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ABSTRACT

A particularly difficult task in molecular imaging is the analysis of

fluorescence microscopy images of neural tissue, as they usually ex-

hibit a high density of objects with diffuse signals. To automate

synapse detection in such images, one has to simulate aspects of

human pattern recognition skills to account for low signal-to-noise-

ratios. We propose a machine learning based method that allows

a direct integration of the experts’ visual expertise who tag a low

number of referential synapses according to their degree of synapse

likeness. The sensitivity and positive predictive values show that by

using graded likeness information in our learning algorithm we can

provide an intuitively tunable tool for neural tissue slide evaluation.

Index Terms— Fluorescence microscopy, neural tissue, object

detection, synapses, supervised machine learning

1. INTRODUCTION

Microscopy image analysis has recently been rediscovered as a top

issue in bioinformatics [1]. However, a topic seldom dealt with,

is the analysis of fluorescence microscopy images of neural tissue

specimens, although such images are of high potential. By counting

synapses in fluorescence microscopy images that represent large ar-

eas of the brain, unlike e.g. imaging with high resolution electron mi-

croscopy [2] which makes synapse detection accurate but only gives

a small view on the brain, quantitative pathological measures can

be derived as for instance in Alzheimer diagnosis [3]. Furthermore,

by applying the Multi-Epitope-Ligand-Cartography (MELC) imag-

ing technology [4], recently further developed as Toponome Imaging

System (TIS) [5, 6], protein patterns can be extracted at each synapse

position which allows for analyzing higher dimensional molecular

synapse characteristics [7].

One big obstacle in analyzing fluorescence micrographs of neu-

ral tissue lies in the image characteristics. Due to the fact that flu-

orescence microscopy has to operate at the diffraction limited reso-

lution of ∼200nm to image e.g. synapses, the micrographs exhibit

a low signal-to-noise-ratio and low contrast but at the same time a

great amount of small, diffuse objects. Different object detection ap-

proaches [8], which are very successful in other microscopy or fluo-

rescence microscopy image analysis applications, are not applicable

to such images. Clear object features, essential in many analysis ap-

proaches, as edges, textures, other first and second order statistics or

PCA mappings, can not reliably be extracted.
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Besides the problem of low signal-to-noise-ratio and low con-

trast, a key problem in detecting synapses in fluorescence mi-

croscopy images is to distinguish between spurious and clear stain-

ing. Objects can be inconsistently or non-specifically stained or

show out of focus blur, which leads to wrong interpretations by

human experts as well as by automatic detection methods. If one

image is repeatedly evaluated by one expert or evaluated by dif-

ferent experts, this leads to significantly different results due to

a low certainty of a true object [9]. This phenomenon is known

as intra- and inter-observer variance. Furthermore, while high

contrast synapses are usually detected with a high reproducibility,

detection of lower contrast synapses greatly depends on how cau-

tious the expert performs. Depending on the biological question, a

false positive synapse is favored against false negative or vice versa,

so different levels of caution need to be applied.

To automate object detection in fluorescence micrographs of

neural tissue, an approach is needed that allows for tuning the cau-

tion of the detection algorithm in a way which is transparent to the

biological experts and directly integrates their visual expertise.

In this paper we introduce a machine learning based synapse

detection approach which accounts for the complexity of the under-

lying data by applying a Support Vector Machine (SVM)[10] with a

nonlinear kernel function and a special postprocessing strategy. With

this method, we are able to detect synapses with an accuracy com-

parable to human performance and superior to thresholding based

approaches. Furthermore, we are able to mimic human caution in

synapse detection by straight forward tuning of the detection algo-

rithm. This is achieved mainly through the choice of the training set,

which is directly understandable by the expert, but can additionally

be steered by changing one parameter for the evaluation of the SVM

detection.

1.1. Image acquisition

We apply the MELC/TIS imaging technology to visualize synapses

in neural tissue digital micrographs. This technology is based on

the fluorescence imaging technique, but enables the acquisition of

fluorescence images of hundreds of distinct tags (e.g. antibodies) on

the same tissue specimen. For this work, two mouse brain samples,

fluorescence labeled with synaptophysin, are used to detect synaptic

regions. Images are taken at a resolution of 256nm/pixel, 16bit/pixel.

