
www.elsevier.com/locate/compind

Computers in Industry 57 (2006) 778–786
BPEL4WS-based coordination of Grid Services in design

Kuo-Ming Chao a,*, Muhammad Younas b, Nathan Griffiths c

a Department of Computer and Network Systems, Coventry University, UK
b Department of Computing, Oxford Brookes University, UK

c Department of Computer Science, University of Warwick, UK

Accepted 27 April 2006

Available online 21 June 2006
Abstract
Engineers and scientists often do not have access to workflow control or sufficient computational resources, either due to limited resource

availability and lack of process controls, or because of the quantity of data produced. The availability of Grid Services (e.g. GT3) presents a

potentially feasible method to overcome the barriers of sharing heterogeneous computational resources. However, a lack of sophisticated

coordination mechanisms for specifying workflow deters the widespread adoption of Grid Services. There is a need for a seamless, flexible,

demand-based service to enable engineers and scientists to submit jobs to a computational Grid from remote sources in a manner that ensures that

jobs are executed in an efficient, controlled method. In this paper, we propose a system that adopts Business Process Execution Language for Web

Services (BPEL4WS) as a coordination language to define and manage workflow among Grid Services to meet engineering requirements. A

prototype system is built and evaluated with a case study from the automotive industry to demonstrate the feasibility of the proposed system.

2006 Elsevier B.V. All rights reserved.

Keywords: Grid Services; Workflow; Cooperative design
1. Introduction

Engineering design in the automotive industry is a complex

task that typically involves several multi-disciplinary design

teams each using specialised software systems. Such systems

often require significant computational resources and con-

sume/produce large amounts of data when generating designs

and effective predictive models. Design teams not only have to

comply with design requirements (e.g. design specifications

and finishing time) but must also ensure that a consistent

overall product model is produced. Interactions among

multiple design teams are inevitable for sharing information

and knowledge.

Consider a scenario of an automotive design process in

which a particular design team specialises in crash worthiness.

This is concerned with protecting vehicle occupants during

various modes of impact, such as high impact head-on

collisions, side-on impacts and low impact shunts. Such a
* Corresponding author. Tel.: +44 24 76888908.

E-mail addresses: k.chao@coventry.ac.uk (K.-M. Chao),

m.younas@brookes.ac.uk (M. Younas),

nathan@dcs.warwick.ac.uk (N. Griffiths).

0166-3615/$ – see front matter # 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.compind.2006.04.012
design process requires large computational resources and the

effective coordination of various activities.

In order to ensure that the design process is efficient and

effective, a workflow is introduced to coordinate the design

activities. The exploitation of idle computational resources in

the organisation is desirable to shorten the process and to

improve the efficiency of design activities. The concept of a

Computational Grid is employed to integrate heterogeneous

computational resources and provide a seamless and flexible

environment for design simulations and job execution.

This paper presents a novel Computer Supported Coopera-

tive Work (CSCW) architecture that enables multiple dis-

ciplinary design teams to work seamlessly via Grid Computing

utilising Open Grid Service Infrastructure (OGSI) [1] and

Business Process Execution Language for Web Services

(BPEL4WS) [2]. It is to be noted this work does not consider

the overhead that may incur as a consequence of message

communication or interaction among design teams.

The following section introduces a realistic automotive

design scenario that illustrates the issues we address. In Section

3 we give an overview of Grid Services. A recent industry

standard for composing Web Services and workflow manage-

ment, BPEL4WS, is introduced in Section 4, and a comparison

between it and Grid Services is given in Section 5.

mailto:k.chao@coventry.ac.uk
mailto:m.younas@brookes.ac.uk
mailto:nathan@dcs.warwick.ac.uk
http://dx.doi.org/10.1016/j.compind.2006.04.012

K.-M. Chao et al. / Computers in Industry 57 (2006) 778–786 779

Fig. 1. Illustrates a Finite Element Analysis of a high speed frontal impact using

an offset deformable barrier.
Our proposed architecture for integrating Grid Services and

BPEL4WS is described in Section 6. The use of this

architecture is illustrated by a case study in Section 7. In

Section 8 we discuss related work and, finally, in Section 9 we

give our conclusions.

2. Automotive simulation

In automotive design mathematical models are created to

represent the structural integrity, dynamic response and

durability of vehicles. This methodology uses Finite Element

Analysis (FEA), the solution of simultaneous equations on

geometry and materials represented by elements/nodes, to

produce definitive results for a given problem (illustrated in

Fig. 1). Engineers typically submit multiple FEA impact

simulations, optimisation or design of experiments analyses.

