Annotating Cooperative Plans with Trusted Agents

Nathan Griffiths
Dept of Computer Science
University of Warwick
Coventry, CV4 7AL, UK

ABSTRACT

Cooperation is the single most fundamental characteristic of multi-
agent systems, and much work has been done on studying the var-
ious aspects involved, from general models of the overall structure
of cooperation to detailed analyses of specific components. In our
work, we aim to do both — we provide a general model and in-
stantiate each stage in that model. We take the notions of trust and
motivation to be fundamental to engendering successful coopera-
tion between autonomous entities, and our model of cooperation
accounts for the important roles played by these concepts. This pa-
per focuses in particular on the details of how, based on trust, an
agent chooses and keeps track of which agents it may use to assist
in the performance of actions that make up a multi-agent plan, and
how that information can be used in actually soliciting the assis-
tance.

1. INTRODUCTION

1.1 Cooperation

Cooperation underpins multi-agent systems in which individual ag-
ents must interact for the overall system to function effectively.
There has been much previous work in examination of different
aspects of cooperation and cooperative activity, but only relatively
little concerned with a detailed examination of the different stages
involved in a full appreciation of it. In this paper we introduce
an overall model of cooperation that is heavily dependent on the
notion of trust as supplying the glue to support effective interac-
tion. Trust is an issue that is little considered in this respect, but
is involved in, and necessary for, the establishment of inter-agent
cooperative relationships in dynamic and open environments, and
has an important role to play. It is used to identify potential trusted
partners for cooperation and to annotate plans with those partners
so that the plans may be executed with reference to those agents
already included in the plan.

Our model can be seen as instantiating previous work in a more
general effort by Wooldridge and Jennings [15], and offering a de-
tailed analysis of how cooperative plans can be constructed. It is
not intended to offer a sophisticated representation for trust itself

Michael Luck
Dept of Electronics and
Computer Science
University of Southampton

nathan@dcs.warwick.ac.uk Seuthampton, SO171BJ, UK
mml@ecs.soton.ac.uk

Mark d’Inverno
Cavendish School of
Computer Science
Westminster University
London, W1M 8JS, UK

dinverm@wmin.ac.uk

and how it is modified and updated, rather to show how it can be
used to support cooperative activity. In this section we describe the
basic outline of our model and introduce the fundamental aspects
of it, before going into detail of cooperative plan annotation based
on trust in the rest of the paper.

Adopting the BDI approach in which an individual agent comprises
beliefs (about itself, others and the environment), desires (in terms
of the states it wants to achieve) and intentions (as adopted plans for
these desires) [2], a detailed model of agent behaviour can be con-
structed. However, in line with the views of some that motivation is
an extra component need in such models, we include explicit moti-
vations, which embody the high-level desires that guide behaviour,
and at a fundamental level control an agent’s reasoning cycle [10].
In this view, an agent responds to changes in its beliefs, resulting
from perception, by generating a set of goals® according to its mo-
tivations and beliefs. It then determines which goals to commit to
according to the motivational value they afford, and selects an ap-
propriate plan to use (adopting it as an intention). Finally, an agent
selects a particular intention to pursue and acts towards its achieve-
ment, again using motivational value as the guiding measure.

There are several distinct tasks surrounding the formation and ex-
ecution of a cooperative intention, which we introduce in this sec-
tion. If an agent is faced with a plan containing actions that require
assistance, or actions that are beyond the extent of its capabilities,
it must seek assistance from others and form an appropriate coop-
erative intention before that plan can be fully executed. This, in
turn, gives rise to a second situation in which cooperation arises,
which is in response to another’s request for assistance. In both
cases cooperation arises from a particular agent wishing to adopt
a plan that contains actions it is unable to perform alone — in the
first case the agent itself has the plan, while in second case it is
another agent’s plan that leads to the request for assistance. The
notion of cooperation arising in response to a particular plan com-
plements the approach taken in many BDI-based systems of con-
structing plans from a library of partial plans, rather than from first
principles. Since we are adopting the BDI approach, and are not
assuming that agents have the ability to plan from first principles,
we take this view of cooperation arising in response to a particular
plan, rather than focusing upon forming a cooperative group and
then addressing the task of constructing a plan from scratch. Al-
though we take this view, our approach does not preclude planning
from first principles; the impact of trust and motivational value are

!\We use the term goal rather than desire in order to make clear the
distinction between the desire to bring about a specific situation (a
goal) and a more general desire (a motivation). For example, the
motivation of thirst may lead to the goal of drinking a cup of coffee.

similar in both approaches (a discussion of how these issues can be
found in [5]). Note also that provision is made for an agent to seek
assistance if it does not have a suitable plan for its goal, and our
model supports the construction of suitable plans in a cooperative
manner. However, we are not concerned with group planning per
se, and this paper is orthogonal to work such as Grosz and Kraus’
model of SharedPlans [7], and although the notions of trust and
motivation are applicable to group planning, this is is beyond the
scope of our work. The entire process of setting up cooperation
among agents can be broken down into the stages of plan selection,
intention adoption, and group action.

1.2 Plan Selection

An agent’s motivations give rise to certain goals that must be adop-
ted as intentions, by selecting an appropriate plan and forming a
commitment to its execution. Now, the set of applicable plans for
a particular goal may include plans containing actions that are be-
yond the agent’s capabilities, or joint or concurrent actions. We
refer to such plans as cooperative plans since they can only be ex-
ecuted through cooperation with others. If an agent selects a co-
operative plan, it is electing to cooperate for the achievement of
its goal. In order to select between plans, where the execution of
those plans may require cooperation, an agent must consider the
nature of the agents it may cooperate with; it should consider both
the likelihood of finding agents to assist in achieving its goal and
the likelihood that they will execute the plan successfully, i.e. their
trustworthiness. However, although the characteristics of others are
considered at selection time, the agent cannot decide which agents
to seek assistance from since there may be a delay between select-
ing a plan and actually acting towards it, thus any annotation may
be premature. Additionally, there is a computational cost to anno-
tating a plan, and since there are typically several plans to choose
between it is undesirable to annotate each to select between them.
Rather, a coarser approach to plan selection is taken which min-
imises the computational cost. If there were a very small number
of plans to choose from, and the delay between selection and ex-
ecution could be guaranteed to be small then it may be computa-
tionally cheaper for an agent to annotate its plans at selection time.
However, in general we cannot make such guarantees and so such
pre-selection plan annotation is not appropriate. Note also that the
cost of annotation is proportional to the number of plans, and since
pre-selection plan annotation is only useful when there is a small
number of plans, the benefits are also (relatively) small. Ongoing
work aims to investigate whether an agent’s knowledge about the
evolution of its environment can be used to determine when to per-
form pre-selection plan annotation in a computationally efficient
manner.