Thus, each synapse or synaptic region, which has a diameter of

around 200nm, occupies a region smaller than a pixel. Neverthe-

less, due to the labeling strategy synapses appear as 3×3 - 5×5 pix-

els sized objects. We apply bilateral filtering [11] on each image
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(a) (b)

Fig. 1. Synaptophysin labeled micrographs. (a) 658×517 pixels

sized original image. (b) Noise reduced sub-image of size 250×200,

marked in (a) with a black rectangle.

to eliminate noise but preserve the small objects of interest. Filter

parameters are manually fitted. Figure 1(a) shows one of the synap-

tophysin labeled micrographs of size 658×512 and 1(b) a sub-image

of size 250×200. Its origin is marked in 1(a) by a black rectangle.

Synapses are visible as small glowing dots.

2. SVM FOR SYNAPSE DETECTION

For synapse detection with SVMs, N×N sub-images (patches) of

the input image are evaluated with respect to containing synapses

(N=7). Patches containing synapses should be assigned to the posi-

tive class. Patches containing background or parts of synapses are to

be classified into the negative class.

Because the SVM is a supervised machine learning approach, a

representative set of patches for the SVM training is needed.

2.1. Manual image evaluation

In order to obtain a training set for SVM training and a reference set

for the evaluation of the SVM classification performance, synapse

positions in 250×200 pixels sized sub-images are manually labeled

by three human experts (two on expert-, one on novice-level) with

our own labeling software.

It is a well known problem that human experts are commonly not

capable of explaining and systematically describing the object fea-

tures a labeling decision is based on. Moreover, if an expert labels

the same image twice, varying results are obtained in the majority of

cases. In the special case of synapse marking in fluorescence labeled

neural images, human experts have to label a great number of small

objects with diffuse signals and low contrast, which very soon leads

to mental fatigue. Analyzing a sub-image of 250×200 pixels with

around 700 labeled synapses takes around 3 hours. Furthermore,

computer display setups, illumination situations and a lot more of

external influences can lead to a high inter- and intra-observer vari-

ance. Thus, in order to obtain a training set and to monitor the ex-

perts’ performance, we record not only the synapse positions, but

also one of three quality labels (A: 100% a synapse, B: quite sure a

synapse, C: might be a synapse) is assigned to each synapse accord-

ing to the expert’s personal judgment.

We combine the three human experts to different synthetical

gold experts GX. Synapses are accepted in the gold expert when

they are labeled by at least two human experts. When merging the

position lists of different experts, positions p and p′ are considered

the same if their euclidian distance d(p, p′) < 2. This stringent

constraint is needed because synapses are very densely distributed

in the image and thus can be located very close to each other. De-

pending on the merged lists, we obtain different gold experts. Gold

expert GA subsumes all synapse positions which are labeled quality

A by at least two experts, representing a set of 244 synapse posi-

tions. GB (83 positions) represents all positions marked quality B by

at least two experts and GC (59) all positions marked quality C by at

least two experts. In GAB (417) all synapses which are labeled either

quality A or B by at least two experts are combined. GABC (589)

subsumes all synapses of any quality labeled by at least two experts.

2.2. Training setup

To obtain a positive training sample set S+

X , for each synapse posi-

tion in a gold experts list the gray values of the 7×7 neighborhood

are written to a 49-dimensional gray value vector. In the experi-

ments, the positive sets S+

A and S+

AB are used for training based on

GA and GAB respectively.

Negative sample sets S−

X are created by randomly choosing im-

age positions p fulfilling the constraint that for any positive position

p′ the euclidian distance d(p, p′) > 3. Image patches of negative

and positive samples are therefore allowed to overlap.

Two balanced training sets, i.e each containing an equal num-

ber of negative/positive samples, are obtained (SA and SAB). A fully

automatic ten fold cross validation approach is chosen for kernel pa-

rameterization.

2.3. Postprocessing

To compute synapse positions in a fluorescence micrograph, at each

position p in the image its 7×7 neighborhood gray value vector is

extracted and classified by a trained SVM. If the patch is classified as

a synapse patch, its distance to the hyperplane, which is interpreted

as the confidence value, is plotted to position p of a new matrix of

the same size as the fluorescence image. We thereby obtain a new

image called the confidence map.

Areas of high confidence correspond to synapse locations, where

the highest confidence is likely to be the synapse center. In the con-

fidence map, all positions p with a value greater or equal to a given

threshold t and which are a local maximum of their 5×5 neighbor-

hood are considered as synapses.

