses
to global memory issued by a warp are coalesced and aligned within one or a few mem-
ory access units, then it can significantly improve the utilization of memory bandwidth. So
similar to data layout, carefully designing the memory access pattern is also a critical issue
in GPU computation.

Using the limited memory to process large-scale graphs that cannot fit into the GPU
global memory, which is called out-of-core graph processing, is another major chal-
lenge (Kyrola et al. 2012; Roy et al. 2013; Khorasani et al. 2014). Partitioning graphs into
small parts or designing smart graph data representations, with which the data are swapped
in and out of the GPU memory when needed, may be the potential solutions to this prob-
lem. However, the research on how to organize the irregular graph data and the relevant
performance study are relatively sparse. In addition, in this out-of-core graph-processing
technique, whether the device memory is used or not can hugely influence the processing
quality and power efficiency.

—Workload Mapping. CPU has a strong and flexible Control Unit, which can change the
scheduling strategy flexibly in runtime. But GPU runs in a Single Instruction Multiple
Threads (SIMTs) model. Once the instruction is distributed by the controller, it is impos-
sible to change the scheduling strategy until the next iteration. Parallellizing graph com-
putations often causes load imbalance due to the irregular graph structure. For instance,
different vertices in a graph often have very diverse degrees, which complicates the bal-
ancing of the workload among the parallel tasks. An uneven load distribution among the
threads within a kernel call may significantly harm the performance (Khayyat et al. 2013).
Furthermore, as CPU and GPU favor different types of tasks, how to partition the workload
between CPU and GPU so as to achieve good overall performance in such a hybrid system
also becomes a challenging task.

ACM Computing Surveys, Vol. 50, No. 6, Article 81. Publication date: January 2018.
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—Miscellaneous. Besides the aforementioned aspects, implementing efficient graph compu-
tations on GPUs need to address various other issues, such as branch divergence, kernel
calls, and kernel configuration. Thanks to its flexible Control Unit, CPU is good at handling
condition branches. But for GPU, the branch divergence arises when different threads take
different paths in a condition branch in the same wave-front. This will cause serious per-
formance problems on GPUs, because only one path can be executed at a time in the SIMD
mode of GPU, which means that only a portion of threads in a warp are running on a path
while all other threads that should take other paths are blocked and not be able to per-
form any effective work (AMD 2011; Bienia and Li 2010; Meng et al. 2010). Avoiding branch
divergence is a great challenge for GPU programmers. In addition, synchronous and asyn-
chronous processing on GPU is another issue. As GPU is a parallel streaming processor,
synchronous operations may limit the computing power of GPU. On the other hand, it is
hard to implement asynchronous graph-processing operations on GPUs as there are a large
number of messages passing between the vertices. Kernel configuration is a complex mul-
tidimensional structure, which reflects the hardware architecture of the GPU. In a parallel
GPU programming, threads are grouped into the blocks for the convenience of inter-thread
communication and memory sharing. A block can be of one-, two-, or three-dimensional
structure; blocks can be further grouped into a grid. The grid is a one- or two-dimensional
structure. Because GPU has the SIMD execution mode, each thread in the grid will compute
the same kernel function on different parts of the same dataset. Thus, the kernel configura-
tion has a significant effect on the degree of parallelism and hence influences the computing
efficiency. A kernel is callable from the host while the kernel executes on the GPU device.
Each thread is given a unique ID, which is generated when the kernel is invoked. As men-
tioned above, threads within the block share the same shared memory, through which they
can cooperate with each other. Therefore, improper kernel invocations may cause the ac-
cessing conflict of memory banks and hence harm the computing power of GPU.

This survey focuses on graph processing on GPUs. In this survey, we group the GPU graph-
processing systems into two categories, i.e., graph-processing systems on a single GPU and those
on multi-GPUs. Accordingly, the remainder of this article is organized as follows. Section 2 presents
some background information about graph processing on GPUs, such as CUDA, OpenCL, and
GPU computing architecture. The implementation of graph algorithms on GPU is elaborated in
Section 3. Section 4 introduces the GPU graph-processing systems, including both single GPU
and multi-GPU graph-processing frameworks. Section 5 designs a series of experiments to show
the performance with different data types and algorithms on GPUs. We conclude this article and
discuss some research opportunities in Section 6.

2 BACKGROUND

Although the advent of general programming platforms and APIs, such as Compute Unified Device
Architecture (CUDA) and Open Computing Language (OpenCL), have simplified the implemen-
tation of general computations in GPU, efficient GPGPU programming requires not only learning
new GPU programming languages and APIs, but also understanding the underlying hardware and
internal mechanisms in the GPU. This section presents the background information of the GPU
architecture and two main GPU programming types: CUDA and OpenCL.

2.1 History and Evolution of GPU Architecture

The evolution of the modern graphics processor begins with the introduction of the first 3D add-in
cards in 1995 (Seiler et al. 2008). From the perspective of parallel architecture, we can divide the
evolution into three generations.

ACM Computing Surveys, Vol. 50, No. 6, Article 81. Publication date: January 2018.
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—Fixed functional architecture. From 1995 to 2000, each hardware unit consists of a graph-
ics processing pipeline; the functions in the pipeline are fixed. In this generation, a plurality
of pixel pipelines execute the same operation on each input data using the stream comput-
ing model. By using this architecture, GPU can significantly accelerate graphics rendering.

—Separated shader architecture. In 2001, NVIDIA’s GeForce 3 introduced programmable
pixel shading to the consumer market which sets off a new generation of GPU. In this gen-
eration, the programmable vertex shader replaces the illumination associated fixed units,
and the pixel shader replaces the texture sampling and mixing associated fixed units. This
greatly enhanced the flexibility and expressiveness of graphics processing. Although both
of these parts are stream processors, they are physically separated and have no direct com-
munication channel. Due to GPU’s powerfulness in graphic rendering, it is widely used in
gaming and other consumer applications.

—Unified shader architecture. The unified shader architecture emerged from 2006. In this
generation, the geometry shader program was introduced in GPU, which can be dynami-
cally scheduled to execute the vertex, geometry, and pixel programs. This generation of GPU
adopts the parallel architecture rather than the streaming one. In addition, they support in-
teger and single/double precision computations, and their instructions, textures, and data
accuracy are further improved. However, they still cannot support recursive procedures.
With the development of the computation power of GPU, GPGPUs emerged, which are not
only for graphic shading, but also for high performance computing (HPC). Examples include
the NVIDIA’s Fermi, Kepler, Maxwell, and Pascal. Fermi was introduced in 2006, which is the
first complete GPU computing architecture. In order to provide high accuracy computation
for HPC, NVIDIA introduced the first Fermi-based product, GeForce 8800, in 2006 (NVIDIA
2009; Arjun et al. 2011), which is one of the most representative parallel computing proces-
sors. In 2012, NVIDIA introduced the Kepler architecture based on Fermi (NVIDIA 2012),
which adopted some new features such as dynamic parallelism, Hyper-Q, grid management
unit, and NVIDIA GPUDirect to provide higher processing power and parallel workload ex-
ecution for HPC. With the focus on low power operations, NVIDIA proposed the Maxwell
architecture in 2014 (NVIDIA 2014). In order to make the GPU more suitable for PCs, work-
stations, supercomputers and mobile chips, NVIDIA grouped streaming multiprocessors
(SMs) into quads to minimize power consumptions. Since then, GPU is widely used in mo-
bile chips. With the development of AI, Deep Learning, autonomous driving systems, and
numerous other computing-intensive applications, NVIDIA introduced the Pascal architec-
ture in 2016 (NVIDIA 2016b) to improve the support of computing-intensive applications
with many new technologies including NVLink, HBM2 High-Speed GPU Memory, Unified
Memory, Compute Preemption, and so on.

2.2 Modern GPU Computing Architecture

Figure 1 illustrates the overall architecture of a modern GPU device. To support massive parallel
computing, a GPU typically consists of several SMs, each of which is composed of a number of
GPU cores (alternatively called streaming processors), special functional units, registers, double-
precision unit(s), and a thread scheduler. Each GPU core has the scalar integer and floating point
arithmetic units, where most instructions of a GPU program are executed. A GPU core supports
multithreading, typically supporting 32 to 96 threads in the current hardware.

The memory of a GPU device can be divided into two hierarchies: on-device memory and on-
chip memory, which is shown in Figure 2. The on-device memory is the Dynamic Random Access
Memory (DRAM), which is logically divided into local memory, global memory, constant mem-
ory, and texture memory; whereas, the on-chip memory consists of several physical components,

ACM Computing Surveys, Vol. 50, No. 6, Article 81. Publication date: January 2018.
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Fig. 1. GPU Architecture (NVIDIA 2016a).

Fig. 2. GPU Memory architecture (NVIDIA 2016a).

including register shared memory, L1/L2 cache, and constant & texture cache. Each thread has
access to a small and exclusive part of the on-device local memory, while all the threads can access
the global memory. The logical constant and texture memory are mainly designed for graphical
computations in image processing.

The access to the on-device memory usually has a long latency, in the unit of hundreds of clock
cycles. Mainstream architectures include a two-level or three-level cache on a SM, including the
constant and texture caches, and L1/L2 cache, to reduce the average memory latency. However,
GPU is mostly used for stream computing, where cache is not important in general. (This is also
why the die area contributed to the cache is very limited in GPU.) The shared memory on each
SM is small (48KB per SM in NVIDIA K40 GPU3) but is of high speed, and is only accessible to the
threads spawned on that SM.

3http://www.nvidia.com/content/PDF/kepler/Tesla-K40-PCIe-Passive-Board-Spec-BD-06902-001_v05.pdf.
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Fig. 3. CUDA programming model.

