
Less Redundant Codes for Variable Size

Dictionaries

Zhen Yao∗ Nasir Rajpoot†

Abstract

In this paper, we report work on a family of variable-length codes with less redun-
dancy than the de facto flat code used in most of the variable size dynamic dictionary
based compression methods. The experiments show that by replacing the flat code with
these codes in the original LZW compression algorithm, nearly 3%–7% redundancy can
be removed, whereas up to 72% improvement can be obtained for a running sequence
from the artificial Canterbury corpus.

1 Introduction

Most of the lossless data compression methods used in practice are based on maintaining a
dynamic dictionary of strings that are also called phrases. The input to a dictionary based
compression method is parsed into substrings that are replaced by pointers corresponding to
these phrases in the dictionary also known as the codewords in order to achieve compression.
Many variants of the original dictionary compression schemes – the LZ77 method [11], the
LZ78 method [12], and its LZW variant [10] – or textual substitution [9] methods have
been proposed to date. Almost all of these variants suggest improved ways of dictionary
construction, dictionary maintenance, or parsing [4, 5, 7, 6] – for a detailed coverage of
these variants, please refer to [8].

Based on the variability of the size of dictionary, dictionary based compression methods
can be divided into two categories; methods which have a dictionary of fixed size, and
methods whose dictionary can grow or shrink as the input is processed. Many LZ77 variants
fall into former of the above categories, whereas most of the dictionary methods based on
the LZ78 compression scheme belong to the latter category. In this paper, we study the
improvement of variable size dictionary compression methods from a different perspective.
The following question is addressed: Given a variable size dictionary based compression
algorithm, is it possible to improve the compression performance by introducing a more
clever way of encoding the codewords of this algorithm? Consider the LZW compression
scheme which uses a variable-length code to encode the codewords where length l of the
code varies with size of the dictionary D as given by l = dlog2 Ne, where N = |D| denotes
the dictionary size or the number of phrases in the dictionary. This type of code, also termed
as the flat code, can be wasteful since the optimal code length l? for encoding a codeword

∗Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK; email:
csvhe@dcs.warwick.ac.uk

†Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK; telephone: +44 (24)
7657-3795; email: nasir@dcs.warwick.ac.uk

1

10
2

10
3

10
4

10
5

2

3

4

5

6

7

8

N

G
(N

)

Figure 1: Percentage relative redundancy versus dictionary size

in this scenario is always given by l?≤dlog2 Ne. The wastage of bits (or the redundancy)
W in case of the flat code can be expressed in terms of dictionary size N by

W (N) =
N∑

i=2

(dlog2 ie − log2 i). (1)

Figure 1 shows a graph of the relative redundancy G(N) = W (N)/F (N), where F (N) is
the total number of bits when using the flat code, plotted against N . It illustrates that an
improvement of 2% to 8% for a variable size dictionary based compression algorithm (whose
dictionary phrases all have almost equal frequency of occurrence) is possible provided a
better alternative to the flat code is employed to encode the codewords1.

In this study, we report on a family of less-redundant codes in an LZW setting: (1)
We place in this family of less-redundant codes one already published and two new types
of less-redundant codes termed as the phase-in-binary (PB) code [1], the depth-span (DS)
code, and the balanced code. (2) We show that the DS code is optimal in the sense of code-
length contrast, whereas the balanced code is optimal in the sense of average codeword
length. (3) Our experimental results show that the relative redundancy of flat codes can
be brought down to nearly zero by using these new codes.

2 Family of Less-Redundant Codes (LRC)

As described earlier, reasonable improvements can be made on top of the ordinary flat
code without any significant additional computational complexity. The type of code that
achieves this improvement can be termed as a less-redundant code. In other words,

1It is also clear from the graph that improvement on the flat code performance F (N) =
∑

N

i=2
dlog

2
ie

generally decreases as the dictionary grows larger.

2

TsT3T T21

Figure 2: A phase-in-binary tree

Definition 1 A set of binary codes C is a set of less-redundant codes (LRC), with
each of its members corresponding to a unique codeword, if it satisfies the following two
conditions:

1. ∀c ∈ C: l(c) ≤ dlog2 |D|e, where l(c) is the length of the code c.