3. RESULTS

We analyze the generalization performance of the SVM synapse de-

tection performance on a 250×200 pixels sized micrograph. Synap-

tophysin labeled fluorescence micrographs are evaluated with RBF-

Kernel SVMs and SA and SAB as training sets.

3.1. Human detection performance

We use the standard ROC [12] measures sensitivity (SE) and positive

predictive value (PPV) to statistically assess the performance of the

human experts. SE measures the percentage of synapses which are

given in the gold standard and are also detected by a classifier, here

a human expert. PPV reflects the percentage of synapses detected by

the classifier which are also represented in the gold standard.

As gold standard we used GA, GB, GC and GABC. Thus we

can analyze the humans quality in categorization and their overall

detection performance. Table 1 gives an overview of the mean and

standard deviation of SE and PPV for the different gold standards.

It can be seen by looking at the SE and PPV values of the first three

rows that there is a core set of quality A, B and C synapses which
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Gold standard SEm SEsd PPVm PPVsd

GA 83.74 10.33 77.19 12.11

GB 69.88 13.63 35.63 6.16

GC 66.67 23.25 24.70 5.19

GABC 81.61 17.14 81.24 10.72

Table 1. Human detection performance. Mean (m) and standard

deviation (sd) (in percent) of SE and PPV achieved by human experts

with respect to different gold standards.

Fig. 2. Evaluation of SVM detection results. SEμ and PPVμ are cal-

culated over all five runs for each threshold up to 3. Gold standards

are GA, GAB and GABC.

are labeled and categorized the same by all three human experts. The

overall detection performance (last row) has a PPV of 81.24% and a

SE of 81.61%.

3.2. SVM detection performance

Two strategies are applied to evaluate the SVM detection perfor-

mance. Those are motivated by the strong limitation on available

gold standard data. Furthermore, test and training samples are dis-

tributed across the whole sub-image to reduce illumination caused

problems. This complicates the calculation of a PPV value limited

to test samples. Thus, PPV and SE values are calculated on train-

ing and non training samples. Based on those results, SE values are

recalculated limited to non training samples.

For detection accuracy assessment, we apply a five fold cross

validation experiment. 80% of the training sets are used for training

and SE and PPV are averaged over all five runs, yielding SEμ and

PPVμ. In the confidence map evaluation we vary the threshold t to

adjust the number of detected synapses. For each resulting list of

synapse positions based upon a threshold t, SEμ and PPVμ are cal-

culated with respect to three gold experts (GA, GAB, GABC). Figure

2 gives an overview of how SEμ and PPVμ develop with increas-

ing threshold with respect to different gold standards. Training is

performed on SA.

The plotted values show that by defining a high threshold

(≥ 2.28) we achieve a PPVμ ≥90% with respect to GA with a

SEμ of 55%. For the less conservative gold standards (GAB, GABC)

PPVμ increases. Decreasing the threshold results in a higher SEμ

with decreasing PPVμ. Nevertheless, for a SEμ of 96% for GA,

still a PPVμ of 66% and 82% with respect to GAB and GABC are

obtained, respectively. Thus, decreasing the threshold allows for

more low quality synapses.

Training set GA GAB GABC

SA 78.28, 78.85 78.66, 64.98 80.61, 72.45

SAB 71.23, 70.39 80.43, 79.06 83.09, 69.80

Table 2. Mean SE (normal font) and mean SE for non training sam-

ples (bold face font),in percent, calculated over all five runs with

individual threshold selection so that PPV ≥ 80% with respect to

three gold standards (GA, GAB, GABC). As training sets SA and SAB

are used.

Fig. 3. Synapse detection result in synaptophysin labeled sub-image

(250×200 pixels). Detected synapses are marked by a white 7×7

pixels sized box.

Optimal thresholds can vary for each individual run. To obtain

the actual mean SE for a PPV of 80%, thresholds are selected in-

dividually for each SVM so that PPV ≥ 80% and with highest SE.

Table 2 (normal font) gives an overview of the mean SEs with respect

to GA, GAB and GABC if thresholds are selected individually. Table

2 shows that training with a lower quality set yields higher mean SE

for low quality synapses and thus enables a selective tuning of the

detection algorithm.

