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ABSTRACT

We present a novel iterative nonlinear filtering framework,
termed multilateral filtering, based on the idea of generic local
similarity. A set of local features is computed for each pixel
using its local neighborhood. Two pixels are considered to be
similar if the Euclidean distance between their corresponding
feature vectors is small and vice versa. Multilateral filtering
results in image smoothing while preserving edge and textu-
ral features. Our experimental results show that the proposed
method produces comparable and often better results than the
state-of-the-art denoising methods.

Index Terms— Image denoising, Edge preservation, Bi-
lateral filtering

1. INTRODUCTION

Noise in an image is unwanted and random variations of pixel
values caused during image acquisition and/or transmission.
Filtering in spatial or transform domain is one of the most
fundamental tools used for noise removal in images. The vast
amount of literature on filtering for noise removal in digital
images can be broadly classified into two main categories:
linear filtering and non-linear filtering.

Linear smoothing or filtering is widely used in those ar-
eas where noise free blur images are required. These lin-
ear filtering methods are also referred to as low-pass filtering
or weighted averaging, such as Gaussian low-pass filtering
whereby weights are function of the distance among pixels.
In other words, these filters give larger weights to nearby pix-
els and smaller weights to faraway pixels in a certain neigh-
borhood. In real-world images, the assumption that a spatial
variation in pixels is quite slow fails at edges due to the non-
stationary nature of real-world images. Although linear fil-
tering is computationally tractable in spatial or frequency do-
main, the real dilemma with this type of methods is that they
often result in over-smoothing (also known as blurrinng) of
important features such as edges. To acquire noise-free edge-
preserving images, many non-linear filtering techniques have
been developed over the years. Among these methods, bilat-
eral filtering [1] is one of the most popular approaches. Bilat-
eral filtering is an extension of the Gaussian low-pass filtering
approach as it contains domain filters that measure the spatial
locality of pixels and range filters that measure the photomet-
ric similarities among pixels in close neighborhood. In other
words, bilateral filtering computes weighted average of pixel

values in the neighborhood, whereby the weights decrease as
distance from the neighborhood center increases or difference
between intensity value among pixels increases. Although
this combination of domain and range filters is quite effec-
tive on denoising images as compared to simple domain filter
like weighted averaging, bilateral filtering face a dilemma that
if the pixel at the origin is corrupted with noise, larger weight
will be assigned to other pixels having similar intensity to
that corrupted pixel by range filter. Garnett et al. [2] have
proposed a trilateral filter employing a local image statistic
for identifying noise pixels. Another trilateral filter was pre-
sented in [3] for high contrast images and meshes.

In this paper, we present a generic framework for denois-
ing of images using the similarity idea. We propose an exten-
sion of the non-linear bilateral filtering, termed as multilateral
filtering, for denoising of images corrupted with noise and
consisting of smooth regions, edge features, as well as tex-
tured areas. The proposed filtering operates simultaneously
in three or more dimensions: domain filtering, range filter-
ing, and K -dimensional feature filtering for i > 1. The first
two dimensions are the same as those employed in bilateral
filtering. In the larger dimensions, filtering is done based on
similarity of a pixel in the neighborhood to its center pixel.
A set of local features is computed for each pixel using its
local neighborhood. Filtering based on features can proceed
by either cascading the features into a feature vector or by
cascading the filters for each feature. In this work, we have
chosen the former route for simplicity and efficiency reasons.
This adaptive non-linear filtering results in feature (both edge
and texture) preserving images by giving larger weights to
similar pixels and smaller weights to pixels that are differ-
ent, whereby similarities among pixels are not only defined by
intensity of pixels but also by features associated with these
pixels.

In the following section, we describe the operation of bi-
lateral filtering. The proposed framework of multilateral fil-
tering is presented in Section 3. Section 4 gives experimen-
tal results on some standard greyscale images corrupted with
additve Gaussian white noise. Finally, main conclusions of
this paper and ideas for further exploration are summarized in
Section 5.

2. BILATERAL FILTERING

The bilateral filters proposed by Tomasi & Manduchi [1]
belong to a class of non-linear filters designed for edge-
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Fig. 1. The Proposed Iterative Multilateral Filtering Framework

preserving image denoising. They operate by convolving a
given image with a combination of domain and range fil-
ters. The domain filter contains the Gaussian domain weights
computed by the geometric closeness function D(i, j), where
D(i, j) represents the Euclidean distance between the origin
pixel at i and a nearby pixel at j. The range filter, on the
other hand, contains Gaussian range weights computed using
an intensity difference function R(i,j), where R(i,j) gives
the absolute difference between intensity values I(i) and I(j)
corresponding to locations i and j. The range filter is such
that the larger the difference between two intensity values at i
and j, the smaller the corresponding weight is and vice versa.
Let G4; and G, ; respectively denote the domain and range
filters, as defined below:

exp (—0.5[D(i,§)/od)?), (1)
exp (—0.5[R(i,j)/a,]?), Q)