2. log2 |D|/∈N , the set of positive integers, −→ ∃c∈C : l(c) < dlog2 |D|e.

Each of the three codes described below is associated with a binary tree whose structure
explains construction of the code itself. By following the convention that every left branch
is labelled 0 and every right branch 1, the traversal of a path from the root node to a
leaf node represents the binary code for the codeword corresponding to that particular leaf
node.

2.1 The Phase-in-Binary Code

This code was first reported in [1] as an alternative to the flat code for enhancing the
performance of the LZW compression algorithm.

Definition 2 Given a positive integer N expressed as N =
∑

s
m=12

am, where a1 > a2 >
... > as ≥ 0 and s ≥ 1, a phase-in-binary tree T with N leaf nodes is a rooted binary
tree that consists of s complete binary trees (represented by a solid triangle in this paper)
T1, T2, ..., Ts of heights a1, a2, ...as respectively.

Given a phase-in-binary tree T with N leaf nodes, similar to the one shown in Figure 2,
the phase-in-binary code of a codeword Cn, is defined by the path which traverses from the
root of T to the nth leaf node in T .

An interesting feature of the phase-in-binary tree is that all of its subtrees are complete
binary trees. From an implementation viewpoint, simple binary shift operations can be
used to construct the phase-in-binary tree in an efficient way.

2.2 The Depth-Span Code

A depth-span (DS) code differs from the PB code only in the way the right half of the
binary tree is constructed. The depth-span tree tends to take the leftmost leaf node at a
depth less than the maximum depth to the lowest level before completing the subtree at its
level. It can be defined as follows:

3

T

Figure 3: A Depth-Span Tree

Definition 3 For a positive integer N , a depth-span tree with N leaf nodes is a
rooted binary tree whose root has as its left child a complete binary tree and as its right
child another binary tree with each its leaf node extending to the maximum depth before
allowing its sibling nodes on the right to grow.

A typical depth-span tree is shown in Figure 3. The code length remains the same or
decreases when moving from left to right, as is the case with the PB code. This assures
us that length of the codeword associated with the rightmost leaf node remains minimum.
Therefore, some gain can be expected if phrases corresponding to the recent codewords are
repeated in the input. In other words, the code length contrast, which is the range of the
depth levels of the leaf nodes, remains maximum.

Lemma 1 The DS code is optimal with respect to the code-length contrast.

Proof: From the definition of the DS code, the branches with minimum depth are kept
while giving priority to the completion of binary trees to their left. This ensures that the
difference between the length of the longest and the shortest DS codes remains maximum.

2.3 The Balanced Code

Definition 4 Given a positive integer N , a balanced tree with N leaf nodes is a
rooted binary tree which is either a complete binary tree with a depth of log2 N = dlog2 Ne,
or is complete up to a depth of n = blog2 Nc and adds new leaf nodes to itself at depth n+1
in a left-to-right manner.

It is clear from the above definition that it is a depth-balanced tree, i.e. a tree whose
subtrees differ in depth by no more than one and the subtrees are also depth-balanced. If
the balanced tree is not complete, or in other words if n = dlog2 Ne is not an integer, then
it has 2n+1 −N leaf nodes at depth n and rest of the leaf nodes are at depth n + 1 starting
from the leftmost node and right onwards as illustrated in Figure 4. A balanced code of a
codeword Ci is defined by the path traversed from the root of the balanced tree to the ith
leaf node. Due to its being balanced, the code-length contrast is either 0 or 1. We note
here that a similar code is also mentioned in [2] with the name of phasing in binary code.

Lemma 2 The balanced code is optimal with respect to the average codeword length.

Proof: It is clear from the above definition of a balanced code that the average length of a
codeword using balanced codes is O(log2 N) where N denotes the current dictionary size.