Full vehicle analysis produces gigabytes of data for a single

crash mode with the latest safety models taking up to 2 days to
Fig. 2. Multi-disciplinary tasking with
complete on high-end multi-CPU machines. The aim of this

type of analysis is to show performance trends to provide a

greater feeling of performance reliability and build quality. This

involves a number of design teams and tools with a coherent

coordination approach to ensure a consistent product model is

produced. Fig. 2 illustrates the high-level workflow for how a

number of design teams are involved in the design process.

Meeting the computational resource requirements and

processing the vast amount of data produced is a fundamental

difficulty. Dedicated computer servers are expensive, work-

station scavenging does not ensure resource availability (since

they are not dedicated), and nightly analysis windows are too

short. In this paper, we address this issue by using Grid and Web

Services technology to control information flow and proces-

sing. In the following sections we introduce Grid Services and

workflow, and then describe our proposed architecture.

3. Grid Services

The OGSI specification utilises the WSDL [3] and XML

schema definition languages from Web Services to define an

extended component model [4]. The specification addresses

common issues that occur in sophisticated distributed applica-

tions, including the management of distributed long-lived states.

In order to achieve this, OGSI defines the notion of a Grid Service

instance [5]. ‘‘A Grid Service instance is a (potentially transient)

service that conforms to a set of conventions (expressed as

WSDL interfaces, extensions, and behaviours) for such purposes

as lifetime management, discovery of characteristics, notifica-

tion, and so forth.’’ [4]. The OGSI specification not only inherits

the interoperability features from Web services, but also includes

the following features.
� S
in
tateful interactions: The OGSI approach to stateful Web

Services is the notion of serviceData, which exposes a service

instance’s state data to service requestors for queries, updates
automotive engineering design.

K.-M. Chao et al. / Computers in Industry 57 (2006) 778–786780
and change notifications [5]. In the serviceData approach

each item of data is associated with a set of methods (e.g. get

and set) to access the state of data, in a similar manner to

JavaBeans.
� R
eferences: OGSI uses Grid Service Handles (GSH) [6] to

name and manage Grid Service instances. A client wishing to

communicate with a service instance must map the GSH to a

Grid Service Reference (GSR). This is because a GSH only

contains a minimal set of information, such as a URI and it

does not carry sufficient information to allow a client to

communicate directly with the service instance. Instead, the

information that a client requires to communicate with the

service is contained in a GSR.
� C
ollection of service instances: OGSI allows a number of

services to be grouped together so that they can be easily

maintained by clients. A Grid Service can define its

relationship with other services in the group. Services can

join or leave a service group.
� L
ife cycle management: This gives a client the ability to

create and destroy a service instance according to its

requirements.
� I
nheritance: OGSI adopts some of the features from the

WSDL 1.2 such as portType inheritance, which allows one

portType to extend from other portTypes. To distinguish

between WSDL 1.1 and 1.2, OGSI uses GWSDL to name the

WSDL 1.2 portTypes.
� A
synchronous notification: OGSI provides a facility for

asynchronous notification of state change using a pull/push

mechanism.

In summary, the OGSI specification is an attempt to provide

an environment for Grid Services to be more manageable within

large and complex distributed applications and to provide a

platform for higher-level mechanisms to compose services.

However, it does not attempt to address the issue of workflow

management in Grid Services. The composition of Web Services,

however, can be described by the workflow definition language

BPEL4WS, as we discuss in the following section.

4. Workflow definition

BPEL4WS is an industry standard specification for defining

the workflow between Web Services [2]. It provides a language

for modelling complex and non-deterministic business pro-

cesses. The characteristics of correlating business processes

often depend on data and BPEL4WS provides a set of activities

to model data-dependent behaviours, and conditional and time-

out constructs to address non-deterministic behaviour.

BPEL4WS also provides developers with the ability to specify

exception conditions and their consequences, including

recovery sequences. The most important feature of BPEL4WS

is its support of business process coordination among multiple

parties, enabling the definition of units of work at various levels

of granularity of the business process. BPEL4WS enables

modelling of long-running interactions between business

processes with nested units of work between them and each

with its own data requirements.
BPEL4WS is built upon three XML-based specifications:

WSDL 1.1, XML Schema 1.0 and XPath 1.0. Partners are used

by BPEL4WS to model interacting services in business

processes. Each partner has a unique name and can

communicate with other services. Each partner has an

associated WSDL document describing the information that

a service contains. The process model allows developers to

specify relationships between partners through a set of pre-

defined activities in order to orchestrate Web Services.