A GPU is generally used as a co-processor or an accelerator for the host CPU. A GPU is con-
nected to the host by the PCI-Express bus. The data is transferred between the on-device memory
in GPU and the main memory in CPU usually by using the programmed Direct Memory Access
(DMA), which operates concurrently with both the host CPU and the GPU computing units. The
zero-copy function is supported in some GPU architectures, such as CUDA from version 2.2 and
OpenCL from version 1.2, where a GPU is able to access the host memory through PCIe and its
on-device memory can be mapped into the host address space. This technique highly improves the
communication efficiency.

2.3 CUDA

CUDA is probably the most popular general-purpose GPU programming framework, which is
developed by NVIDIA. The CUDA architecture has a unified shader pipeline, allowing each Arith-
metic Logic Unit (ALU) to perform general-purpose computations. There are three key concepts
in CUDA: thread hierarchy, shared memory, and barrier.

Figure 3 shows the thread hierarchy. In CUDA, the first two layers of thread group is called
warps and blocks. A programmer can set the number of threads per block subject to the hardware-
dependent constraints, which is usually in the range of hundreds. All the threads in a block can
access the shared memory, which works as a cache and can be used to share data among the threads
within the block. A programmer can also set the number of threads per warp. CUDA can then
divide the threads in a block into warps. The threads in a warp share the same code and follow the
same execution path. During the computation, there is only one warp that can be executed at the
same time in an SM, and all the warps mapped to an SM are executed in a time-sharing fashion.
Each SM operates in a Single Instruction Multiple Threads (SIMT) fashion, where the SM issues
one set of instructions to a warp of threads for concurrent executions over different data elements.
Namely, the SM supports the instruction-level parallelism, but does not support branch prediction
or speculative execution.

Finally, a number of blocks form a grid. A grid of threads execute the same GPU kernel, read-
ing inputs from the global memory and writing the results back to the global memory. A device
with capability 2.0 or higher can execute multiple kernels concurrently. The maximum number
of threads allowed depends on the specific device capability. The kernels from different CUDA
contexts cannot run concurrently. Different kernels synchronize only through the kernel calls.

ACM Computing Surveys, Vol. 50, No. 6, Article 81. Publication date: January 2018.
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Barrier is a thread synchronization construct, which is a point in the code where all the threads
within a block synchronize. Only until all the threads have reached the barrier, can they proceed
to execute the next instruction after the barrier. If, for some reason, some threads cannot reach the
barrier, e.g., they are stuck in an infinite loop, then the threads that have reached the barrier will
be blocked forever.

2.4 The OpenCL Programming Model

OpenCL is a more general programming framework than CUDA for heterogeneous architectures,
which can be used on CPU, GPU, and some other processors or hardware accelerators, such as
DSP and FPGA. Different from CUDA, which only supports data parallelism, OpenCL supports
both task and data parallelism. Similar to CUDA, OpenCL also provides a general programming
interface such as memory management, device management, kernel management, error checking,
and information querying. Programmers can control the related device by using this interface.

OpenCL views the computing system as consisting of a number of computing devices, which can
be CPU, GPU, or other accelerators. In OpenCL, a computing device contains several computing
units and each computing unit is composed of multiple processing elements. Different from the
memory hierarchy in CUDA, four types of memories are defined in OpenCL. The “global memory”
is shared by all processing elements but with high latency. The “constant memory,” which is small
but with high speed, is writable only by the host CPU and read-only for other devices. The “local
memory” is shared by a group of processing elements. Finally, the “private memory” (also called
device register) is a fast on-chip memory.

3 GRAPH-PROCESSING ALGORITHMS ON GPU

One research direction in the literature is to study how to make use of GPUs’ massive parallellism
and high memory bandwidth to accelerate specific graph algorithms. Initially, the work of making
use of GPU to accelerate specific graph algorithms mainly focused on graph traversal algorithms.
More recent researches have studied more complicated algorithms, including Betweenness Cen-
trality (BC), Connected Component (CC), Single Source Shortest Path (SSSP), PageRank (PR), and
Minimum Spanning Tree (MST). This section attempts to discuss and summarize these existing
efforts.

3.1 Traversal Algorithms

Traversal algorithms are a type of graph algorithms that visit each vertex of a graph in a certain
pattern. Researchers have mainly studied how to efficiently perform Breadth-First Search (BFS)
and SSSP on GPUs.

3.1.1 BFS. As one of the most important graph traversal algorithms, executing parallel BFSs
on GPUs has attracted a lot of research efforts.

Memory Access Pattern. Merrill et al. (2012) adopt the Compressed Sparse Row (CSR) graph
representation in their BFS traversal algorithm, which, as analyzed above, provides a compact and
regular data layout.

However, the edge information needed by a warp may still not be coalesced and aligned in
one memory access unit (i.e., 64 or 128B in modern GPUs). Therefore, the authors extract the
information of the edges to be visited from the CSR representation, and then align them in one
memory access unit. To avoid bank conflict of the shared memory, each thread broadcasts within
the warp, the location of the shared memory it is going to access. Putting all these together, the
authors reduce the complexity of the BFS algorithm to O ( |V | + |E |), while the methods proposed
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by others have a quadratic complexity (Harish and Narayanan 2007; Hong et al. 2011b; Jia et al.
2011).

In order to process large-scale graphs, Liu and Huang (2015) proposed a GPU-based BFS frame-
work, called Enterprise. In each iteration, Enterprise scans the status of the vertices and stores
the status in a Status Array, and uses a Frontier Queue to store the unvisited adjacent vertex. As
Enterprise executes the BFS in a tree manner, the unvisited adjacent vertices will be visited in the
next level. Enterprise aligns the vertices in Status Array according to the Frontier Queue. By using
this method, Enterprise can visit the memory in a regular fashion.

The parallel BFS proposed by Fu et al. (2014) extends the expand-contract BFS algorithm de-
veloped by Merrill et al. (2012) to GPU clusters. In their work, they propose a 2D partitioning
method, and use Message Passing Interface (MPI) to contract columns on the edge frontiers after
each expanding step. Their method has several disadvantages, such as algorithm generality, hard-
ware compatibility, and scalability. The proposed parallel BFS method only works with the graph
algorithms with no data access beyond direct neighbors, which limits the general applicability of
the proposed method. Also, the proposed method limits the number of GPUs to n2, in order to
ensure the hardware compatibility of the algorithm. In addition, the proposed method ensures the
scalability of the algorithm by reducing the edge frontier transmission between GPUs, which also
reduces the communication overheads.

Job Mapping. In many graphs, the vertex degrees vary significantly, which causes load imbal-
ance among the threads. To solve the problem, Hong et al. (2011a) propose to use the whole warp
to explore the neighbors of a vertex (or a few vertices if the number of neighbors of one vertex is
smaller than the number of threads in a warp), instead of using a single thread to explore all neigh-
bors of a vertex. Besides being able to achieve load balance, this strategy also enhances the usage
efficiency of the shared memory, because there are less data (i.e., less neighbor information) needed
by the whole warp. Experiments show that small (sub-)graphs and the graphs with long diameters
have poor performance on GPUs, but can archive good performance on multi-core CPUs. In order
to utilize both multi-core CPU and GPU resources, Hong et al. (2011b) propose a hybrid scheme in
which the graph is partitioned into several sub-graphs and the sub-graphs are distributed on the
multi-core CPU and the GPU according to the number of vertices and the diameter of the graph.
The partial results for the sub-graphs are combined to obtain the final result.

3.1.2 SSSP. SSSP is another typical graph traversal algorithm, which requires finding a shortest
path between two specified vertices (Bulu et al. 2010).

Memory Access Pattern. Harish and Narayanan (2007) are the first to use CUDA to implement
Dijkstra’s algorithm, a traditional SSSP method. However, the implemented algorithm suffers from
the inefficiency of atomic operations. By using the SSSP algorithm formulation, they also imple-
mented the CUDA-based APSP (All-Pair-Shortest-Path) problem, which was originally solved by
the Floyd-Warshall (FW) algorithm in CPU.

In the proposed CUDA-based APSP method, the global memory is used and the shared memory
is not used because in APSP each thread can access the global memory, but finds it difficult to
achieve data locality in the shared memory. This method is easy to use, but can hardly process
large-scale graphs because of the limited device memory. The experiments on a NVIDIA GTX8800
GPU with the artificially generated high-degree graphs show that SSSP and APSP can achieve 70×
and 17× speedup, compared with the performance of running the serial implementation on an Intel
Core 2 Duo processor. However, in the experiments with real-life graphs that contain several mil-
lions of vertices, the method does not demonstrate a similar performance advantage. This is mainly
due to the low average degree of these real-life graphs. Namely, the algorithms manifest a poor
performance on the graphs with low degree. In order to solve this problem, a blocked FW algorithm
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was proposed in 2008 by Katz and Kider (2008), which proposed a hierarchically parallel method
in the revised FW algorithm. In this algorithm, the graph was represented by an adjacency matrix.
In order to process large-scale graphs, this algorithm partitions the matrix into B × B equally sized
sub-matrices. By using this method, the sub-matrices which have no relationship with each other
can be calculated at the same time in the computation phase. In the first phase, the block (0, 0) is
loaded into the global memory for the computation. At the same time, the blocks (0, i ) (i � 0 and
i < B − 1) and (j, 0) (j � 0 and j < B − 1) are loaded into the shared memory. In the second phase,
the blocks (0, i ) (i � 0 and i < B − 1) and (j, 0) (j � 0 and j < B − 1) participate in the computation
while block (1,1) is loaded into the shared memory, and so on. Benefiting from this shared memory
strategy, the proposed method has a 5.0–6.5× speedup over Harish and Narayanan’s work.

3.2 Iterative Algorithms

Iterative algorithms are very common in graph processing and machine learning. Many looping
statements such as while, loop, or do–while are used in iterative algorithms. The algorithm executes
the steps in iterations by using these looping statements. The aim of an iterative algorithm is to
find the approximation solution by updating the vertex values successively.