4

T

Figure 4: Development of the Balanced Code

Both the PB and the DS codes exploit the fact that the codewords corresponding to phrases
at the high end of dictionary may occur more frequently than those corresponding to the
phrases added not so recently to the dictionary. As opposed to the PB and the DS codes,
the balanced code remains largely unaffected by the probability distribution of codewords.
Assuming that all the codewords have an equal probability of occurence, and no specific
range of codewords is more likely to occur than the others, the average codeword length
is minimal when a balanced code is used since it gives almost equal weight to any of the
codewords by assigning to them almost same number of bits.

3 Effects of Codeword Distribution

As mentioned above in the previous section, both the PB and the DS codes try to keep some
codes as short as possible (the DS code being optimal in the sense of code-length contrast,
as mentioned above) with the hope that a few codewords would hit these shorter codes
in turn yielding improvement in terms of compression performance. They are particularly
good to compress data from sources with large amount of redundancy, such as a running
sequence of one particular symbol.

In this section, we look at the distribution of codewords belonging to different sections
of the dictionary and show that the compression performance can further be improved by
a simple shifting of the distribution during the compression process.

3.1 Block Occurrences

Given the usually large dictionary size, it is not practical to compute the frequency of
occurence of each of the codewords in the dictionary. The codeword distribution can,
however, be approximated by a histogram of the consecutive blocks of codewords in the
dictionary. We divide the dictionary D into b disjoint blocks of consecutive codewords
{D1, D2, ..., Db} with each block consisting of B codewords, where B = |D|/b. A block
occurrence histogram can show which part of the dictionary is more often being used than
others. Figure 5 shows block occurence histograms for an LZW dictionary when compressing
files from the large Canterbury corpus with the dictionary divided into 30 blocks. It is
interesting to note that the histograms for two English text files bible.txt and world192.txt are
almost similar with the histogram count of the last block of the dictionary being particular

5

bible.txt

1 2 3 4 5 6 7 8 9101112131415161718192021222324252627282930

10000

20000

30000

40000

50000

60000

70000

E.coli

1 2 3 4 5 6 7 8 9101112131415161718192021222324252627282930

5000

10000

15000

20000

world192.txt

1 2 3 4 5 6 7 8 9101112131415161718192021222324252627282930

10000

20000

30000

40000

Figure 5: Block occurrences in LZW dictionary

higher than that of the intermediate blocks. This can be regarded as a typical English text
file characteristic and is in conformance with the evidence that if a word occurs once in an
English text, then there is a high probability that it will occur again soon [3].

3.2 Dynamic Block Shifting

If the distribution of codewords for E.coli can be altered in such a way that the block of
codewords occurring most frequently is shifted to the end of the dictionary, small improve-
ment can be expected when using the PB or DS codes. This simple procedure, termed
as the dynamic block shifting (DBS), dynamically updates the block occurrence histogram
in an efficient way. Instead of actually moving the whole block of codewords from their
original places in the dictionary, it suffices to use simple arithmetic operations to compute
the post-shifting codeword values.

4 Experimental Results

In this section, we present the experimental results of five variable size dictionary based
compression algorithms: the original LZW algorithm using the standard flat code as well
as the LZW algorithm using the PB code, the DS code, the balanced code, and the PB
code with dynamic block shifting. The maximum number of phrases in each of the coders’
dictionary was allowed to be 220 in order to avoid unnecessary loss of information due to
flushing of the dictionary.

Three data sets were used from the Canterbury corpora: (1) the ordinary corpus, con-
taining various kinds of source data; (2) the large corpus, which includes three files of size >
1MB, an DNA sequence from E-coli bacteria, and two text files, bible.txt and world192.txt;
and (3) the artificial corpus, containing files with little or no repetition (e.g. random.txt),
and a file with large amounts of repetition (aaa.txt).