Vj € Nj, where N; denotes the set of pixel coordinates in the
local neighborhood of the center location i, and o4 and o,
denote widths of the two Gaussian kernels. Bilateral filter is
simply a product of the domain filter G4 ; and the range filter
Gr;. A given image I is then convolved with the bilateral

filter to obtain the denoised image 1. For a particular pixel at
location i, I(i) is obatined as follows,

Gasi
Gr,i ==

I() = (Gas-Grs) * Ny 3)

Vi € C, where C denotes a set of all image coordinates and
Nj; denotes the neighborhood of pixel at location i as defined
above.

3. MULTILATERAL FILTERING

One of the major limitations of bilateral filtering is that the
range filter coefficients rely heavily on actual pixel intensity
values which may in turn have been influenced by noise. The
range filter computed in this way may consider two noisy pix-
els to be similar when they happen to have similar intensity
values only because of the influence of noise. It assumes that

the similarity of two pixels can be determined just by ana-
lyzing their intensity values. Furthermore, bilateral filtering
does not take into account any regional (e.g., textural) char-
acteristics which can sometimes be inferred from analysis of
the local statistical or structural properties.

We present a generic framework for image denoising
based on a weighted averaging of image pixels using the
idea of regional similarity in order to overcome the above
limitations. The overall concept of our method is illustrated
in Figure 1. First, we compute a set of suitable features for
the input image I. These features should characterize the
regional similarities of a pixel’s neighborhood such that two
pixels belonging to the same region have a high value of the
similarity function and vice versa. Similarly, if two pixels
belong to a similar kind of edge feature in the image, this
should be reflected by a relatively high value of the similarity
function. Once a suitable set of features has been computed,
the algorithm proceeds by computing the domain and range
filters, as described in the previous section, as well as the
feature filter. As discussed earlier in Section 1, the com-
puted features are cascaded in the form of a feature vector
fi = {f1(1), f2(i),..., fx (i)}, where fi(i) denotes the kth
feature for the pixel at i and K denotes the total number of
features computed per pixel. The adaptive feature filter is
then defined as follows,

Gy =exp (=[lfi - §[[*/207), )
Vj € Nj, where NVj is as defined above and o is width of the
Gaussian kernel associated with the feature filter. The filtered
image I is computed by taking a convolution of the input im-
age I with the product G, ; of the three Gaussian kernels,

Gm,i=(Gai Gri-Gyj). ®)

For a particular pixel at location i, its denoised intensity value
is computed as below,

1) = Gy * M. (6)

Vi € C. This completes one iteration of multilateral filtering.



3.1. Feature Normalization

It is worth noting that for different features put together in the
form of a feature vector, all individual features fi(i), Vk =
1,2,..., K are normalized to have a zero mean and a unit
variance as follows,
. Jr(i) — p
fii) — (()” @)

Ok

where pj and o, respectively denote mean and standard de-
viation of values of the kth feature for all pixels. Normaliza-
tion of all features in this way ensures that equal weightage is
given to all features and no single feature is allowed to domi-
nate other features.

3.2. Iterative Multilateral Filtering

Although the original idea of bilateral filtering was non-
iterative, Barash [4] showed that an iterative application of
bilateral filtering may be required in images with high levels
of noise. Using the robust median filter (RMF) estimator [5]
for noise standard deviation o, in the smoothed image, we
can determine if further smoothing is required. If so, another
iteration of multilateral filtering is performed on the result I,,

of the previous iteration to obtain I,, ;. Needless to say, we
start with Iy = L.

4. EXPERIMENTAL RESULTS

We conducted a large number of experiments with both syn-
thetic and real-world images corrupted with additive Gaussian
white noise (AWGN). Two aspects of the proposed frame-
work were subject of our preliminary investigation reported
in this paper. First, which type of features are useful in de-
noising? Second, how does the proposed method fare as com-
pared to the original bilateral filtering and other state-of-the-
art methods?

To answer the first question, we conducted experiments
with a number of local statistical features such as energy,
variance, entropy and several combinations of these features.
Here we present a subset of our experimental results with
three of the best statistical features: local energy (E), local
variance (var), and a combination of the two. Experimental
results for four 256-level greyscale images, each of a 512 x
512 resolution, are given in Table 1. Two of these are im-
ages containing textural patterns: Cosine Grating, a synthetic
image containing two cosine waves, and a Fingerprint im-
age. The other two images are taken from the standard real-
world test image databases: Lena image consisting of rela-
tively smooth regions and Barbara containing fine periodic
textures at different orientations. Denoising performance is
measured in terms of the Peak Signal to Noise Ratio (PSNR).
For each greyscale test image, five noisy versions were cre-
ated by adding white Gaussian noise with standard deviations
10, 20, 30, 40, and 100. The parameters of bilateral filtering
were set as follows: the window size is 11 x 11, o4 = 1.8,
whereas o, is calculated in a way that PSNR computed from