PageRank. PageRank was first proposed by Google, and used in web link predictions. As the
irregular memory access brought by the graph data, it is very hard to use GPU to process the
PageRank. Rungsawang and Manaskasemsak (2012) implemented the PageRank on GPU by using
the CSR representation. Wu et al. (2010) use a modified CSR format to represent the graphs. In order
to solve the job mapping problem caused by uneven row sizes of the spare linkage matrices (degree
of the vertex), Wu classifies the vertices into three classes, i.e., Tiny Problems, Small Problems, and
Normal Problems, according to the amount of calculation. Wu assigns different numbers of threads
to process the corresponding classes according to the computation task.

Sparse Matrix-vector Multiplication. Sparse matrix-vector multiplication (SpMV) is widely
used in sparse linear algebra, and has been extensively studied. SpMV is a highly irregular com-
puting algorithm. How to design a sufficient regular execution path and memory access pattern
for SpMV is an interesting research topic. Filippone et al. (2017) surveyed the techniques for im-
plementing SpMV on GPUs. The main issue of running the SpMV kernel on GPU is how to map
the irregular data access pattern to the GPU architecture. Bell and Garland (2008, 2009) discussed
the sparse matrix format for SpMV, including ELL (ELLPACK), COO (coordinate), DIA (diago-
nal format), and CSR. Experimental results show that the scalar-based CSR format is not suitable
for SpMV due to its low bandwidth utilization caused by non-coalesced memory access patterns,
whereas the vector-based CSR format can achieve a good performance on matrices with large row
sizes due to the contiguous memory accesses. Based on this conclusion, a hybrid (HYB) format is
proposed in Bell and Garland (2009). In the HYB format, the ELL format is used to store non-zero
values in each row and the COO data structure is used to store the remaining entries. Monakov
proposed a hybrid BCSR/BCOO format in Monakov and Avetisyan (2009), where a CSR-like format
is used to store the blocks. The row coordinate is stored by sorting the blocks by rows and then
storing the index of the first block in each row in a CSR-like format. Compared to the blocked
CSR (BCSR) format, the hybrid format is more flexible. The performance of SpMV with differ-
ent data formats varies with different data characteristics (Li et al. 2015), hence the best format
has to be chosen according to the dataset. To address the problem, Benatia et al. (2016) proposed a
machine-learning approach to select the best representation method for a given spare matrix. Sim-
ilar to Benatia et al. (2016), Su and Keutzer (2012) developed a SpMV framework, called clSpMV,
where a Cocktail format is used to represent a sparse matrix. clSpMV analyzes SpMV at runtime
and chooses the best representations of a given matrix. Although most of the previous studies are
centered on memory access patterns and data representations, Yan et al. (2014) studied the load
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imbalance problem and developed the yaSpMV framework. yaSpMV addresses the load imbalance
problem by revisiting the segmented scan approach for SpMV. By partitioning a matrix into strips
of warp sizes, Zheng (BiE 2014) proposed the BiELL format to maintain load balance for SpMV.

Graph Partition. A graph partition algorithm cuts the vertices into several disjoint subsets,
which is widely used in distributed large-scale graph processing and many other application sce-
narios, such as scientific computing, computer vision, and distributed job scheduling. Vineet and
Narayanan (2008) implemented the push-relabel max-flow/min-cut algorithm on GPUs. The au-
thors stored the vertices status information in the shared memory. Experiments on 640 × 480 im-
ages for 90 graph cuts gain 10–12× speedup over the best sequential algorithm reported in 2008.
Recently, some researchers proposed the two-way cut algorithm. However, this method does not
solve the problem of partitioning the graph into multiple sub-graphs. This is a problem called the
minimum k-cut problem. The aim of the minimum k-cut problem is to partition the graph into
k independent sub-graphs while every sub-graph is a connected one. When k is a part of the in-

put, the minimum k-cut problem is NP-hard. The complexity is O ( |V |k2
) even with a fixed k . The

main goal of graph partitioning is to achieve load balancing and facilitate task scheduling for static
graphs. As the graph topology is static, the algorithm only needs to run once. The method is suit-
able for both CPU and GPU. For dynamic graphs in which the topologies change, it is difficult to
implement such algorithm. Frog (Shi et al. 2015) partitioned the graph by using a hybird coloring
model. The coloring algorithm in Frog is incomplete, which does not restrain all adjacent vertices
from being labeled by different colors. Instead, the color number is set by the user while Frog only
ensures the adjacent vertices are not colored by the small set of colors. For the rest of the ver-
tices, Frog combined the vertices together into a single color and all the vertices in the same color
are processed in a super-step. By using this method, if the graph is divided into N partitions, the
color for the first N − 1 partitions is different and there is an edge between any pair of vertices in
each partition. Therefore, the first N − 1 partitions can be processed in parallel. CuSha (Khorasani
et al. 2014) first splits the vertices into P shards and the edges in a shard are listed based on the
increasing order of their source vertices. By using this partition method, the edges of each vertex
are stored in a continuous memory chunk, which can make the memory access regular.

MST. For an undirected graph, a minimum spanning tree is a connected subgraph, which con-
nects all the vertices together with minimum total weight. Vineet et al. (2009) implemented the
fast MST algorithm on CUDA by recursively calling the Boruvka algorithm. In their algorithm,
they mapped the irregular steps of super-vertex formation and recursive graph construction to
primitives such as split to categories involving vertex IDs and edge weights. In the proposed algo-
rithm, in the first phase each vertex finds the edge with the minimal weight to the neighbor vertex.
In the second phase, vertices are merged into disjoint components called vertices. The algorithm
performs these two phases recursively, until there is only one super-vertex. In each iteration, the
authors reorder the edges, put the edges with the vertices in a continuous memory chunk, and
then remove the duplicate edges. By doing so, the memory access can be regular. Experiments
on a NVIDIA Tesla S1070 show this method can achieve 8–10× and 30–50× speedup over their
previous implementation and the serial implementation, respectively.

4 GPU GRAPH-PROCESSING FRAMEWORKS

Besides optimizing individual graph-processing algorithms, many researchers have also investi-
gated how to build a general graph-processing system on GPUs. In this section, we survey the
existing GPU graph-processing systems, including their data layout, parallel graph programming
models, and their system implementations and optimizations.
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Fig. 4. The adjacency list representation example of graph.

4.1 Data Layout Models

As the considerations of data layout are very similar in different graph algorithms and frame-
works, we discuss the data layout in a single section. As for other GPU aspects, such as memory
access pattern, workload mapping, and GPU-specific programming, we discuss them by referring
to different types of graph algorithms. As mentioned earlier, the main requirements of data layout
are the compactness and the regularity. The former minimizes the PCIe bandwidth consumption,
while the latter enables the regular memory access and maximizes parallelism. We survey the main
graph representations that are used in the existing GPU-based graph-processing algorithms and
systems.

4.1.1 Adjacency Matrix and Adjacency List. The adjacency matrix and adjacency list are two
basic graph representations, which have been widely used in early parallel graph-processing stud-
ies (Harish and Narayanan 2007; Narayanan et al. 2010; Merrill et al. 2012; Fagginger Auer and
Bisseling 2012).

The adjacency matrix is a square matrix. In an unweighted graph, a non-zero element ai j in-
dicates there is an edge between the i-th vertex and the j-th vertex, while in a weighted graph,
a non-zero element stands for the weight of the edge. For most large-scale graphs, the matrix is
typically sparse. Some researchers directly use the existing libraries to handle the sparse matrix,
such as CuSparse.4 Katz and Kider (2008) use 2D texture to represent the adjacency matrix in GPU
memory. The adjacency matrix representation simplifies the memory allocation for programmers.
However, due to the sparsity of the adjacency matrix, the memory space is wasted.

Another typical graph representation is the adjacency list, which is a collection of unordered
lists, each representing the set of neighbors of a vertex in the graph. Figure 4 shows an example of
the adjacency list of an undirected graph. The adjacency list is more compact than the adjacency
matrix. However, it does not enable regular memory access, because the neighbors of different
vertices are not stored in a contiguous memory space. As discussed before, this may incur much
more memory access when reading the data needed by the threads in a warp.

4.1.2 Vector Graph (V-Graph). V-graph is another efficient graph representation method pro-
posed by Blelloch (1990). Figure 5 shows the v-graph representations of the same graph in Figure 4.
In v-graph, the topology of an undirected graph is stored in a segmented vector (i.e., the Cross-
pointer in Figure 5), where each segment corresponds to a vertex. Each element of a segment stores
the Cross-pointer of an edge incident to the corresponding vertex. For example, in Figure 4, the el-
ement with index 3 in Cross-pointers has the value 9, which indicates that this edge is connected to
the same vertex as the edge with index 9. For a directed graph, two segmented vectors are used: one
storing the incoming edges of the vertices, while the other stores the outgoing edges. Additional
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Fig. 5. The example v-graph representation of graph in Figure 4.

Fig. 6. The example CSR representation of graph in Figure 4.

vectors are used to store other information, including the vertex degree (Segment-descriptor), the
edge weights (Weights), and so on. In v-graph, all the edges are stored in a contiguous memory
space sorted by their incident vertices, which therefore supports regular memory accesses and ef-
ficient GPU computations. However, v-graph is not a very compact graph representation, because
it contains a lot of redundant information.

4.1.3 CSR. In order to achieve both compact storage and regular memory access, some graph
algorithms, such as Merrill et al. (2012), make use of the CSR format. Figure 6 is an example of the
CSR representations of the graph in Figure 4. In CSR, three one-dimensional arrays are used, each
storing the non-zero values in an adjacency matrix, the offsets of the rows in the values array,
and the column indices of the values, respectively. Just like the v-graph, CSR sorts and stores the
information of all the edges of a vertex compactly in a contiguous chunk of memory one after
another, which enables regular memory accesses, lowers the memory requirement, and reduces
the PCIe bandwidth consumption when transferring data between the host and the GPU device.