Since an agent’s choice of plan determines whether it must cooper-
ate to achieve its goal, and cooperation involves a certain degree of
risk, then to choose the plan involving cooperation requires there
to be some inherent advantage to that cooperation. The problem
of plan selection amounts to choosing the best plan — the plan
that is most likely to be successful, with least cost in terms of time
and resources, and the least risk. When the plans involved do not
involve other agents, standard plan selection criteria (or planning
heuristics) can be used to assess cost. However, when plans in-
volve others, an element of risk is introduced by the inherent un-
certainty of interaction. In addition to a measure of the cost of a
plan, therefore, we need to assess the likelihood of finding agents
for actions required for successful plan execution; the likelihood
that such agents will agree to cooperate; and the likelihood that the
agents concerned will fulfill their commitments.

The notion of trust is recognised by several researchers as a means
of assessing the perceived risk in interactions [3, 11]. The risk
of whether to cooperate and with whom, may be determined by,
among other things, the degree of confidence or trust in other agents.
Despite the notion of trust being commonplace in our everyday in-
teractions, there are few formal definitions. However, it is generally
accepted that trust implies a form of risk, and that entering into a
trusting relationship is choosing to take an uncertain path that can
lead to either benefit or cost depending on the behaviour of oth-
ers. The perceived risk of cooperating with a particular agent is
determined by that agent’s reliability, honesty, veracity, etc., em-
bodied by the notion of trust. As an agent interacts with others
it can ascribe trust values based on their previous behaviour, and
over time improve its model of trustworthiness. Thus, in a sense,
trust provides a mechanism for an individual agent to maintain its
own view of the reputation of another. These values can be used as
a means of assessing the risk involved in cooperating with others.
Since, in general, agents do not necessarily have sufficient reason-
ing capabilities to assess the various facets of others that determine
their trustworthiness, such as their honesty and veracity, a coarser
mechanistic approach is taken.

Trust values are initially ascribed to others (and form part of its
models of others) according to an agent’s disposition: optimistic
agents are likely to ascribe a high value, while pessimists are likely
to give a low value. This disposition also determines how trust
values are updated as a result of interactions with others [12]. Af-
ter a successful interaction optimists increase their trust more than
pessimists, and conversely, after an unsuccessful interaction pes-
simists decrease their trust more than optimists. The magnitude of
change in trust is a function of a variety of factors depending on
the agent concerned, including the current trust and the extent of
the agent’s optimistic or pessimistic disposition. However a sim-
plistic approach, described in more detail in [5], is for an agent’s
disposition to be represented by two values, trustincrease and
trustDecrease, which determine the proportion of current trust
level to increase or decrease by respectively according to whether
an interaction was successful or not.

We have described in [6] a mechanism for assessing the contribu-
tions contained in a plan in terms of the risk associated with the
agents who are believed capable of executing them. This assess-
ment is combined with more traditional standard planning heuris-
tics (such as cost and plan length) to obtain a measure for selecting
between plans that balances these, often contradictory, desires to
minimise both cost and risk. Using this approach an agent’s choice
about whether to cooperate or not is embodied by its choice of plan.

1.3 Intention Adoption

After selecting a plan for its goal an agent must commit to its execu-
tion by forming an intention. If the plan does not require assistance
from others then it can simply be adopted and action towards it
can begin, otherwise the agent must solicit assistance from selected
agents towards its execution. We refer to the agent that selects a
cooperative plan, and attempts to gain assistance for its execution,
as the initiating agent, or the initiator. In order to gain assistance,
the initiator must first determine which agents to request assistance
from, achieved by iterating through the steps of the plan, annotating
each contribution with the identifier of the agent that the initiator
considers the best to perform it, based on knowledge of their capa-
bilities, and their believed reliability, etc. as determined by the trust
value ascribed to them. The assistance of these agents can then be
requested. On receiving a request for assistance, these agents in-

spect their own motivations and intentions to decide whether or not
to agree, and send an appropriate response to the requesting agent;
an agent’s motivations determine whether it wants to cooperate, and
its existing intentions determine whether it can cooperate (since in-
tentions must be consistent). If sufficient agents agree then a com-
mitment in the form of a cooperative intention can be established
among them. However, if insufficient agents agree then either the
plan can be reannotated, or failure is conceded.

1.4 Group Action

Once a group of agents have formed a cooperative intention they
can execute it — each step of the plan in turn is either performed or
elaborated according to whether it is an action or a subgoal, respec-
tively. On the successful completion of the cooperative intention,
the agents concerned dissolve their commitment and cooperation is
finished. Alternatively, if execution of the intention fails, the agent
that first comes to believe this informs the others in accordance
with the conventions introduced in the previous section, and again
their commitments are dissolved. In both cases agents can update
the information they store about others to aid future decisions about
cooperation, in particular the trust values ascribed to these agents
are updated. For example, if cooperation fails due to the behaviour
of a particular agent, others may be more wary of cooperating with
that agent in future.

1.5 Cooperative Plan Annotation

These stages strongly relate to those contained in Wooldridge and
Jennings’ formalisation of cooperative problem solving, namely:
recognition of the potential for cooperation, team formation, plan
formation, and team action [15]. Their model is relatively abstract
and, as they recognise, is intended to provide a top-level specifi-
cation for a system, requiring more detail before it can be imple-
mented. We view the work described in this paper as providing an
instantiation for some of the details that were previously left ab-
stract. Wooldridge and Jennings also recognise that although the
stages in their model are presented as being sequential, in practice
they may not occur strictly in the order they describe. Indeed, this
is a significant difference between our model and theirs; in our ap-
proach an individual agent selects a plan that requires cooperation,
and then seeks assistance, while in their approach an agent recog-
nises the potential for cooperation, seeks assistance, and then the
agents as a group form a plan.