The experimental results for all these data sets using the codes mentioned earlier are
shown in Tables 1–3. Results from both ordinary and large Canterbury corpora show
that the LRC achieve an improvement of 2.5% to 6.5% which is very close to the relative
redundancy estimates discussed earlier. In our opinion, the most interesting results of our
experiments are those obtained by applying the new codes on the Canterbury artificial
corpus (Table 3). Here, the DS code achieves an improvement of 72.5% for a running
sequence aaa.txt, whereas the PB code achieves an improvement of over 18% on another
file with repititions alphabet.txt. The improvement for random.txt achieved by the PB code
with dynamic block shifting is just below 3% suggesting that the DBS does a good job by

6

File Original Balanced D.S P.B P.B-DBS LZW

alice29.txt 152089 60450 62155 61091 61090 62244
asyoulik.txt 125179 53550 54927 54006 53992 54987

cp.html 24603 10946 11263 11036 11032 11314
fields.c 11150 4731 4951 4735 4727 4961

grammar.lsp 3721 1710 1796 1710 1708 1810
kennedy.xls 1029744 314668 320229 309831 305212 320787
lcet10.txt 426754 158245 163023 159193 159190 163170

plrabn12.txt 481861 193292 198359 195744 195165 198464
ptt5 513216 60362 61599 59747 59749 62212
sum 38240 19282 19932 18805 18803 20099

xargs.1 4227 2244 2333 2280 2277 2336

Total 2810784 879480 900567 878178 872945 902384

Table 1: The Canterbury corpus

File Original Balanced D.S P.B P.B-DBS LZW

bible.txt 4047392 1208875 1240534 1206281 1206279 1241874
E.coli 4638690 1203801 1230017 1219761 1216023 1230082

world192.txt 2473400 772208 793712 772006 771989 795209

Total 11159482 3184883 3264263 3198048 3194291 3267166

Table 2: The Canterbury large corpus

moving the most frequent block towards the end of dictionary.

5 Conclusions

In this paper, we presented a family of codes that are less redundant than the flat codes used
by most of the variable size dynamic dictionary based compression methods. It was shown
that the DS and the balanced codes are optimal with respect to the code-length contrast and
the average code length respectively. The experimental results verify simplistic theoretical
estimates that for dictionaries with uniform codeword distribution, the improvement can
be 2%–8%. However, large gains can be obtained for dictionaries which have non-uniform
codeword distribution.

References

[1] T. Acharya and J.F. Já Já. Enhancing Lempel-Ziv codes using an on-line variable-
length binary encoding. In Proceedings IEEE Data Compression Conference (DCC’96),
March 1996.

[2] T.G. Bell, J.G. Cleary, and I.H. Witten. Text Compression. Prentice-Hall, Englewood,
Cliffs., NJ, 1990.

[3] R. DeMori and R. Kuhn. A cache-based natural language model for speech recognition.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(6):570–583.

[4] D.T. Hoang, P.M. Long, and J.S. Vitter. Dictionary selection using partial matching.
Information Sciences, 119(1-2):57–72, 1999.

7

File Original Balanced D.S P.B P.B-DBS LZW

aaa.txt 100000 471 145 328 329 527
alphabet.txt 100000 2778 2927 2488 2488 3050
random.txt 100000 91258 92372 92135 89681 92374

Table 3: The Canterbury artificial corpus

[5] R.N. Horspool. The effect of non-greedy parsing in Ziv-Lempel compression methods.
In Proceedings IEEE Data Compression Conference (DCC’95), 1995.

[6] Y. Matias, N.M. Rajpoot, and S.C. Sahinalp. The effect of flexible parsing for dynamic
dictionary based data compression. In Proceedings IEEE Data Compression Conference
(DCC’99), pages 238–246, March 1999.

[7] V.S. Miller and M.N. Wegman. Variations on a theme by Lempel and Ziv. Combina-
torial Algorithms on Words, pages 131–140, 1985.

[8] N.M. Rajpoot and S.C. Sahinalp. Dictionary based data compression: A combinatorial
perspective. In Khalid Sayood, editor, Handbook of Data Compression, 2001. to appear.

[9] J.A. Storer. Data Compression: Methods and Theory. Computer Science Press,
Rockville, Maryland, 1988.

[10] T.A. Welch. A technique for high-performance data compression. IEEE Computer,
pages 8–19, January 1984.

[11] J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE
Transactions on Information Theory, IT-23(3):337–343, May 1977.

[12] J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding.
IEEE Transactions on Information Theory, IT-24(5):530–536, Sep 1978.

8