4.2 Graph Programming Models

A general graph-processing system typically exposes a programming framework to the program-
mers, which consists of two components: a programming interface and a parallel programming
model. The programming interface defines a set of APIs to facilitate the formulation of a graph
computation. Existing graph systems on GPUs typically adopt a vertex-centric model, where pro-
grammers need to define a few functions that are executed on each individual vertex. The paral-
lel programming model is an abstraction of the parallel computation architecture, which usually
states how the parallel processes are formulated, and more importantly how they interact with
each other, including communication and synchronization. Parallel programming model is a well
studied area. A lot of models have been proposed in the literature. For example, there are a se-
ries of traditional parallel programming models such as the Actor model (Agha 1986), the Bulk
Synchronous Parallel (BSP) model (Valiant 1990), the LogP machine model (Culler et al. 1993), the
Dataflow model, and the Parallel Random Access Machine (PRAM) model (Asanovic et al. 2009).

Most existing GPU-based graph-processing systems provide a vertex-centric programming in-
terface, with which the graph program is expressed in the functions that will be applied on
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each vertex iteratively. Furthermore, two major parallel graph programming models are proposed,
namely, Gather-Apply-Scatter (GAS) and BSP (Bulk Synchronous Parallel).

4.2.1 GAS Model. GAS is a popular parallel graph programming model used in a lot of graph-
processing systems (Gonzalez et al. 2012). Several existing GPU-based graph-processing systems
adopt the GAS model, such as VertexAPI2 (Elsen and Vaidyanathan 2013), MapGraph (Fu et al.
2014), and CuSha (Khorasani et al. 2014). These systems typically provide a vertex-centric pro-
gramming interface that contains three major functions: Gather, Apply, and Scatter. In the GAS
model, the program on each vertex can be divided into three phases, which are listed as follows.

—The gather phase. In this phase, a vertex collects the information from the adjacent vertices
and edges by using the user-defined gather function.

—The apply phase. The user-defined apply function is called on a vertex based on the informa-
tion collected in the gather phase. The vertex’s value(s) is updated in this phase by calling
the apply function. This is the only phase without communications between vertices.

—The scatter phase. In this phase, the new value(s) of the vertex is scattered to its adjacent
vertices and edges. In some implementations, the push-style scatter is used, which pushes
the updates to remote vertices. With the push-style scattering, some traversal algorithms
can simply disregard the gather phase so that the edge traversals can be reduced.

The GAS model abstracts away the synchronization overhead, which simplifies the analysis pro-
cess for the complexity and the correctness of the graph algorithms implemented using this model.
However, as the synchronization overhead in GPUs is not negligible, we cannot ignore it when we
implement a graph-processing system that supports this model. For instance, CUDA only supports
the synchronization among threads in the same block. To achieve a global synchronization among
all the threads in different blocks, the system can split the computation into a number of kernels.
Since the GPU executes the kernels one after another, the end point of each kernel effectively acts
as a global barrier. Both a local block-wise synchronization and a global synchronization using a
number of kernels are very expensive. Therefore, a critical challenge in the implementation of a
graph-processing system is to minimize the number of synchronization points.

4.2.2 BSP Model. A program in a BSP model (Valiant 1990) is executed in a sequence of so-
called super-steps. Within each super-step, the parallel processes run asynchronously and com-
municate with each other by sending and receiving messages. At the end of each super-step, all
the processes are synchronized by using a barrier. This procedure is shown as Figure 7. More
specifically, a super-step in each process consists of the following three phases:

—Local computation: the computation tasks are executed locally.
—Global communication: all the communications, including sending and receiving messages,

are executed in this phase.
—Barrier synchronization: all the computation and communications are synchronized and

guaranteed to be completed at this point.

Pregel (Malewicz et al. 2010) is probably the first graph-processing system that adopts the BSP
model to implement a vertex-centric parallel graph programming interface. In this model, within
each super-step, a user-defined function is applied on each vertex asynchronously, which updates
the value on the vertex, and the updated values of the vertices are then sent to their neighbors
by passing messages. One iteration of the function executions and message passing on all the
vertices will be completed and synchronized at the end of a super-step. In addition, the vertex will
be executed only when it receives a message in subsequent super-steps.
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Fig. 7. The BSP Computing Model.

Representative GPU-based graph-processing systems that use the BSP model include TOTEM
(Gharaibeh et al. 2012), Medusa (Zhong and He 2014), and GunRock (Wang et al. 2016). In these
systems, a large graph is usually divided into several partitions and one user-defined kernel will
be run on each graph partition. In a super-step, all the threads in the kernel are run concurrently.
Within a kernel, each thread receives the messages from the previous super-step and then performs
the local computation. In the local computation phase, the values of the vertices are stored at the
local memory to minimize data transfer. Each kernel can send the messages to its neighbors if
necessary before the end of the current super-step. A barrier is imposed between two super-steps
to synchronize all the kernels. A main disadvantage of the BSP model is that it may suffer from
the straggler problem, where the thread with the longest execution time can delay all the other
threads in a super-step.

4.3 Data Layout

Due to the mismatch between the irregularity of graph-processing algorithms and the symmetric
hardware architecture of GPU, applying traditional graph-processing methods on GPU will in-
herently suffer from the problem of underutilizing the GPU’s capability. Some high-performance
graph-processing systems attempt to solve these problems through designing a compact storage
and regular memory access data layout. For example, TOTEM (Gharaibeh et al. 2012), Medusa
(Zhong and He 2014), MapGraph (Fu et al. 2014), and Frog (Shi et al. 2015) use the CSR format to
represent the graph structure. As discussed in Section 4.1, CSR is a regular graph representation,
but accessing the neighbors of a vertex will lead to poor locality, which causes lots of random input-
dependent memory accessing (also known as non-coalesced memory accesses). In addition, CSR is
hard for some update operations such as adding or deleting a vertex. In order to overcome the
non-coalesced memory accesses problem with CSR, CuSha (Khorasani et al. 2014) implemented the
shard technique (Kyrola et al. 2012) on GPU, which is widely used in disk-based graph-processing
systems such as GraphChi (Kyrola et al. 2012) and VENUS (Cheng et al. 2015). In CuSha, the GPU
implementation of shard was called as G-Shard. The shard technique first sorts the vertices in an
ascending order and partitions them into equal-sized windows. For each window, a shard is cre-
ated to store all the edges connected to the vertices in the window. Furthermore, all the edges in a
shard are sorted according to the IDs of their source vertices. In this way, the graph data in each
shard is organized according to the accessing order of the vertices. G-Shard adopts the same way
as shard to organize the vertices and the edges. In addition, G-Shard revised the window as the
Concatenated Window (CW), which lists the edges related to the window, so that each thread can
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visit the vertices according to the CW list. In CuSha, each G-Shard corresponds to a thread block.
G-Shards can lead to a better locality, as all the vertices are continuous and all the edges of a vertex
are stored in a continuous chunk. On the other hand, G-Shards are disjoint with each other; the
computation on different G-Shards can be performed asynchronously, which is well matched with
GPU. By using the G-Shard, the graph data is well organized in CuSha, which enables the memory
access to be coalesced.

As G-Shard equally partitions the vertices, the CW size differs as the vertex degree differs. There-
fore, it is easy for the G-Share technique to encounter the warp divergence problem. In order to
solve this problem and update the graph data efficiently, GStream (Seo et al. 2015) and GTS (Kim
et al. 2016) use the slotted page format proposed by TurboGraph (Han et al. 2013) to store the
graph in disk and memory. In the slotted page representation, the graph is partitioned into a list of
slotted pages, with the size of each page being several MBytes. The vertices ID and its adjacency
lists are stored in a slotted page consecutively. In most cases, since the adjacency list of a vertex
is smaller than the size of a single page, multiple adjacency lists can be stored in one page, which
is called Small Adjacency list page (SA page). In the power-law graph, there also exist some ver-
tices with the sizes of their adjacency lists bigger than one page. Then, several pages are needed
to store the adjacency list of the vertex. Consequently, one of those pages stores the information
regarding only one adjacency list. This type of page is called Large Adjacency list pages (LA pages).
This representation is not very compact compared with CSR, but makes it much easier to update
the graph data. Compared with G-Shard, it is much easier for this method to allocate the memory
space as the page size is fixed, while the window size of G-shard changes.

4.4 Memory Access Pattern

GraphReduce (Sengupta et al. 2015) is a CUDA/C++ library for large-scale graph processing.
GraphReduce presents a set of APIs, aiming to hide the GPU programming details. In order to pro-
cess large-scale graphs which cannot be loaded into memory, GraphReduce partitions the graphs
into small sub-graphs with approximate sizes, and sorts the edges in the sub-graph according to
the source’s vertex to match the memory access patten in GPU. Aiming to leverage GPU memory
coalescing and pre-fetch the unvisited data into memory for the sequential accesses, GraphReduce
adopts the Unified Virtual Addressing (UVA) to allocate the memory space and uses the DMA tech-
nology to directly translate the memory loading/storing operations over the PCIe. By using these
methods, the memory accesses are sequential and the communications can be overlapped with
GPU computations through pre-fetching.