All runs are trained and evaluated on the same image. This

gives slightly biased results, because also the training samples are

included in the evaluation. To assess the performance of the clas-

sifier with respect to only non training samples, the sensitivity for

non training samples is calculated for each classifier based on the

previously defined individual thresholds yielding 80% PPV. Table 2

(bold face font) gives an overview of the mean SEs for non training

samples with respect to the different gold experts. Again, training

with high quality synapses yields an SVM optimized for detection

of high quality synapses. Training with a lower quality set tunes the

SVM with respect to detect low quality synapses. In most biologi-

cal applications, optimizing the SVM for a detection of high quality

objects is of greatest importance.

As an example, figure 3 shows one detection result for the image

shown in figure 1 with a PPV of 80% and a SE of 81% (SE for

non training samples: 87%). In this analysis 49 patches are falsely

classified as synapses. When analyzing these patches it can be seen

that most of them have synapse like appearance. When compared to

GAB and GABC 37 and 46 of the false positive patches are included,

respectively. The remaining three are classified by one of the experts

as synapses, two of them category B, one category A.

Also inter-image classification performance is measured. SVMs

are trained with SA on synaptophysin image 1(b) and tested on a
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Training set GA (35) GAB (75) GABC (131)

SA 58.2 (91.4) 48.6 (82.4) 61.6 (80.2)

Table 3. SE (PPV) values in percent with respect to a PPV ≥ 80%

for different gold standards. The number of synapse positions in

each gold standard is given in braces. Training is performed on

synaptophysin image 1 with SA, testing on synaptophysin image 2.

synaptophysin image of another tissue sample (image 2, not shown).

Table 3 subsumes the mean SE and PPV values obtained for different

gold standards. SEs of up to 61.6% could be achieved. As the gold

expert sets are of small size, few false positives or false negatives are

sufficient to greatly reduce the PPV and SE. A larger gold expert set

would lead to more trustworthy values. Furthermore, as image 2 has

a shifted and compressed histogram with respect to the histogram

of image 1, the detection performance furthermore depends on the

adaption of both histograms. The adaption performed in this study

is based on shifting the histogram of image 2, so that signal values

of both images more or less occupy the same gray value range. Nev-

ertheless, by applying more sophisticated adaption strategies and/or

modifying the training set, better performance should be achievable.

As synapses appear as glowing dots, which might suggest the

application of thresholding approaches, we tested the performance

of a basic image processing approach based on thresholding and

morphological operators [13] for synapse detection. The obtained

detection results are compared against GA, GAB and GABC. The best

result which could be obtained is a PPV of 80.12% and a SE of

21.90% for GABC. For all other gold experts, no PPV ≥80% could

be achieved. These results are inferior to SVM based detection.

4. DISCUSSION

The human detection results show that the evaluation of fluorescence

labeled micrographs of neural tissue is of high difficulty even for

human experts. Their overall detection performance has a SE of 82%

and a PPV of 81%. For the quality categorization they are certain

for a specific core set of synapses for each quality, but there is still

variation in their personal quality estimate.

With our automated SVM based detection method we are able

to achieve similar SE and PPV values as the human experts. Our

acceptable PPV cutoff is set at 80%, therefore in some cases we

achieve slightly lower SE values than the human experts. By select-

ing a representative training set, we are able to optimize the SVM

to detect a specific quality class. Thus, training set selection gives

one possibility to model the human experts quality assignment. A

second way is given through varying the threshold for confidence

map evaluation. High confidence values yield certain synapses, low

confidence values uncertain synapses.

5. CONCLUSION

Our results suggest that fully automated threshold based approaches

are less precise to perform segmentation because of non-homogene-

ous brightness and non trivial single synapse signal, which is partly

caused by the high synapse density. With our machine learning ap-

proach we are able to detect nanoscale sized objects and achieve a

detection performance similar to the human experts. Through vary-

ing the threshold of the confidence map evaluation and/or by adapt-

ing the training set, more or less low quality synapses are detected

automatically. Thus, all further analysis can be based on a repro-

ducible set of synapses with a tunable degree of certainty which al-

lows biologists to analyze their data on their desired level of flexi-

bility. Furthermore, by applying SVM based detection we give the

opportunity to directly incorporate the experts’ knowledge into the

detection method. Detecting more than 2500 synapses in a 658×517

pixels micrograph takes less than 20 seconds on a standard PC. With

respect to the human labeling of a 250×200 pixels sized micrograph

which takes about 3 hours, this is an enormous time and cost reduc-

tion.
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