In BPEL4WS, the business process begins with a receive

activity that takes a client request and triggers the process as a

whole. The reply activity is the end of the process that responds

to the triggering request. An invoke activity allows invocation

of an operator associated with portTypes (as defined in a partner

Web Service). The message state of the business process is

temporarily stored in variables.

Developers can handle known and unexpected exceptions

with throw and compensate activities. The response to external

events can be specified through event handlers. Control flow in

BPEL4WS is similar to traditional structured process control

containing constructs such as while and switch. The sequence

activity defines blocks that contain one or more activities that

are performed sequentially, and the flow activity allows

activities within a block to be performed concurrently. Finally,

the correlation construct specifies that only correlated instances

can be invoked.

BPEL4WS, and its engine BPWS4J, offers predicable

behaviour and performance. However, BPEL4WS is limited by

inflexibility in the composition process, centralised workflow

enactment, and the need for Web Services to be known and

defined a priori [7]. The use of concrete Web Services,

available beforehand, may lead to inefficiencies through sub-

optimal selection of Web Services, and to potential service

discontinuity.

5. Comparing Grid Services and BPEL4WS

There are two significant differences in approach between

Grid Services and BPEL4WS. Specifically, the mechanisms for

achieving coordination and for serialisation differ, as described

below.

Firstly, coordination between Web Service instances is

driven by data in BPEL4WS. Developers must define

correlation sets from portTypes in WSDL and use them to

correlate instances (in a similar manner to database systems

handling tables through index keys). Alternatively, OGSI uses

Grid Service instance references for coordination, where each

instance has a unique reference (similar to an object reference).

Since GT3 is mainly implemented through the JAXRPC

specification (a Web Service specification based on Java RMI),

the management of a collection of instances is similar to

handling multiple instances in Java. Therefore, GT3 cannot

export its instance references to BPEL4WS, and BPEL4WS

cannot hold references of the Grid Service instances.

Consequently, the additional functions in GT3 such as the

grouping of Grid Services and life cycle management, pre-call

and post-call Grid Services cannot be utilised by BPEL4WS

K.-M. Chao et al. / Computers in Industry 57 (2006) 778–786 781
directly. Furthermore, BPEL4WS does not allow Web Service

instances to be destroyed, instead it provides termination of the

whole process.

Secondly, Grid Services allow serialisation of Grid Service

instances, whereas BPEL4WS only serialises the variables in a

process. Thus, BPEL4WS cannot instruct Grid Services to

serialise the instances. Both BPEL4WS and GT3 refer to

WSDL to obtain information about services, using this

information to initiate and respond to requests. However, the

versions they build upon are different. GT3 adopts WSDL1.2,

renaming it as GWSDL, and BPEL4WS is based on version 1.1.

BPEL4WS cannot parse the extra features proposed in the later

version, although this may be easily resolved when WSDL1.2

becomes an official WWW specification. An important feature

that GT3 supports is the notification mechanism that allows

services to push or pull information when the state changes

(similar to Java’s observer/observable). However, there is no

equivalent mechanism in BPEL4WS.

6. The proposed approach

In this section, we present our proposed approach. We first

highlight the motivating technological issues, and then present

the proposed architecture, and finally we describe how the

architecture enables the coordination of Grid Services.

6.1. Motivation

The issue of Grid Service composition is not well addressed

by OGSI. The aim of OGSI is to provide a platform that makes

Grid Resources interoperable and transparent, but leaves

orchestration and coordination of disparate resources to

developers. Although OGSI is built upon Web Service

technologies, additional features have been introduced to meet
Fig. 3. Proposed Grid-based computer su
new requirements, and these lead to incompatibility between

Grid Services and standard Web Services. The workflow

language for composing Web Services, BPEL4WS, fits the

OGSI idea of interoperability and transparency with the

possibility of enhancing OGSI with composition ability. A Grid

Service could present its volatile nature in the process, but to

accommodate and exploit this, a flexible composition

mechanism is needed. However, as described in Section 4,

BPEL4WS is relatively static, requiring pre-scripting of

workflow, and predefinition of participating services’ roles. It

was, however, designed to orchestrate Web Services rather than

Grid Services, and the incompatibility between them compli-

cates the application of BPEL4WS to orchestrate Grid Services.