In order to maintain the regular memory access, GStream (Seo et al. 2015) introduced the
concept of the “join” operation from the database area and proposed a “nested-loop theta-join”
operation, which achieved the coalesced memory access by parallelizing the read-only and
the read/write operations in parallel. In the nested-loop theta-join method, the vectors of the
read/write and the read-only attributes are denoted byWA and RA, respectively, and the topology
data by SP . GStream divided the WA into W partitions because the values change frequently
during the computation phase. SinceWA is updated frequently during an iteration of graph pro-
cessing, GStream stores theWAi data in the device memory to improve the system performance.
While the RA and SP are the constant data, GStream fed the RA data and the corresponding
SP data into the device memory. In GStream, an asynchronous data transfer technique such as
the overlapping technique in GraphReduce was used to improve GPU utilization by hiding the
memory access latency. Unlike other GPU graph-processing systems, GStream is a pure GPU
graph-processing system, all the computation tasks were finished on the GPU processor, and the
CPUs were not involved in the computation phase.
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GTS (Kim et al. 2016) processes the entire graph only using GPUs. In order to overcome the
limited memory capacity in the GPU device and even in the host, GTS uses the CUDA streaming
method to transfer the unvisited graph data to the GPU device memory and swap the visited data
to the disk. By using this method, there is no need to partition the graph. Namely, GTS can process
large-scale graphs without pre-processing. GTS distinguishes the graph data by tagging attribute

data and topology data. The attribute data refers to the information of the vertices and the edges
(e.g., the weight of the edge and the value of the vertex) that are required and updated during the
execution of the vertex kernels, while the topology data is the basic structure data of the graph.
GTS stores the graph in PCIe SSDs and triggers the direct data transfer by GPU. Thousands of GPU
cores can be used when streaming the topology data from SSDs to GPUs through PCIe. To be more
specific, the attribute data was copied into the GPU device memory, and then the topology data
was copied from the host memory to the GPU device memory in the streaming method, where
the data was processed by the user-defined GPU kernel function. GTS adopts a similar method as
GStream to store the attribute data in the device memory and swaps the topology data to the disk.
In GTS, by using the asynchronous GPU streaming method (e.g., CUDA Streams), the data can
be transferred asynchronously, which can overlap the latency of the memory access from GPUs
to main memory and can also improve the GPU utilization. Compared with GraphReduce, the
pre-processing phase can be removed in GTS.

4.5 Workload Mapping

As mentioned before, the workload in graph processing is irregular because of the variance
in the vertex degree. How to map the uneven workload of each vertex onto the GPU greatly affects
the processing efficiency of GPU. One of the most important existing works in this area balances
the workload by cooperation among threads. The dynamic scheduling and the two-phase decom-

position strategies are used in MapGraph (Fu et al. 2014) to gain better performance in workload
mapping. The Dynamic scheduling strategy combines three scheduling strategies, i.e., CTA-based,

scan-based, and warp-based, to achieve higher performance in workload mapping (here CTA is
short for Cooperative Thread Array). The CTA-based scheduling strategy distributes the work-
load to the threads in a CTA according to the vertex degree. In this strategy, the workload of the
vertices in the frontier is assigned to the whole CTA and every thread in the CTA serves only one
vertex. The number of threads in a CTA is much more than that in a warp, which made the CTA-
based scheduling strategy suitable for the vertices with large degrees. MapGraph uses a different
scheduling strategy according to the vertex degree. MapGraph first applies the CTA-based sched-
uling strategy to the vertices with adjacency lists larger than the CTA size. Next, it performs the
warp-based scheduling strategy for the vertices with the degrees larger than the warp width but
smaller than the CTA size. Finally, it applies the scan-based scattering strategy for the “loose ends”
vertices whose degrees are smaller than the warp width. Although dynamic scheduling achieves
relatively good performance for the many-graph algorithm such as SSSP and BFS, there are still
some drawbacks with this method.

On one hand, because of these three separated stages of this strategy, the parallelism among
the stages is lost and hence the degree of parallelism of the instructions decreases. On the other
hand, as each thread in the scan part of the graph algorithm needs to communicate with the thread
processing its neighbor vertices in the CTA, other threads have to wait until all threads in a CTA
are loaded. Finally, by using this strategy, the equal number of frontier vertices are assigned to a
CTA, and therefore the total number of the handled adjacent vertices may be much more than the
CTAs. This will lead to the imbalanced workloads among CTAs.

In order to solve the uneven workload mapping problem of dynamic scheduling, MapGraph
proposes a two-phase decomposition scheduling strategy. This strategy attempts to achieve the
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optimal workload mapping performance for threads within and across CTAs. The fundamental
idea of this strategy is to decompose the scattering process into two phases: the scheduling phase
and the computation phase. Unlike the dynamic scheduling strategy, the two-phase decomposition
scheduling strategy is used to assign the adjacent edges to a CTA, which ensures the number
of edges is same as the CTA size. In this strategy, the target of assigning the adjacent edges is
achieved by finding the intersection between the starting and the ending points of each CTA,
which are within the column-indexed array by using the sorted method. In the communication
phase, the same number of adjacent vertices are visited by each thread. This scheduling strategy
solves the problem of uneven workload mapping in dynamic scheduling strategy. But the overhead
is relatively high.

GunRock (Wang et al. 2016) integrates the technologies proposed by Merrill et al. (2012) and
Davidson et al. (2014). Then the author proposes two workload mapping strategies, which are
called per-thread fine-grained and per-warp & per-CTA coarse-grained. In the per-thread fine-grained

strategy, one thread maps to the neighbor list of a frontier vertex. In this method, each thread loads
the offset in the adjacency list of the assigned node. Next, all the edges in the adjacency list are
processed sequentially by the thread. Considering the significant difference in the workload per-
formance with the per-thread fine-grained strategy, which is caused by different adjacency list
sizes, GunRock proposes a per-warp & per-CTA coarse-grained strategy. In this strategy, the work-
load mapping problem is solved by dividing the adjacency list into three categories according to the
size of the adjacency list and then mapping each category to a strategy which targets specifically at
the corresponding size. These two strategies focus on different task granularities. The experiments
show that the per-thread fine-grained strategy works better with the graph with a large diameter
and the relatively even degree distribution. This strategy balances the threads well in the CTA, but
does not work well across CTAs. On the contrary, the per-warp & per-CTA coarse-grained strategy
performs better for the power-law graph, which has an uneven degree distribution.

As part of the physical warp, a virtual warp controls the tradeoff between GPU utilization and
path divergence. Generally, 2, 4, 8, 16, or more virtual warps constitute a physical warp. So the
processing task can be performed iteratively because the iteration is performed separately by dif-
ferent GPU kernel calls. In a virtual warp, several threads process a vertex concurrently and each
thread in the virtual warp works in parallel. Using this method, the read and computation phase
are finished by different threads in the virtual warp. Compared with the workload mapping strat-
egy in GunRock, the virtual warp is a more general method with equally sized virtual warp, while
the strategy of GunRock is more flexible for different task granularities.

4.6 Miscellaneous

GraphReduce adopts the Gather-Apply-Scatter programming model. In real-world graphs,
the number of edges is much more than the number of vertices. In the gather and scatter stage,
the message passing about the edges is much more than that about the vertices. In the apply
stage, the computation for the vertices is much less than that for the edges. In order to reduce
the communication cost and improve the parallelism, both vertex- and edge-centric programming
methods are used in GraphReduce. The authors use the edge-centric programming method in the
gather and scatter stage, and use the vertex-centric programming in the apply stage to improve the
parallelism.

Medusa (Zhong and He 2014) and MapGraph (Fu et al. 2014) both provided a set of APIs for
graph processing on GPUs. By using the APIs provided by Medusa, the programmers can define
their own functions for processing vertices, edges, and messages. In order to improve the pro-
grammability and usability, Medusa encapsulates the frequently used system operations to over-
lap the GPU-specific programming details. In addition, in order to enhance the flexibility, Medusa
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provides a set of configuration parameters and utility functions to control the iteration executions.
MapGraph (Fu et al. 2014) is a high-performance parallel graph programming framework, which
also provides a set of flexible APIs with high programmability based on GAS. In MapGraph, pro-
grammers can define the computation functions on vertices and edges by invoking the MapGraph
kernels. MapGraph uses the same method as Medusa to enhance the flexibility by providing a set of
configuration parameters. In addition, a set of utility functions are provided by the library calls and
used for the iteration control and other functionalities. GunRock (Wang et al. 2016) offers an easy-
to-use programming interface by implementing a data-centric abstraction. Unlike other vertex-
centric and edge-centric programming methods, GunRock’s data-centric abstraction focuses on
the operations of the frontier of vertices or edges, which makes the programming interface easy
to use.

Frog (Shi et al. 2015) is a graph-processing framework which has the lightweight asynchronous
scheme. A hybrid-coloring model is proposed for graph partition and a streaming execution en-
gine is designed for asynchronous processing in Frog. As graph coloring is a complex algorithm, an
incomplete coloring scheme and the Pareto principle are used as a compromise. In the graph col-
oring algorithm, the vertices with the same color are disjoint. Therefore, all the vertices and edges
in the same color (partition) can be processed in parallel. As the incomplete coloring scheme is
used, Frog divides the first n − 1 coloring steps into the P-step and the last coloring step into the
S-step, according to the aforementioned analysis. All the vertices and edges in the P-step can be
processed in parallel, while the S-step is handled sequentially by atomic operations. Benefiting
from the asynchronous processing method in Frog, the transferring of the data can be overlapped
with the execution of the kernel function, which improves the system performance.

Modern GPUs can offer a very high degree of parallelism when the graph processing is regular.
It is a great challenge to effectively exploit the parallelism potential of GPU. In addition, the GPU
memory is limited compared with the ever-increasing graph size. Hence, we need to copy the data
into and out of GPU during the graph processing. It is another critical issue to design an efficient
communication method between CPU and GPU. Designing a suitable data layout can help tackle
the above two issues. On one hand, with a smart data layout, the graph-processing algorithm can
match the graph data to the memory architecture of GPU and enable the regular memory access.
On the other hand, a well designed data layout can reduce the communication cost. Two widely
used techniques of speeding up the memory access are (i) coalescing the memory access requests
from a set of parallel threads, and (ii) prefetching the unvisited data to the memory to overlap
communication with computation.

5 EXPERIMENTS

In this survey, we implemented a few commonly used graph algorithms and conducted experi-
ments with these algorithms and a number of graph-processing frameworks. On one hand, we
compare the performance of the graph processing systems with different types of graphs, such as
graphs following the power-law and graphs with large diameters. On the other hand, we compare
the performance of different graph processing algorithms when they are implemented with GPU-
or CPU-based graph processing frameworks, respectively. This verifies the benefit of using GPU
for graph processing.