This difference arises from our alternative view of the potential for
cooperation, which in turn is a result of the nature of our agent ar-
chitecture. They view the potential for cooperation as being where
an agent has a goal that it is unable to achieve in isolation, or does
not want to use the resources required to achieve it alone. Alterna-
tively, in our framework the recognition of the potential for coop-
eration is implicit in an agent’s choice of how to achieve its goal
— an agent simply selects a plan to achieve its goal, which may or
may not require cooperation to execute. Therefore, in our model
an agent seeks assistance after a plan has been selected rather than
before, since unless an agent knows how to achieve the goal it can-
not consider what cooperation may result from that goal®. This is
important since we are specifically concerned with why an agent
might enter into cooperation.

21t is, however, possible for an agent to seek assistance if it has
no explicit plan for its goal by using the plan containing just that
goal as a plan step. However, due to space constraints we do not
consider the details here (a discussion can be found in [5]).

In dynamic environments there is often a delay between between
obtaining commitments from others and using them in plan exe-
cution. In general, the longer this delay, the more time there is for
agents’ motivations to change, thereby increasing the risk of failure.
To address this, an initiating agent can choose between annotating a
plan and soliciting assistance as soon as the plan is selected (an im-
mediate commitment strategy), or waiting until execution time (a
delayed commitment strategy). This is a choice about when to an-
notate its plan and obtain commitments, rather than whether to do
so. Several factors are relevant in choosing between strategies, in-
cluding the trust of others, the degree of environmental dynamism,
and the nature of the domain itself. The degree of dynamism de-
termines how likely others’ motivations are to change, since the
intensity of an agent’s motivations are determined in response to
its perceptions of the environment. The trustworthiness of others
can can be used as an indication of the likelihood that their com-
mitments will be fulfilled. Higher trust suggests a greater perceived
likelihood of fulfilling commitments. If other agents are generally
distrusted, therefore, obtaining commitments at plan selection time
may be too expensive since they are more likely to renege on them.
However, due to space constraints we do not describe how to make
this choice here. Instead we simply note that this offers agents con-
siderable flexibility in establishing cooperative activity.

Having previously considered the plan selection stage in some de-
tail [6], this paper extends that, and is specifically concerned with
intention adoption, focusing in particular on plan annotation. The
next section introduces the notion of cooperative plans, which re-
quire a number of agents to execute. After plan selection an agent
must seek assistance from others, beginning by annotating that plan
with appropriate agents as described in Section 3. In Section 4 we
introduce a number of approaches for requesting another’s assis-
tance with respect to an annotated plan. Finally, Section 5 con-
cludes this paper.

2. COOPERATIVE PLANS

For an agent situated in a multi-agent environment to take advan-
tage of others, its plans must include a means for it to interact with
them. Cooperation may take the form of performing an action on
behalf of another, a group of agents performing a (joint) action to-
gether, or a set of (concurrent) actions performed at the same time.

Our definitions of these actions build upon the notions of strong and
weak parallelism described by Kinny et al. by decomposing joint
actions into the specific component actions, or contributions, that
comprise them [8]. This allows us to build a relatively simple, yet
expressive, formalisation in which to represent cooperative plans.
Although not as expressive as possible alternative approaches, such
as directed graphs, the resulting plans are simpler to manipulate,
and are sufficient for most situations. Moreover, the general prin-
ciples of plan annotation expressed in this paper, could be equally
well applied to an alternative representation of plans.

First, individual actions are those performed by an individual agent
without the need for assistance, and may be executed by the agent
owning the plan in which it is contained, or by another agent on
its behalf. Now, in a cooperative domain, an agent needs to track
who performs each action in a plan, so we represent each action as
a contribution, which is a tuple comprising the action and a glob-
ally unique identifier corresponding to the agent that performs it.
Using the Z notation, which is based on set-theory and first order
logic [13], we write this formally as follows. (A full treatment of
Z, together with explanations of its suitability for specification of

agent systems and its usefulness in moving from specification to
implementation, is available elsewhere [4]; for reasons of brevity,
however, we will not elaborate the use of Z further.)

—_ Agent
agtld : AgentID
beliefs : P Belief
goals : P Goal
intentions : P Intention
motivations : P Motivation
capabilities : P Act

__Contrb
act : Act
agtld : AgentID

act € (agent agtld).capabilities

Joint actions are composite actions, made up of individual actions
that must be performed together by a group of agents. Each agent
involved in executing a joint action makes a simultaneous contri-
bution to the joint action, corresponding to the component action
that it performs®. Note that the agents within any joint contribution
must be distinct.

__JointAct
contrbs : P Contrb

F#contrbs > 2
Vi, co: contrbs | c1 # c2 ®
c1.agtld # co.agtld

Finally, concurrent actions are those that can be performed in paral-
lel by different agents, without the need for synchronisation (except
at the beginning and end of a set of concurrent actions). Concurrent
actions can comprise both individual contributions and joint actions
that are to be performed simultaneously, denoted by singles and
joints in the schema ConcAct. As with joint actions, the action
an agent performs as part of a set of concurrent actions is its contri-
bution®. Unlike joint actions there is no requirement for the agents
involved in a concurrent action to be distinct, although in practise
they typically are (otherwise the components of the concurrent ac-
tion must be executed sequentially).

_ ConcAct
singles : P Contrb
joints : P JointAct
allcontrbs : P Contrb

#singles + #joints > 1
allcontrbs = singles U |J{j : joints e j.contrbs}

In common with the base BDI model, we take plans to be par-
tial in that they are incomplete, and contain subgoals in addition to

3For example, if agents a1 and awo perform the joint action of lifting
a table, then or; must make the contribution of lifting one end of the
table simultaneously with « lifting the other.