Input B.ilate'ral Multi- | Multi- | Multi-
Tmage on | Filtering | lateral | lateral | lateral
[1] var E E, var

10 30.23 33.50 33.10 33.70

Cosine 20 23.61 25.53 29.45 29.83
Grating 30 21.81 23.60 26.79 26.54
40 20.61 22.00 2446 | 24.55

100 17.80 18.10 19.20 19.00

10 32.12 32.68 33.10 32.93

Finger- 20 28.14 28.14 29.61 29.10
Print 30 24.73 24.73 26.79 26.10
40 22.81 22.81 24.97 24.30

100 19.29 19.29 19.64 19.47

10 33.75 34.00 34.34 34.10

20 30.57 30.57 31.13 30.72

Lena 30 28.82 28.82 29.32 28.90
40 27.64 27.64 28.03 27.70

100 22.88 22.88 22.88 22.88

10 31.45 31.56 31.71 31.64

20 27.19 27.19 27.52 27.33

Barbara | 30 25.12 25.12 25.36 | 25.18
40 23.98 23.98 24.10 | 23.98

100 20.87 20.87 20.87 20.87

Average - 25.67 26.15 27.12 26.94

Table 1. Results of Multilateral Filtering using Local Statis-
tical Features in terms of PSNR (dB)

output image and original image is maximized. For our pro-
posed method, we set the same window size, o4, 0, to give a
fair comparison. The value of oy is adjusted to maximize the
PSNR. It can be seen from Table 1 that while the proposed
multilateral filtering with a combination of local energy and
variance achieves a PSNR gain of up to 6.22dB over the best
bilateral filtering result in case of the Cosine Grating image
at o, = 20, local energy (E) is the overall winner. This is due
to the fact that measures of local variation, such as local en-
tropy or local variance, are more sensitive to noise than local
energy which has a low-pass effect. It is worth noting that in
the worst case, multilateral filtering behaves at least as well
as a bilateral filter when the noise level is high, e.g., when
on = 100 for Lena and Barbara. In the presence of heavy
noise, local statistical features do not provide much extra in-
formation about the regional characteristics of a pixel. It is
worth noting that multilateral filtering does not only produce
better results in terms of objective PSNR but also in terms of
subjective visual quality. Visual results for both Cosine Grat-
ing and Fingerprint images are shown in Figs. 2 and 3. As
can be seen in these results, the proposed method produces
smoother ridges and sharper edges as compared to the stan-
dard bilateral filtering.

In Table 2, we present a comparison of denoising results
for the proposed method using E with three methods: the
original bilateral filtering [1], a Bayesian approach to wavelet
shrinkage (BayesShrink) [6], and a more recent denoising
method using a contourlet transform (Contourlet-MD) with
sharp localization in frequency and using a multiscale decom-
position [7]. Resuls are given for three standard images for
which published results using the other three methods are
available. It can be seen that the proposed method outper-
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Fig. 2. Denoising Results for a Part of Cosine Grating

Input Bilateral | Bayes | Counterlet The

Image on | Filtering | Shrink MD Proposed
[1] [6] [7] Method

10 33.75 33.38 32.59 34.43

Lena 20 30.57 30.27 31.20 31.13

30 28.82 28.60 28.80 29.32

10 31.45 31.25 30.16 31.71

Barbara | 20 27.19 27.32 27.02 27.52

30 25.12 25.34 25.30 25.36

10 33.81 33.07 32.19 34.45

House 20 30.37 29.83 29.57 31.11

30 28.35 27.12 28.00 29.08

Average | - 29.94 29.58 29.43 30.45

Table 2. Comparative Image Denoising Results in terms of
PSNR (dB)

forms all the other methods in almost all the cases.

5. CONCLUSIONS

In this paper, we have presented a novel framework for adap-
tive nonlinear image smoothing based on featuer similarity.
The proposed filtering method is aimed at smoothing im-
ages while preserving edge as well as regional features. We
showed that local statistical features such as energy and vari-
ance yield plausible denoising results when employed in a
multilateral filtering framework. In the worst case, multi-
lateral filtering performs as well as bilateral filtering due to
the sensitivity of local statistical features when the noise level
is relatively high. Our future work will look into ways to
compute robust local features and improved texture descrip-
tors.

(b) Noisy image; o, = 40
(PSNR=16.10dB)
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(d) Multilateral Filtering
with E
(PSNR=24.97dB)

(a) Original image

(c) Bilateral Filtering
(PSNR=22.81dB)

Fig. 3. Denoising Results for Central Part of Fingerprint
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