5.1 Experimental Configurations

5.1.1 Experimental Datasets. The real-world graphs have different characteristics. In this sec-
tion, we mainly focus on the typical graph datasets with comparable data format. In this article, all
the datasets are represented in the classic graph formalism method (West 2001). V represents the
collection of verities, E is the set of edges which connect the vertices, and G = (V ,E) represents
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Table 2. Experimental Datasets

Datasets Amazon DBLP RoadNet-CA WikiTalk Twitter YouTube
Vertices 735,322 986,286 1,965,206 5,533,214 41,652,229 1,134,890
Edges 5,158,012 6,707,236 5,533,214 5,021,410 1,468,365,167 2,987,624

Directivity directed undirected undirected directed directed undirected

the graph. There is an edge between vertex u and v only when the two vertices are connected.
In addition, the edge is presented as e = (u,v ) or e = <u,v> for undirected or directed graphs,
respectively. Both directed and undirected graphs are considered in this article.

Considering the characteristics of power-law and large diameter in real-world graphs, we select
six graphs with different structures and a varying number of vertices and edges. All six graphs
are shown in Table 2. All the graphs are stored in a plain text file and all the graph data are
organized by a processing-friendly format without indices. In the file, the integers are used to
identify the vertices, with a line storing one vertex. For the undirected graphs, the vertex ID and
the adjacency list are included, while for the directed graph, the vertex ID and two adjacency lists,
which correspond to the incoming and outgoing edges, are included in a vertex line.

The number of vertices and edges in the selected graph datasets are shown in Table 2. The
graphs are selected from diverse sources, including e-business, social network, citation link, and
other sources of real-world graphs with different sizes and graph metrics. The degree of the graphs
ranges from 2 to 1,663. The graphs are extracted from the real-word problems, which have been
shared in the Stanford Network Analysis Project (SNAP) (Leskovec 2009).

5.1.2 Experimental Algorithms. The graph processing algorithms we implemented include PR,
BFS, SSSP, and CC. We selected these algorithms because they have different characteristics and
can be used to test different aspects of performance.

PR uses the edge consistency model. When the rank value of vertex v is updated, the rank
values of all neighboring vertices that have outbound edges are also updated. If the algorithm is
implemented based on BSP, the rank values changed in the current iteration can only be observed
by other vertices in the next super-step.

BFS is a commonly used graph traversal algorithm. The computation in BFS is very limited,
while the communication is rather intensive. Due to this feature, a large number of memory lookup
operations are used. Hence, the performance is related with the memory access pattern. Medusa
is based on the kernel implementation of BFS, which explores all neighboring vertices in a level-
by-level fashion from the first vertex.

SSSP tries to find the shortest path from a given vertex to other vertices in the graph. Dijkstra’s
algorithm is the traditional method to solve the SSSP problem.

CC is an algorithm extracting the subgraphs in which all the vertices are connected and there
are no additional vertices.

There is the textbook implementation for BFS. As for CC, PR, and SSSP, there are different im-
plementations. According to the reported performance of these implementations, we use Dijkstra’s
algorithm to implement the SSSP algorithm, which is a cloud-based connected component algo-
rithm created by Wu and Du (2010). The implementations of BFS and PagRank are presented in
the relevant experiments.

5.1.3 Graph-processing Frameworks. We select seven popular graph-processing frameworks,
namely, TOTEM, Medusa, GunRock, Frog, and GraphChi, and compare their performance in our
experiments. The first four systems are GPU-based while GraphChi is CPU-based.
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Medusa is an optimized graph-processing system with a set of simplified programming inter-
faces. Since Medusa requires loading the entire graph into the GPU device memory all at once, only
the graphs whose sizes are smaller than the device memory can be processed. TOTEM is a hybrid
system, which partitions the graph into two parts, one being processed by GPU while the other
is processed by CPU. There are three partition strategies in TOTEM: HIGH-degree, LOW-degree,
and RAND-degree partitions. In the HIGH-degree partition strategy, the vertices with the highest
degree are assigned to CPU, while the LOW-degree vertices are assigned to GPU. LOW-degree is
opposite to the HIGH-degree strategy. The RAND-degree strategy assigns the vertices to CPU and
GPU randomly or sets the percentage of the edges that are assigned to different devices. In our
experiments, in order to make full use of the computing power of GPU, we load all graph edges
onto the GPU device. Unlike Medusa and TOTEM, CuSha is a vertex-centric graph-processing
framework, which uses the new graph representations known as Concatenated Windows (CW)
and G-Shards. GunRock is a high-performance graph-processing library for GPUs. The input pa-
rameters in our evaluation are the same as those used in the corresponding publications.

5.1.4 Hardwares. We conducted the experiments on a Tesla-based GPU (NVIDIA Tesla K20m
with 5GB device memory and 2,496 CUDA cores). The programs are written with CUDA 7.5 using
the “-arch=sm 35” flag. We ran GraphChi (Kyrola et al. 2012) on a machine with 8GB memory and
two Intel(R) Xeon(R) E5-2670 CPUs, each at 2.60GHz. We reused the source code of these graph-
processing engines given by the authors directly. The experiments were all conducted on RedHat
4.4.5-6.

5.2 Experiment Results

In order to identify the types of dataset and algorithms that can be processed efficiently on GPU,
we first conduct the experiments and compare the runtime of different algorithms with differ-
ent datasets. The experimental results are shown in Table 3. Table 3 shows that, even though the
graph has an irregular structure and GPU performs the best with regular data access, the tested
algorithms achieve better performance on GPU than on CPU. The difference in performance be-
tween Wiki-Talk and Twitter indicates that the situation becomes worse as the data size increases.
In PageRank, the updated vertices need to send their values to the neighboring vertices before
the next iteration begins. Therefore, the communication cost plays an important role in the per-
formance of PageRank. As we have discussed in Section 2.2, the GPU device is connected to the
host through the PCIe bus. But the PCIe bandwidth is limited. This is the reason why the situation
deteriorates when the data size becomes bigger than the GPU memory. In comparison, Amazon,
DBLP, Wiki-Talk, YouTube, and Twitter are power-law graphs, while RoadNet-CA is a graph with
a large diameter and almost the same degree for each vertex. The performance between RoadNet-
CA and the datasets indicate that the acceleration effect with sparse graph is not as high as with
power-law graphs.

In order to investigate the types of data layout, memory access pattern, workload mapping, and
some other factors such as the branch divergence, we measure the memory throughput, the active
warp in every SM cycle, load efficiency of the global memory, memory copy time, and the bank-
conflict of the systems. The results are listed in Tables 4–9. We analyze the results in these tables
from the following four perspectives.

5.2.1 Data Layout. We measured the ratio of the requested global memory throughput to ac-
quired global memory throughput (also called gst_efficiency) of each system. Values greater than
100% indicate that, on average, multiple threads in a warp access the same memory address. In
other words, the gst_efficiency indicates whether the data is aligned or not. The result is listed in
Table 4. From this table, we can see that GunRock and CuSha have higher gst_efficiency on all the
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Table 3. Execution Time (in Milliseconds)

Algorithm System Amazon DBLP RoadNet-CA Wiki-Talk Twitter YouTube

BFS

TOTEM 26.91 42.6 425.51 34.9 NULL 42.23
Frog 11.68 7.64 232.99 4.86 NULL 5.7

CuSha 27.914 19.66 374.956 2.984 NULL 0.254
Medusa 19.099 7.051 201.357 4.698 NULL 5.276

GunRock 5.6936 3.792 8.2052 6.244 9.2232 8.324
GraphChi 606.797 939.039 909.198 3362.79 658.124 NULL

PR

TOTEM 21.86 34.06 56.39 70.82 NULL 44.99
Frog 35.52 49.61 22.78 38.13 NULL 17.91

CuSha 28.013 19.748 374.873 2.987 NULL 0.253
Medusa 278.587 567.612 317.532 8,757.567 NULL 2,739.184

GunRock 62.6958 60.57 49.536 55.8162 62.244 58.086
GraphChi 557.177 719.923 963.803 1,018.5 640.803 519.538

SSSP

TOTEM 41.82 27.43 821.39 57.55 NULL 13.12
Frog 16.45 12.63 50.08 12.2 NULL 11.16

CuSha 27.923 19.768 375.811 2.971 NULL 0.3
Medusa 3.276 4.713 1.881 57.273 NULL 18.411

GunRock 15.6443 13.3024 7.3367 10.904 13.8771 11.6144
GraphChi 475.702 634.708 641.975 858.323 NULL 455.166

CC

TOTEM 48.3 45.07 1421.82 99.39 NULL 25.7
Frog 8.88 9.47 103.54 11.3 NULL 7.51

CuSha 27.905 19.7 375.988 2.991 NULL 0.252
GunRock 23.403883 23.454189 25.617838 23.898125 25.456905 23.092031
GraphChi 1,490.21 1,905.63 1,923.72 2,338.4 NULL 1403.35

Note: Null means that the system cannot process such dataset.

datasets and algorithms than any other system, which indicates that GunRock and CuSha have
better organization of the graph data (the experiments in Section 5.2.2 can also draw a similar
conclusion).

5.2.2 Memory Access Pattern. In order to investigate the memory access patterns of the sys-
tems, we first measured the ratio of the memory copy time to the whole execution time as shown
in Table 5. Both the data copying from the host to the device and from the device to the host are
measured in our experiment.