4For example, if agents o1 and o each write a chapter for a book,
and they perform their actions in parallel, then o1 and a2 perform
concurrent actions where each agent’s contribution is the action of
writing the appropriate chapter.

actions [2]. Additionally, since plans apply only to particular situ-
ations, they must also have a set of preconditions that define when
they are applicable. Thus, we define a plan as sequence of steps,
where a step is either an individual action, a joint action, a set of
concurrent actions, or a subgoal.

PlanStep ::= Individual {{ Contrb))
| Joint{(JointAct))
| Conc{{ConcAct))
| Subgoal({{ Goal))

— Plan
| achieves : Goal
| precon : P Belief

body : seq PlanStep

3. PLAN ANNOTATION USING TRUST

Once an agent has selected a plan for its goal that plan must ei-
ther be adopted as an intention if its execution does not require
assistance, or the agent must initiate the process of forming a co-
operative intention if others are required for the plan’s execution.
As described above, the first step in forming a cooperative inten-
tion is to determine which agents would best perform the contribu-
tions in the plan. Agents selected in this way are associated with
a contribution by annotating it with the identifiers of the agents,
and each cooperative action in the plan must be annotated in this
way. Note that several agents may be able to perform the required
contribution, and more than one may be listed in the annotation. In
this case, there is a degree of redundancy to safeguard against the
situation where some agents decline to cooperate, which we call re-
dundant annotation. Conversely, we refer to the annotation of each
contribution with just one agent as minimal annotation.

In pursuit of the desire to minimise the risk associated with elect-
ing to use a cooperative plan an agent uses its knowledge of others
in selecting agents to cooperate with. In particular an agent can
use knowledge based on its previous experience of others, in the
form of the trust ascribed to them, in evaluating potentially cooper-
ative partners. In general, each action is annotated with the » most
trusted agents, where n = 1 in minimal annotation and » > 1 in
redundant annotation. Note that if » > 1 and the number of agents
having the required capabilities is less than n (but more than 1) the
agent must simply annotate the plan with all those agents, rather
than trying to find others with the required capabilities in order to
annotate the plan with n agents. If no agents are known to have the
required capabilities then plan annotation fails.

With redundant annotation, even if some of the chosen agents de-
cline to cooperate, cooperation may still be successful. For exam-
ple, suppose that for each action three agents are asked for assis-
tance. If all three agents accept then the initiator can simply enter
into cooperation with the most trusted agent (since it is perceived
to involve the least risk). However, if two agents decline, then co-
operation can still go ahead with the third agent. In general the ini-
tiator will enter into cooperation with the most trusted combination
of agents from the redundant annotation that agree to cooperate.
Unfortunately, this redundancy comes at a price, firstly, because
the cost of communication and processing the responses will be
increased over minimal annotation where a single agent might be
asked for each action, in the ideal case of that agent accepting. Sec-
ondly, constantly requesting assistance but then not entering into
cooperation with the agents that accede (for example because a
more trusted agent agrees) might lead to others reducing their trust

of the initiator. Furthermore, using minimal annotation when some
actions need to be reassigned, may still have reduced communica-
tion cost, since there may be fewer agents in total to send requests
to. Note, however, that at a lower level redundant annotation offers
more scope for optimisation, for example through the use of tar-
geted broadcast messages (which may be cheaper than communi-
cating with several agents individually). Thus, it is not necessarily
true to say that redundant annotation, where n agents are asked for
each action, is equivalent in communication cost to minimal anno-
tation where the nth agent agrees, since it may be cheaper to send
a single broadcast than to send » individual messages.

3.1 Choice of Annotation Strategy

At this point, it is useful to introduce the notion of a closely cou-
pled and loosely coupled view of agent systems. Where we are con-
cerned with the behaviour and performance of a multi-agent system
as a whole rather than with a specific individual in that system, as
in when designing a complete multi-agent system to perform a par-
ticular task, we say that we are taking a closely coupled view. Con-
versely, where we are concerned with maximising the performance
of a particular agent, without concern for the effect on the system
as a whole, as with an agent designed to compete against others,
such as an auction agent, this is a loosely coupled view.

Now, in the closely coupled view, redundant annotation may have
negative effects on the group’s efficiency since there will obviously
be some overhead involved in agents agreeing to cooperate. In par-
ticular, an agent may be unnecessarily constrained while commit-
ted to cooperating in this way (though perhaps not actually being
needed), which may have prevented it from doing something else
beneficial to itself or the group as a whole. Thus, although redun-
dant annotation increases the likelihood of getting agreement to co-
operate without reassigning actions, it may be counter-productive
overall in this respect.

In the loosely coupled view, when concerned with maximising in-
dividual performance without consideration of others, redundant
annotation may not be successful over a period of time. If an agent
is asked for assistance and agrees to provide it, only to be turned
down later, its trust of the requesting agent will tend to decrease,
since the requester did not honour the request and may have cost
the provider time and caused it to constrain its actions unnecessar-
ily. While the effect may be negligible in the short term, over an
extended period the decreased trust may cause the provider to de-
cline to cooperate. Thus, if at a later point there is only one agent
with the appropriate capabilities, that agent may refuse to cooperate
because it does not trust the requester; it has been inconvenienced
too many times.

Ultimately, the best strategy in terms of redundant or minimal an-
notation is determined by both the domain itself and the overall per-
spective (of maximising system or individual performance). Over-
arching these issues, however, is the importance to the initiator of
its goal, since if a goal is important, redundant annotation may be
justified despite any concern for the performance of the overall sys-
tem. It is, therefore, desirable for an agent to be able to choose
between these strategies dynamically, according to the current sit-
uation, and we consider both possibilities in the remainder of this
chapter. In order to deal with this, we introduce the notion of a
redundancy threshold to determine whether to use redundant an-
notation. If the motivational value of a goal is greater than this
threshold then redundant annotation is used. However, since the
redundant approach should only be used sparingly this threshold

must be sufficiently high.