6.2. Components of the proposed architecture

In order to enable Grid Service composition via BPEL4WS

we propose a novel architecture, as shown in Fig. 3. The

architecture introduces the notion of a Virtual Grid Service

(VGS) to bridge the gap between Web Services and Grid

Services. A VGS is a manufactured standard Web Service that

contains the functionality to support communication between

Grid and Web Services and to maintain the additional functions

supported by Grid Services. The aim of this approach is to

minimise or eliminate efforts on modifying existing BPEL4WS

scripts when participating Grid Services are replaced with

others. Additionally, this approach provides a late binding

mechanism for BPEL4WS to invoke non-deterministic Grid

Services.

VGS contain three key components: Proxy Grid Service,

template WSDL, and a library containing a number of abstract

functions that correspond to the OGSI component model. A

Proxy Grid Service is an abstract class that includes an abstract

function containing the necessary steps and information for
pported cooperative work framework.

K.-M. Chao et al. / Computers in Industry 57 (2006) 778–786782
locating an actual Grid Service. The stub code of the Grid

Service is imported and accessible to Proxy Grid Service. The

component model defined by OGSI is represented as a set of

abstract functions and when the actual Grid Service is

identified, these functions are inherited to produce a concrete

class. The concrete class acts as a client-side program to invoke

the implemented Grid Service. For example, the startGService

function is defined in the Proxy Grid Service and implemented

in its subclass for creating a new Grid Service instance. As the

corresponding variable for the Grid Service instance is declared

as a public instance, it makes the GSR visible to the whole class.

In addition, the input and output of a service are explicitly

defined as separate functions.

A template WSDL is an interface to a Proxy Grid Service

that contains essential elements for BPEL4WS, namely: name

space, role, partnerlinktype, and portType. The template WSDL

is populated and becomes operational WSDL after a subclass of

Proxy Grid Service is generated. So, the WSDL template is

instantiated to describe the Proxy Grid Service subclass and to

make these functions available to other applications.

The component model proposed by OGSI such as

notification, serialisation, and logging, etc. are redefined as

an interface class (AGridService), which is extended by the

Proxy Grid Service. The actual functions or services are

realised by a concrete grid service and become operators in the

WSDL, allowing BPEL4WS to invoke them.

6.3. Coordinating design process

The proposed architecture is a bottom-up approach for the

design process that assumes a number of existing Grid Services

are available and must be coordinated to achieve a specific

design activity (e.g. impact analysis). The type of services

involved in the workflow is known, but no specific Grid Service

has been identified. The users make shared operations available

via JavaBeans and each operator has a corresponding method in

a JavaBean. The operational WSDL, based on the template

WSDL, describes these operations. The operational WSDL

includes a ‘‘start’’ portType, which accommodates the Proxy

Grid Service (startGService operator). Related methods in the

JavaBean are defined in order to provide appropriate functions.

The stub files are imported and included in the library for

compilation. The Grid Service component model, defined as an

interface class, is also inherited by the JavaBean. These

interfacing methods are overloaded by the actual Grid Services

defined in the JavaBean. After the files have been compiled,

they are zipped and deployed in the web container. These

integrated components form the VGS and are ready for use. The

user writes BPEL4WS script to manipulate the VGS.

A Grid Service can use alternative Grid Services. In this case

the alternative service must have the same stubs as the replaced

service, but with a different URL or Grid Service instance. The

only change needed to the program is the Proxy Grid Service;

no modification of the BPEL4WS script or other components is

required. The actual Grid Services to be deployed in the script

do not need to be specified. This decoupling of the Grid

Services and BPEL4WS via VGS provides a flexible way for
late binding. No change to Grid Services is required. The

proposed architecture does not intend to automate the design

process, but it provides a scheme to alleviate the gap between

Grid Services and BPEL4WS. At run time, the major steps

involved in the interactions between these components are as

follows:
1. A
 BPEL4WS script contains several participating VGS and

the workflow. The user initiates the client to start the

BPEL4WS engine and run the script. The operational WSDL

in VGS are consulted according to the workflow descriptions

in BPEL4WS.
2. T
he BPEL engine then invokes the Proxy Grid Service

implementation. The Proxy Grid Service (represented by

operational WSDL) triggers corresponding Grid Services

through an embedded startGService operator. The startG-

Service operator is the standard procedure for creating a Grid

Service instance by calling a GSH, holding its returned value

and mapping it to a GSR.
3. W
hen a Grid service instance is successfully created, the