Table 5 shows Medusa has a higher host-to-device memory copying ratio than any other sys-
tem with BFS and SSSP on Amazon, DBLP, and RoadNet-CA. We can also conclude that Frog has
higher device-to-host memory copying than other systems, except SSSP and CC with RoadNet-CA
on TOTEM and SSSP with YouTube on Medusa, from this table. This is because, in the computation
phase, the communication of Frog is overlapped with GPU computation. But when the computa-
tion is completed, Frog needs to transfer the computation result to the host for combination. This
is why Frog has the highest device-to-host memory copying ratio. By using the Edge-Message-
Vertex (EMV) model, Medusa decouples the single vertex API into several separate APIs, which
improves the processing efficiency, but on the other hand it also leads to more memory copying
operations. By using the G-shard technology in CuSha, the vertices are sorted in every shard and
the shard can be disconnected. By using this technology, the communication can be completely
overlapped with the computation phase when CuSha sends the result back to the host. This is why
CuSha has the lowest host-to-device memory copying ratio than other systems.
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Table 4. Ratio of Requested Global Memory Store Throughput to Required Global

Memory Store Throughput (%)

Algorithm System Amazon DBLP RoadNet-CA Wiki-Talk Twitter YouTube

BFS

TOTEM 62.021 51.1614 55.3328 47.18 NULL 44
Frog 16.3775 16.3175 15.5975 9.9425 NULL 14.33

CuSha 73.35 71.53 80.74 41.9 NULL 0
Medusa 14.17 14.57 10.6 11.28 NULL 14.46

GunRock 69.75 71.34875 68.51 69.72 69.35 68.735

PR

TOTEM 69.375 64.5825 71.25 71.415 NULL 70.09
Frog 16.3775 16.3175 15.5975 9.9425 NULL 14.33

CuSha 73.33 71.13 80.74 41.9 NULL 0
Medusa 71.797 71.283 71.39 70.87 NULL 70.86

GunRock 90.61 90.54 90.58 90.56 90.48 90.475

SSSP

TOTEM 39.7575 30.8925 40.7525 29.5575 NULL 27.82
Frog 16.3775 16.3175 15.5975 9.9425 NULL 14.33

CuSha 73.35 71.12 80.75 41.9 NULL 0
Medusa 66.95 66.49 67.31 66.687 NULL 64.71

GunRock 79.97 80.05 79.46 77.26 77.86 74.83

CC

TOTEM 63.65 59.84 57.81 58.687 NULL 58.24
Frog 16.3775 16.3175 15.5975 9.9425 NULL 14.33

CuSha 73.35 71.12 80.75 41.9 NULL 0
GunRock 73.57 65.88 73.93 74.27 74.21 74.25

Note: Null means that the system cannot process such dataset.

The global memory throughput is shown in Table 6 and the ratio of active warps to the total
warps in a single SM in shown in Table 7. Coalesced memory access has the highest impact on
throughput, moreover, misaligned data format and non-coalesced memory access will lead to too
much unnecessary load operations. Table 7 and Table 6 show that Frog and Medusa have higher
throughput and active occupancy ratio than the other systems when running BFS and SSSP, which
indicates that Frog and Medusa have better parallelism than other systems with BFS and SSSP. But
Table 8 shows CuSha has the highest load efficiency. Note that Cusha uses the CSR format while
Frog and Medusa use array data layout to achieve the coalesced memory access. So the result in
Table 8 indicates that the CSR is better at enabling regular memory and reducing unnecessary
load operations. Meanwhile, the frontier data layout is used in GunRock, which achieves better
performance than other systems for BFS. This phenomenon indicates that, although data layout
has a great effect on the memory access, it is not the only factor for system performance and there
is no data layout that is superior with all algorithms.

Table 3 and Table 6 show GunRock and TOTEM have lower throughput than other systems,
and they can also achieve better performance than the other systems on some algorithms, such
as BFS and PageRank. GunRock can achieve the best performance on BFS. This is because the
enactor, the core of GunRock kernel, combines multiple logical operations into one single kernel.
By using this technique, GunRock can significantly save memory bandwidth. On the other hand,
TOTEM achieves the best performance in PageRank when running on Amazon. TOTEM takes
the communication rate into its performance model, and adopts data pre-fetching and caching
methods to improve the efficiency of PCIe communication, which is important to the performance
of PageRank.
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Table 5. Memory Copy Time to The Whole Execution Time (%)

Frog TOTEM CuSha Medusa GunRoack
HtoD DtoH HtoD DtoH HtoD DtoH HtoD DtoH HtoD DtoH

Amazon

BFS 44.77 13.18 39.27 2.41 37.69 1.13 66.61 4.99 44.05 7.83
PR 44.77 13.18 27.53 4.37 37.76 1.13 13.64 0.97 11.15 2.66

SSSP 44.77 13.18 41.08 7.76 37.64 1.16 96.07 1.67 31.14 9.05
CC 44.77 13.18 25.98 13.28 38.31 1.12 NULL NULL 50.72 6.88

DBLP

BFS 47.62 13.96 52.27 2.24 52.85 1.47 67.48 6.32 43.45 7.71
PR 47.62 13.96 24.24 5.56 52.17 1.48 5.45 0.63 11.35 2.67

SSSP 47.62 13.96 55.18 4.31 52.8 1.46 91.62 7.11 29.44 7.46
CC 47.62 13.96 26.52 8.62 52.19 1.49 NULL NULL 47.43 7.33

RoadNet-CA

BFS 15.12 11.68 7.44 3.03 5.13 0.63 83.32 2.28 43.22 7.87
PR 15.12 11.68 18.76 5.62 5.01 0.64 14.5 3.48 11.27 2.64

SSSP 15.12 11.68 37.65 21.86 5 0.62 90.27 9.35 28.6 7.86
CC 15.12 11.68 33.41 33.02 5 0.62 NULL NULL 50.79 6.66

Wiki

BFS 40.85 34.78 36.2 5.18 80.07 6.62 73.14 17.68 43.59 7.87
PR 40.85 34.78 15.06 6.93 80.08 6.62 0.65 0.2 11.3 2.68

SSSP 40.85 34.78 39.87 6.1 79.96 6.74 77.24 8.78 29.26 8.01
CC 40.85 34.78 15.3 5.46 80.09 6.61 NULL NULL 50.44 6.79

Twitter

BFS 40.85 34.78 NULL NULL NULL NULL NULL NULL 43.23 7.83
PR 40.85 34.78 NULL NULL NULL NULL NULL NULL 11.4 2.67

SSSP 40.85 34.78 NULL NULL NULL NULL NULL NULL 30.28 7.67
CC 40.85 34.78 NULL NULL NULL NULL NULL NULL 50.57 6.83

YouTube

BFS 40.85 34.78 49.45 7.35 92.03 1.67 83.15 7.34 43.25 8.78
PR 40.85 34.78 14.14 5.83 92.2 1.65 0.67 18 11.4 2.74

SSSP 40.85 34.78 69.23 9.17 92.21 1.64 74.06 74.06 30.4 7.63
CC 40.85 34.78 37.57 16.48 91.79 1.68 NULL NULL 51.22 6.86

Note: HtoD means the data copying from host to device and DtoH means the data copying from device to host. Note: NULL

means that the system cannot process such dataset.

Table 8 shows the ratio of the used global load throughput to the system’s global load throughput
(which is also called the gld_efficiency); according to this table, we can see that the gld_efficiency

of Frog and Medusa is not the highest, which explains why Frog and Medusa cannot achieve the
best execution performance with their relatively high global memory throughput and active warp
occupancy.

5.2.3 Workload Mapping. The ratio of the average active warps per active cycle to the maxi-
mum number of warps supported on a multiprocessor is shown in Table 7, and the average num-
ber of instructions executed by each warp is shown in Table 9. According to these two tables, we
can find the number of instructions executed in a cycle. The larger number of instructions exe-
cuted in a cycle indicates, on the one hand, a more efficient usage of the computing resource, and
on the other hand, the higher risk of bank conflicts and warp divergence. Tables 7 and 9 show
that GunRock has the lowest active warp occupancy and the most stable average number of in-
structions executed by each warp of GunRock, which means GunRock can achieve more stable
performance than other systems. This is because GunRock adopts the per-thread fine-grained and
per-warp & per-CTA coarse-grained workload mapping strategies, which can dynamically choose
different workload mapping methods according to the task granularity.
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Table 6. Global Memory Throughput (GB/S)

Algorithm System Amazon DBLP RoadNet-CA Wiki-Talk Twitter YouTube

BFS

TOTEM 5.95 6.577 7.91 8.567 NULL 3.78
Frog 122.01 122.01 110.1 72.0575 NULL 133.65

CuSha 89.417 80.166 117.92 58.455 NULL 121.28
Medusa 92.447 95.616 98.862 83.102 NULL 98.017

GunRock 2.22 2.24 2.22 2.22 2.86 2.27

PR

TOTEM 66.96 68.94 70.026 70.109 NULL 60.69
Frog 122.01 122.01 110.1 72.0575 NULL 133.65

CuSha 89.356 80.069 118 58.816 NULL 121.02
Medusa 81.6 72.67 78.83 74.55 NULL 72.74

GunRock 1.74 1.74 1.75 1.75 1.74 1.74

SSSP

TOTEM 17.183 17.66 18.09 19.19 NULL 11.53
Frog 122.01 122.01 110.1 72.0575 NULL 133.65

CuSha 89.419 80.271 117.94 58.518 NULL 121.22
Medusa 114.9 101.22 135.58 87.27 NULL 85.05

GunRock 2.29 2.17 2.27 2.04 2.06 2.145

CC

TOTEM 44.06 46.75 49.59 52.94 NULL 39.32
Frog 122.01 122.01 110.1 72.0575 NULL 133.65

CuSha 89.346 80.22 117.95 58.382 NULL 120.86
GunRock 6.73 6.59 6.72 6.82 6.75 6.76

Note: NULL means that the system cannot process such dataset.