3.2 Annotating with Trusted Agents

Although this considers whether agents are trusted, it does not con-
sider whether they are distrusted i.e. are trusted below some min-
imum trust threshold. If the only agents that are believed to have
the required capabilities are distrusted, then it may be better for the
assignment of agents to actions to fail, rather than enter into coop-
eration with a group of distrusted agents, since they are considered
likely to renege on their commitments. Agents that are distrusted
are not annotated to a plan; thus if all the agents capable of per-
forming a particular action are distrusted then plan annotation fails.
An agent is trusted if and only if the trust ascribed to it is above a
minimal threshold. The minimal trust threshold is part of an agent’s
disposition, but is also affected in an inversely proportional manner
by the importance of the current goal. Thus, if an agent’s goal is
sufficiently important to it, we can model the situation where it is
better to have tried to achieve it, and failed, than to have not tried at
all. The trust of an agent, along with its capabilities is embodied in
a model of that agent, formalised as follows. Note that each agent
has its own models, giving it an individual representation of others’
capabilities and trustworthiness.

AgentModel
agtld : AgentID
trust : R
capabilities : P Act

|

For ease of specification we assume an injective function which
maps each agent identifier onto the corresponding agent.

| agent : AgentID — Agent

This formalisation allows us to express complex trust relationships,
and to express the web of trust that links agents together. Our ap-
proach is simplified, however, in that we do not consider situational
trust where the trust associated with a particular agent varies ac-
cording to the current situation [11]. For example, while an agent
may trust another to extract product information from a database,
it might not trust it to determine which product represents the best
value for money. Conceptually situational trust is a more power-
ful mechanism than general trust, however the computational over-
head involved in identifying and maintaining trust values for spe-
cific tasks can be prohibitive, and so we do not use it here.

3.3 Individual Action Annotation

Recall that a contribution is defined to be an action, along with the
identifier of the agent that is to perform it. Where we are concerned
with minimal annotation this is sufficient to represent the agent an-
notated to a contribution. However, when we consider redundant
annotation, this is insufficient, since we need to associate a set of
agent identifiers with a particular action. Therefore, before we can
give the function for annotating a contribution we must introduce
the notion of an annotated contribution, where an action is anno-
tated with a set of agents. Clearly the action must be in the capabil-
ities of each of the associated agents, according to the correspond-
ing agent model.

__ AnntdContrb
act : Act
agts : P AgentID

act € N{a : agts o (agent a).capabilities}

The annotation of a contribution is given below in the schema Ann-
tContrb, in which maz and ¢ represent the number of agents with
which to annotate a contribution and the minimum trust threshold,
respectively. This function specifies that an individual contribution
is annotated with the maz most trusted agents, provided their asso-
ciated trust values are greater than ¢.

anntContrb : Contrb — P AgentModel
— Z — R — AnntdConitrb

Y ¢ : Contrb; ms : P AgentModel; max : Z;
t: R; anntc : AnntdContrb e
anntContrb ¢ ms max t = anntc =

c.act = anntc.act N\

#anntc.agts < maz N

(¥ agt : anntc.agts @ Im : ms e
m.agtld = agt N\
c.act € m.capabilities N
m.trust > t)

The predicate part of this schema states that:

1. the action of the annotated contribution is the same as that of
the contribution,

2. there are at most maz number of agents in the annotated
contribution,

3. for every agent in the annotated contribution there is an as-
sociated agent model in the original set of agent models, ms,
from which we are choosing,

4. according to this model all agents have capabilities which
contain the action of the original contributions, and

5. the trust value of the agent (in the corresponding model) is
above the value ¢ supplied as a function parameter.

3.4 Simultaneous Action Annotation

The approach described above is only applicable for plans that do
not contain joint or concurrent actions. The main consideration
in annotating a plan containing joint or concurrent actions is that
an agent must not be required to execute two or more contribu-
tions simultaneously, since we assume that agents can only perform
one action at a given time. In minimal annotation this is simply
achieved by not annotating an agent to more than one simultane-
ous contribution. Annotated joint and concurrent actions can be
constructed from annotated contributions, formalised below.

__AnntdJointAct
anntcontrbs : P AnntdContrb

#anntcontrbs > 2

—_ AnntdConcAct
singles : P AnntdContrb
joints : P AnntdJointAct
allcontrbs : P AnntdContrb

#singles + #joints > 1
allcontrbs = singles U
U{J : joints e j.anntcontrbs}

A minimal annotation has only one agent associated with an action
and, necessarily, all the agents must be distinct. Note that for a
concurrent action the only constraint is that the component individ-
ual and joint actions are minimally annotated, since although the
components of a concurrent action are typically executed simulta-
neously, this is not a formal requirement.

__ MinimalAnntdJointAct
AnntdJointAct

Y ¢ : anntcontrbs e #c.agts = 1
V1, 2 anntcontrbs | ¢ # cz ®
c1.agts # cz2.agts

__ MinimalAnntdConcAct
AnntdConcAct

Y : singles ® #c.agts = 1

Redundant annotation, however, is more complex, because an agent
might be annotated to several simultaneous contributions, and its
assistance requested for all of them.

Since an agent can only perform one action at a time, and its inten-
tions must be consistent, an agent asked to assist for several simul-
taneous contributions can only agree to one of them at most (ac-
cording to its motivations and intentions), or its intentions would
become inconsistent. Redundant annotation of an agent to sev-
eral simultaneous contributions allows that agent to choose which
contributions it performs. The key requirement when annotating
the same agent to more than one simultaneous contribution is that
agreement is necessary for at most one of them. For example, a
joint action comprising two contributions each annotated with the
same two agents is a valid annotation, because either agent can
perform either contribution. Alternatively, a joint action compris-
ing three contributions, each annotated with the same two agents,
is not a valid annotation, since even if both agents agree to perform
a contribution, there will be a third contribution for which no agent
has agreed. (These are illustrated in Figure 1). Where we are con-
cerned with annotating concurrent actions it is possible for an agent
to be annotated to more than one thread of execution since synchro-
nisation is only required at the beginning and end of a concurrent
action block, and all contributions do not necessarily have to be
performed simultaneously, although doing so may compromise ef-
ficiency. Formally, a valid annotation is one where it is possible to
find a minimal interpretation by selecting appropriate agents, such
that the minimal contribution has the same actions as the valid one,
and the agent associated with each action in the minimal one is
also one of the many associated agents with the same action in the
redundant one®.