Table 7. Active Warp Occupancy

Algorithm System Amazon DBLP RoadNet-CA Wiki-Talk Twitter YouTube

BFS

TOTEM 0.463306 0.4228 0.4315 0.456212 NULL 0.3995
Frog 0.8348 0.8364 0.7615 0.775 NULL 0.760239

CuSha 0.933773 0.933685 0.976658 0.892485 NULL 0.978875
Medusa 0.742502 0.742878 0.743046 0.736742 NULL 0.731812

GunRock 0.337857 0.34443 0.337871 0.337814 0.336987 0.3389

PR

TOTEM 0.607594 0.605802 0.581388 NULL 0.5899
Frog 0.8348 0.8364 0.7615 0.775 NULL 0.760239

CuSha 0.933444 0.931491 0.976697 0.892334 NULL 0.977202
Medusa 0.737698 0.725534 0.736773 0.534144 NULL 0.583266

GunRock 0.333467 0.332244 0.332134 0.334056 0.332594 0.332982

SSSP

TOTEM 0.528717 0.5644 0.512296 NULL 0.479668
Frog 0.8348 0.8364 0.7615 0.775 NULL 0.760239

CuSha 0.933199 0.933106 0.976535 0.893147 NULL 0.980656
Medusa 0.759679 0.682194 0.766345 0.559669 NULL 0.568269

GunRock 0.324806 0.322657 0.325463 0.326589 0.325844 0.322851

CC

TOTEM 0.647757 0.622963 0.557834 NULL 0.56812
Frog 0.8348 0.8364 0.7615 0.775 NULL 0.760239

CuSha 0.932829 0.933198 0.976602 0.892427 NULL 0.980411
GunRock 0.371246 0.371149 0.370246 0.371415 0.36888 0.368911

Note: NULL means that the system cannot process such dataset.

ACM Computing Surveys, Vol. 50, No. 6, Article 81. Publication date: January 2018.



81:28 X. Shi et al.

Table 8. The Ratio of the Used Global Load Throughput to the System Global Load Throughput

Algorithm System Amazon DBLP RoadNet-CA Wiki-Talk Twitter YouTube

BFS

TOTEM 49.28 47.7 48.32 38.37 NULL 43.41
Frog 46.11 45.29 41.95 42.57 NULL 42.52

CuSha 81.35 81.64 84.55 90.85 NULL 87.75
Medusa 79.03 78.28 85.63 67.24 NULL 69.74

GunRock 61.82 62.12 70.32 62.21 56.03 65.03

PR

TOTEM 42.57 48.36 39.64 38.47 NULL 44.96
Frog 46.11 45.29 41.95 42.57 NULL 42.52

CuSha 81.36 81.65 84.55 90.85 NULL 87.75
Medusa 58.76 60.42 69.09 73.26 NULL 71.54

GunRock 80.31 80.18 80.09 80.09 80.09 80.1

SSSP

TOTEM 19.7 18.43 15.45 17.92 NULL 13.84
Frog 46.11 45.29 41.95 42.57 NULL 42.52

CuSha 81.34 81.65 84.55 90.85 NULL 87.75
Medusa 52.91 53.99 64.7 52.03 NULL 52.16

GunRock 73.19 69.29 75.59 72.02 74.39 70.88

CC

TOTEM 41.27 45.63 41.5 38.39 NULL 45.89
Frog 46.11 45.29 41.95 42.57 NULL 42.52

CuSha 81.35 81.64 84.55 90.85 NULL 87.75
GunRock 50.71 49.79 64.31 64.78 65.52 64.79

Note: NULL means that the system cannot process such dataset.

Table 9. Average Number of Instructions Executed by Each Warp

Algorithm System Amazon DBLP RoadNet-CA Wiki-Talk Twitter YouTube

BFS

TOTEM 271 226 296 267 NULL 123
Frog 706 932 611 724 NULL 417

CuSha 2,900 2,842 674 353 NULL 333
Medusa 3,933 5,226.1 3,940.7 4,079.8 NULL 2,251

GunRock 74 73 74 73 74 74

PR

TOTEM 993 752 734 NULL 767
Frog 706 932 611 724 NULL 417

CuSha 2,900 2,842 675 353 NULL 333
Medusa 2,270 2,986 3,772 1,978 NULL 2,470

GunRock 409 408 408 408 409 408

SSSP

TOTEM 278 487 261 NULL 159
Frog 706 932 611 724 NULL 417

CuSha 2,900 2,842 674 353 NULL 333
Medusa 956 1,293 1,665 1878 NULL 1,000

GunRock 100 94 95 98 95 85

CC

TOTEM 285 385 352 NULL 186
Frog 706 932 611 724 NULL 417

CuSha 2,900 2,843 674 353 NULL 333
GunRock 112 108 109 109 108 109

Note: NULL means that the system cannot process such dataset.
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5.2.4 Miscellaneous. Table 9 shows the average number of instructions executed by each warp,
which can help us understand the activity of the SMs. High variations in the number of executed
instructions by every warp indicate the workload of the blocks is in a non-uniform pattern. As
analyzed in Section 4.5, high variations of the number of instructions per warp (IPW) occurs when
the conditional blocks are executed. A low average IPW indicates there is little variation across
the SM, and the compute resources are used inefficiently, while a high average IPW indicates the
blocks are in a nonuniform pattern. Table 9 shows the average IPW of GunRock is almost the
same with all kinds of algorithms and datasets, which indicates GunRock is better in making use
of the computing resource than the other systems. The table also shows that GunRock has the
least average number of instructions executed by each warp, which implies there is less branch
divergence in GunRock. As we mention in Section 2.2, all the threads in a warp execute the same
instructions in a cycle, and the access to the on-device memory of GPU usually has a long latency.
So, we need to avoid branch divergence and improve the utilization efficiency of the constant
memory in GPU processing systems.

6 CONCLUSIONS AND OPPORTUNITIES

In this article, we surveyed a number of GPU-based graph-processing systems and discussed the
challenges inherent in processing graph applications. Some of the challenges also exist in gen-
eral big data processing and parallel computing. Graph computations are usually data-driven. The
graphs have an irregular structure. The size of large-scale graphs may exceed the space memory
of a single machine, from which challenges arise as to achieve adequate data locality and paral-
lelization for graph processing.

In order to summarize the performance of major existing graph-processing systems, we apply
a taxonomy to classify various GPU-based graph-processing systems. The taxonomy character-
izes four aspects of graph processing, including data layout, memory access pattern, workload
mapping, and GPU programming. Through the extensive survey of existing systems, we find that
most systems did not take drastically different approaches, but added complementary features to
the then state-of-the-art techniques. Many systems are similar from the top-level perspective, but
differ in their implementation details. There does not seem to be a universally superior combina-
tion of features in the existing systems.

Finally, some new research challenges and opportunities for graph processing on GPUs are
summarized as follows:

—Graph processing on hybrid systems. As the GPU memory is limited, how to use GPU
processing large-scale graphs is another major challenge. Nowadays, GPU-enabled clouds,

GPU clusters, and CPU/GPU hybrid systems, which have large memory space, are widely used
in various applications. Porting graph-processing algorithms to these systems is a promising
research direction for large-scale graph processing. Graph partitioning and workload map-
ping are the fundamental challenges for graph processing on such systems. First of all, we
need to partition the graph and the corresponding processing workload onto the GPUs and
CPUs. Uneven workload mapping can lead to load imbalance in the system. Since vertices in
a big graph can be connected with a complex pattern, how to partition the graph to achieve
load balancing is a challenging problem. Second, a single GPU memory is limited; utiliz-
ing GPU memory efficiently plays an important role in achieving good graph-processing
performance, for which a good memory access pattern is another essential aspect. Existing
works are in general going toward this direction. However, how to capitalize the advantage
of the GPU architecture for efficient graph processing remains a challenge, which requires
the programmers to make bespoke efforts for the graph applications in question.
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Moreover, the limitation of GPU memory impedes the processing of large-scale graphs.
Consequently, for the CPU/GPU hybrid systems, out-of-core data management techniques
are required to tackle the memory overflow problem in GPU when the size of a graph ex-
ceeds the capacity of the GPU memory. Unfortunately, this issue has not been addressed suf-
ficiently, to the best of our knowledge. In addition, the strategy of data partitioning between
CPU memory and GPU memory can also substantially affect the quality and efficiency of
graph processing when out-of-core techniques are applied. GPU graph-processing systems
need to consider whether solely using the GPU memory or moving some graph data (if so
how much) to the CPU memory in a multi-node environment. New GPU architectures such
as 3D stacked memory in newer GPU devices can provide another alternative solution.

—Graph processing on new GPU architecture. Developing a graph-processing system is a
systematic project in the sense that it needs to strike a balance among many important fac-
tors in graph processing. Besides the three main aspects summarized above, there are other
challenges as well, such as benchmark setting, branch divergence, communication, and so
on. Some of these challenges, such as branch divergence, are caused by the complex pro-
gramming model on GPU. A fundamental solution to these challenges is to develop a more
flexible and easy-to-use programming API for GPU. GunRock provides a good example in
this direction. As for the challenges related to the communications in GPU processing, new
features such as Unified Memory, NVLink, and 3D stacked memory may offer the solutions
to this issue. By using the unified memory, programmers can be liberated from the task of
complex memory allocation. With the support of NVLink, a GPU device can communicate
with a CPU and other GPUs directly via high-bandwidth connections. Using 3D stacked
memory can expand the GPU memory by multiple folds. Consequently, larger-scale graphs
can then be loaded into the GPU memory all at once, eliminating the need of out-of-core
executions on GPU.

—Dynamic graph processing on GPUs. Dynamic graph is an important application in the
real world, but there is little work on GPU-based dynamic graph processing. So, designing
and implementing systems to support dynamic graph processing on GPUs is another inter-
esting and challenging research direction. In dynamic graph processing, the graph structure
can be updated frequently in runtime. This poses additional challenges to designing data
layout and achieving good memory access patterns. Furthermore, how to dynamically main-
tain balanced workload mapping with the rapid changes of graphs is highly challenging.

—Machine-learning applications. Graph-processing systems are also widely adopted in
training large machine-learning models. A highly interesting and potentially influential
research direction is to identify the properties of machine-learning applications and build
specialized GPU-based graph-processing algorithms or systems to enhance the performance
of machine-learning applications.
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