5Since there is no requirement for the agents in a concurrent ac-
tion to be distinct we do not need to consider whether a redundant
annotation of concurrent action is valid.

Contribution | Annotation | Contribution | Annotation

contrb; a1, Qe contrby a1, Qe
contrbs a1, a2 contrbs a1, a2
contrbs al, a2

valid invalid

Figure 1. Valid and invalid joint action annotations

validjointannotation _ : P AnntdJointAct

Y a : AnntdJointAct e validjointannotation a <
(Im : MinimalAnntdJointAct e
({¢ : m.anntcontrbs e c.act} =
{c¢ : a.anntcontrbs e c.act}) A
(¥ e1 : m.anntcontrbs @ (3 c2 : a.anntcontrbs o
ci.act = cz2.act A\
c1.agts C c2.agts)))

3.4.1 Joint Actions

In formalising the annotation of joint actions we rely on three aux-
iliary functions®. Firstly, the function allValidAnntdJAs takes a
joint action, a set of agent models and a minimal trust threshold,
and returns all possible valid (minimal) annotations of that joint
action, such that an agent is associated with a contribution if it can
perform it and is trusted above the minimal trust threshold.

| allValidAnntdJAs : JointAct — P AgentModel
| — R — P AnntdJointAct

Secondly, orderedAnntdJAs takes a set of possible annotations of
a joint action and orders them according to the combined trust of
the agents involved.

| orderedAnntdJAs : P AnnitdJointAct
| — seq AnntdJointAct

Finally, combineJA takes a sequence of minimal annotations and
combines them into a single redundant annotation, such that each
contribution in the redundant annotation is annotated with a set of
agents corresponding to those agents that are associated with the
same contribution in one of the minimal annotations.

| combineJA : seq AnntdJointAct
| — AnntdJointAct

We can now formally describe the annotation of a joint action in
the function anntJointAct which takes a joint action, ja, a set of
agent models, ms, the maximum number of agents to annotate a
contribution with, maz, and a minimum trust threshold, ¢, and re-
turns an annotated joint action. The predicate part of this definition
determines all possible valid annotations, orders them according to
trust, and then takes the head of the sequence corresponding to the
first max annotations from the front of the ordered sequence. Fi-
nally, the head of the sequence is combined into a single annotated
joint action.

5For reasons of space we only give the function signatures here.

anntJointAct : JointAct — P AgentModel
— Z — R — AnntdJointAct

Y ja : JointAct; ms : P AgentModel,
mar :Z;t:Re
anntJointAct ja ms mazr t =
combineJA ({i : Z | i < maz o i}
(orderedAnntdJAs (
allValidAnntdJAs ja ms t)))

3.4.2 Concurrent Actions

In a similar manner, we make use of three auxiliary functions in
formalising the annotation of concurrent actions. First, the function
allAnntdCAs takes a concurrent action, a set of agent models and
a minimal trust threshold, and returns all possible annotations of
the concurrent action, which associate an agent with a contribution
if it can perform it and is trusted above the minimal trust threshold.

| allAnntdCAs : ConcAct — P AgentModel
| — R — P AnntdConcAct

Again, we make use of a function, orderedAnntdCAs, which takes
a set of possible annotations and orders them according to the com-
bined trust of the agents involved.

| orderedAnntdCAs : P AnntdConcAct
| — seq AnntdConcAct

Finally, we have a function combineCA which takes a sequence of
annotations and combines them into a single redundant annotation.

| combineCA : seq AnntdConcAct
| — AnntdConcAct

Thus in a similar manner to joint actions the annotation of a con-
current action is given in the function anntConcAct, whose pa-
rameters are a set of agent models, the maximum number of agents
to annotate a contribution with, and a minimum trust threshold.

anntConcAct : ConcAct — P AgentModel
— Z — R — AnntdConcAct

YV ca : ConcAct; ms : P AgentModel;
maz :Z;t:Re
anntConcAct ca ms mazx t =
combineCA ({i : Z | i < maz}]
orderedAnntdCAs (allAnntdCAs ca ms t))

3.5 Annotated Plans

The notion of an annotated plan is formalised below in the schema
Anntd Plan, in which all contributions are annotated with a set of
agents. Each contribution is annotated with a set, rather than the
individual agent that will execute it since, at this stage, the annota-
tion represents the agents to request assistance from. Thus, to allow
for redundant annotation, a contribution is associated with a set of
agents rather than an individual. However, before a final cooper-
ative intention can be formed, an agent must select one agent for
each contribution and modify the annotated plan accordingly.

APlanStep ::= Alndividual { AnntdConirb))
| AJoint({{AnntdJointAct))
| AConc{AnntdConcAct))

| ASubgoal { Goal))

— AnntdPlan
| achieves : Goal
| precon : P Belief

body : seq A PlanStep

The function anntStep takes a plan step and applies the appropriate
annotation function according to whether the step is an individual,
joint or concurrent action (unless the step is a goal in which case it
is not changed).

anntStep : PlanStep — P AgentModel — Z
— R — APlanStep

V ps : PlanStep; ms : P AgentModel,
max : Z; t : R; aps : APlanStep e
anntStep ps ms mazx t = aps <
(3 c: Contrdb e Individual(c) = ps N
aps = Alndividual
anntContrb ¢ ms maz t)) V
(Fja : JointAct o Joint(ja) = ps A
aps = AJoint(
anntJointAct ja ms mazx t)) V
(3 ca: ConcAct Conc(ca) = ps A
aps = AConc(
anntConcAct ca ms maz t)) V
(3 g : Goal e Subgoal(g) =
ps A aps = ASubgoal(g))

We can now formalise the annotation of a plan in the function
anntPlan, which takes a plan and annotates each of its steps ac-
cording to the supplied parameters, returning the corresponding an-
notated plan.

anntPlan : Plan — P AgentModel — Z
— R — AnntdPlan

YV p : Plan; ms : P AgentModel; maz : Z;
t:R; ap : AnntdPlan e
anntPlan p ms max t = ap &
p.achieves = ap.achieves N
p.precon = ap.precon N\
(Vn:Z|n < #p.body e ap.body n =
anntStep (p.body n) ms n t)

4, SOLICITING COMMITMENT

After deciding which agents to try to cooperate with (by annotat-
ing its plan), an agent must request assistance from those agents.
There are several options for the level of information to include in
a request for assistance. In particular an agent attempting to initiate
cooperation can communicate either:

1.
2.
3.

5.

the whole plan, but without annotations,
just the actions it wants the potential participant to perform,

the goal for which assistance is required, along with the ac-
tions it wishes the potential participant to perform,

. the whole plan, annotated only with the actions it wishes the

potential participant to perform, or
the whole annotated plan.

These options provide varying degrees of information to the re-
ceiver, and support different objectives represented by the loosely
coupled and closely coupled views, as we discuss below.

e The first alternative of communicating the whole plan with-
out annotations, does not in general give sufficient informa-
tion for the participant to make a decision about whether
or not to cooperate, since it does not specify which actions
it should perform. Without knowing which actions are re-
quested of it, an agent cannot determine whether they will
conflict with its intentions or their motivational value. There
are a small number of exceptional circumstances in which an
agent could make a decision; for example, if all actions in
the plan and the goal it achieves are of motivational value,
and the agent has no other intentions, then it can decide to
cooperate. In general, however, this is not the case, and more
information is required. Thus, we reject the first alternative.

e Remember that there must be some motivational justification
for an agent choosing to perform a particular action, and al-
though the overall goal must be of motivational value (or it
would not have merited committing to), the particular actions
required to achieve it might not be. For example, achiev-
ing the goal of getting a paper accepted for a conference is
likely to have motivational value, but the actions involved
in proof-reading and correcting are less likely to be valuable
in themselves. Thus, while the end may have motivational
value, the means may not if considered out of the context of
the overall goal. In practice an agent’s motivations are typi-
cally mitigated by the achievement of goals, rather than the
performance of particular actions, although there are excep-
tions. Thus, an agent is unlikely to gain assistance for its
goal if its request contains only the actions that it wishes to
be performed, and not the goal that they achieve (as in the
second alternative above). The exception to this is if the ac-
tion is valued by the potential participant and the goal is not.
For example, if you gain value from performing the action of
driving, and | wish you to drive a getaway car in a robbery
for me, then the negative motivational effect of achieving the
goal would outweigh the benefit obtained from driving (as-
suming you are a law-abiding citizen). Thus, in this situation
if | believe that the goal is of zero or negative motivational
value to you, then | might make my request giving only the
action for which assistance is sought.

e The third alternative requests assistance from the potential
participant for a particular set of contributions, and towards
a particular goal. This allows an agent to consider both the
motivational value of the actions it is requested to perform,
and the value it would gain if the overall goal is achieved.

e The fourth alternative also includes the complete plan, with-
out the annotations related to other agents. This additional
information can influence the potential participant’s decision
about whether to cooperate. If the participant is informed of
the plan then it knows what other actions will be performed
in the achievement of the goal. If it has a goal or intention
that some action in the plan is not performed (by any agent),
then it may refuse, even if it would otherwise have accepted
based solely on the goal and actions it is to perform (in situ-
ations such as the getaway car example above).

e The final alternative includes both the plan, and the complete
set of annotations; if the participant is informed of the other
annotations in the plan, it is given information about which
agents are likely to be involved in the cooperative interaction.
If it has a goal or intention of not cooperating with another of
the annotated agents then it may also refuse, even if would
accept were its choice based only on the goal and actions

it is to perform. Note also that communicating redundant
annotations makes recipients aware of the redundancy and
the potential unnecessary constraints this may impose upon
them. Thus, if the fifth alternative is used, the requesting
agent must process the annotations contained in the request
to remove redundant annotation of the potential participant’.

In our framework, therefore, an agent has a choice of the latter
four options. The choice about which of these approaches to use
is a macro level consideration determined by the loosely or closely
coupled approach being taken. We therefore simply assume that
an agent uses one of them, without specifying which, leaving the
agent’s designer to select which is the most appropriate for the do-
main concerned.

Since cooperative intention establishment may involve many roun-
ds of requesting, some agents may have already been asked for
assistance for a previous action, in which case it is possible that an
agent may have already accepted a request. Here, some form of
commitment to perform the (previously requested) action will have
been formed, and if an agent has agreed to perform some action
to which it is no longer annotated in the latest plan annotation, it
must be informed that its commitment is unnecessary. Similarly, if
the agent has already agreed to perform the same action that it is
currently annotated to then there is no need to ask it again

If the action is part of a joint or concurrent action which is cur-
rently annotated with a different group of agents, and the agent
was informed of the original annotation, its decision to cooperate
may be affected by the composition of the group (in particular its
trust of the group members), and the agent must be informed of the
changes. Each round of plan annotation involves forming a nomi-
nal commitment and requesting assistance. Therefore, if assistance
has already been requested for a previous annotation of the plan, a
nominal commitment will exist toward the agents whose assistance
was requested. A new nominal commitment does not need to be
formed; instead, the annotation of agents to whom the commitment
is made are updated. Those agents that are not in the current an-
notation are removed from the commitment, since there is no need
to inform them if assistance is no longer required, and any newly
annotated agents are added. If no requests have previously been
made for (a prior annotation of) the plan, then a new nominal com-
mitment is formed to the agents contained in the current annotation.
Consider the example of an agent requesting assistance, and form-
ing a nominal commitment towards, three agents, a1, a2, and as.
Now, suppose a3 declines and the agent re-annotates its plan with
agents a1, a2, and au, such that the former two are given the same
tasks and a4 assigned to the task for which a3 declined. The initia-
tor must update its nominal commitment to be towards this new set
of agents, i.e. it must modify its commitment to a3 to be towards
Q4.

5. CONCLUSION

The problem of cooperation is complex, and comprises many dis-
tinct sub-problems, not least of which is the need to consider who
to ask for assistance, and who to assist. Finding a cooperative plan
to achieve a goal requires not just the selection of the plan based
on the capabilities and trustworthiness of the agents that may per-
form the actions within it, but also a dynamic re-evaluation of these
agents at the point at which it is executed. In this paper, we have de-
scribed a procedure for selecting which agents to cooperate with by

"It could be argued that all redundant annotations should be re-
moved in case an agent infers that if another is redundantly anno-
tated, it may be treated similarly.

annotating a plan according to the capabilities and trustworthiness
of others, and providing the capability for redundant annotation so
that dynamic re-allocation of actions can take place. Importantly,
this raises questions about what information to include in a request
for cooperation in order to maximise the likelihood of success. This
paper has described the model for these processes, with the asso-
ciated implementation that has been constructed to demonstrate its
validity being described elsewhere [5].

There are three particular areas of limitation of the work described
in this paper that form the focus for ongoing work. The most sig-
nificant area is the need to investigate a mechanism for introducing
Marsh’s notion of situational trust in a computationally practical
manner [11]. As noted above, situational trust is a powerful mecha-
nism that can give an agent valuable information in reasoning about
others, but the cost of maintaining models of trust at a task specific
level is prohibitively high. The primary problem in introducing
situational trust is the need to determine the reason why a particu-
lar cooperative interaction failed. For an agent to maintain models
of the trustworthiness of others at a task specific level it is neces-
sary to know which task caused cooperation to fail. In some cases,
where a particular agent is only responsible for performing a single
action, this can be inferred from the plan. However, in general, de-
termining the failure point requires agents to provide information
about the failure. Our aim is to develop a means for an agent to
have access to the kind of information provided by situational trust
models, without the high cost of maintenance typically associated
with them.

The second area of ongoing work is to use estimates of the expected
quality of others’ actions in considering requesting their assistance.
Our current model simply uses knowledge about a particular agent
being capable of a particular action, without considering the quality
of execution that may result. In human interactions there is often
a tradeoff between trust and the expected quality of the result. For
example, one might ask assistance of a less trusted (in terms of
reliability, or speed of response etc.) but highly knowledgeable
expert rather than a highly trusted trainee. Similarly, when faced
with a choice between two equally trusted agents the rational choice
is to choose the one expected to result in the best quality outcome.
Although related to situational trust, utilising the notion of quality
of capabilities provides an additional metric in evaluating others.

The final area of current work is concerned with enabling agents
to share information about the degree to which others are trusted.
Where two or more strongly trusted agents cooperate they may
share information about the trust they ascribe to others. Such in-
formation sharing allows agents to update their trust models in the
light of others’ experiences. Assuming agents are honest and have
broadly the same aims (meaning that they enter into the same kind
of cooperative interactions) then this approach enables agents to
reduce the time take to obtain more accurate trust values of others.
This is particularly beneficial in the case where an agent obtains
information about another with whom it is yet to cooperate (recall
that prior to interaction agents simply ascribe a default value to
others). We noted earlier that trust can be seen as an individual’s
view of another’s reputation. Similarly, the sharing of trust values
in this manner can be thought of as a group of agents considering
another’s reputation in the view of the group. Clearly, many more
complex and robust approaches to modelling reputation are possi-
ble, however it is our view that sharing trust in this manner can
provide a computationally cheap mechanism for soliciting, from
trusted agents, the opinions of others’ trustworthiness.

6. REFERENCES

[1] M. E. Bratman. Shared cooperative activity. Philosophical
Review, 101(2):327-341, Apr. 1992.

[2] M. E. Bratman, D. Israel, and M. Pollack. Plans and
resource-bounded practical reasoning. Computational
Intelligence, 4:349-355, 1988.

[3] C. Castelfranchi and R. Falcone. Principles of trust for MAS:
Cognitive anatomy, social importance, and quantification. In
Proceedings of the Third International Conference on
Multi-Agent Systems, pages 72-79, Paris, France, 1998.

[4] M. d’Inverno and M. Luck. Understanding Agent Systems.
Springer-Verlag, 2001.

[5] N. Griffiths. Motivated Cooperation in Autonomous Agents.
PhD thesis, University of Warwick, 2000.

[6] N. Griffiths and M. Luck. Cooperative plan selection through
trust. In F. J. Garijo and M. Boman, editors, Multi-Agent System
Engineering: Proceedings of the Ninth European Workshop on
Modelling Autonomous Agents in a Multi-Agent World.
Springer, 1999.

[7] B. Grosz and S. Kraus. The evolution of SharedPlans. In
A. Rao and M. Wooldridge, editors, Foundations and Theories
of Rational Agencies, pages 227-262. Kluwer Academic
Publishers, 1999.

[8] D. Kinny, M. Ljungberg, A. Rao, E. Sonenberg, G. Tidhar,
and E. Werner. Planned team activity. In Proceedings of the
Forth European Workshop on Modelling Autonomous Agents in
a Multi-Agent World, pages 227-256, 1992.

[9] H.J. Levesque, P. R. Cohen, and J. H. T. Nunes. On acting
together. In Proceedings of the Eighth National Conference on
Artificial Intelligence, pages 94-99, Boston, MA, 1990.

[10] M. Luck and M. d’Inverno. A formal framework for agency
and autonomy. In Proceedings of the First International
Conference on Multi-Agent Systems, pages 254-260. AAAI
Press/The MIT Press, 1995.

[11] S. Marsh. Formalising Trust as a Computational Concept.
PhD thesis, University of Stirling, 1994.

[12] S. Marsh. Optimism and pessimism in trust. In Proceedings
of the Ibero-American Conference on Artificial Intelligence
(IBERAMIA *94), 1994.

[13] J. M. Spivey. The Z Notation: A Reference Manual. Prentice
Hall, Hemel Hempstead, 2nd edition, 1992.

[14] M. Wooldridge and N. R. Jennings. Formalizing the
cooperative problem solving process. In Proceedings of the
Thirteenth International Workshop on Distributed Artificial
Intelligence, pages 403-417, Lake Quinhalt, WA, 1994.

[15] M. Wooldridge and N. R. Jennings. Cooperative
problem-solving. Journal of Logic and Computation,
9(4):563-592, 1999.