startGService operator obtains a reference and stores it in the

pre-defined public Grid Service instance attribute as a global

variable. Therefore, it is visible to the whole instance.
4. W
hen BPEL4WS wishes to call individual Grid Service

operators it calls a BPEL4WS engine, such as BPWS4J or

Collaxa, to activate VGS stored in the service container.
5. T
he VGS then uses the Grid Service Reference to tell the grid

service container to invoke the corresponding Grid Services.

The grid service replies with the results to the client making

the request. The client resides in the Proxy Grid Service

which in turn is contained in the VGS.
6. T
he Proxy Grid Service associated with its output operator

passes the response to its VGS which invokes the

corresponding output method. The BPEL4WS engine can

obtain the result and pass it to the next service.

A number of tools were used to implement the proposed

architecture, namely, GT3, JAXRPC, JWSDL, BPWS4J, and

Java native method. GT3 provides a platform for enabling Grid

Services, JAXRPC supports Web Services, the modification of

WSDL is through JWSDL, and BPWS4J is the BPEL4WS

engine. Java native method provides the communication

interface between the applications and JAXRPC when the

applications only support C based APIs.

7. Case study and expermential results

In order to evaluate the feasibility and effectivenes of the

proposed system we have implemented a case study, involving

impacting a tube of steel into a rigid wall with a given mass and

velocity. The model is decomposed into separate domains so

that calculations can be parallelised. The domains are

represented by the boxes labeled A–D, shown in Fig. 4.

Each processor is responsible for solving a specific domain

and communication is required for information across domain

boundary conditions for each timestep. For each domain the

contact forces, constraints and update node positions are

K.-M. Chao et al. / Computers in Industry 57 (2006) 778–786 783

Fig. 4. An impact simulation calculating nodal displacements.
calculated in parallel. In our example, B and C require two

inputs and outputs which are derived from their neighbouring

reaction forces. A has the first impact and passes the force to B.

D receives the force from C and bounces it back to C.

Displacement simulation software is used and located at four

different processors (nodes) in the Grid. There are four VGS

and Grid Services being designed to accommodate simulation

program. The interface of VGS to the simulation program is

also included via Javabeans and Java native methods, since the

simulation progam was implemented in C. The software has

domain boundary information and maintains it’s own state. The

interaction flow among the VGSs is specified in the BPEL4WS.

A snipet of BPEL4WS for modelling the interactions is shown

in Fig. 5.
The relationship between the nodes are defined as partners

which are specified in WSDL. Variables are used to hold data

from one Grid Service and pass it to another. The start

operation receives the user request and initiates the whole

process. It takes one input object, impact1, containing

information about mass, velocity and timestep. Variables

impact1 and impact2 are the same as the portType but used for

different purposes. The generated displacement of nodes is

stored in the system as internal states.

The A-Impact activity is invoked to simulate the impact, and

the generated results are passed to the B-Impact process. The C-

Impact activity only starts when the B-Impact activity produces

results. The D-Impact is the last activity, and waits for input

from the C-Impact activity. The flow is used to allow activities

to run concurrently. Modelling the dependency of the

concurrent activities is the link.

We use two key criteria in evaluating the proposed system:

consistency and efficiency. To examine consistency, we perform

two experiements in different environments. First, we run the

case study on a standalone machine with the original single

system. Second, we run a modified system using the proposed

system in a distributed environment. The force used is

approximately 21 kN a beam, which has a mass of 25 kg.

The experiments demonstrate the consistency of the proposed

system by producing the same approximated result as the

standalone version in terms of disposition of nodes in the tube.

To examine system efficiency four different scenarios were

configured with different numbers of machines (each machine

having 2.66 GHz CPU and 1Gb RAM). Fig. 6 shows the

K.-M. Chao et al. / Computers in Industry 57 (2006) 778–786784
relation between processing time and the number of machines.

It can be seen that process time shortens as the number of

machines increases. On a standone machine, the processing

time is approximately 45 s for a job of this order. When the

system runs on two machines the job is completed in 24.75 s,

and when distributed over four different PCs it takes about

15.04 s. Our experiments show that the efficiency of the system

does not increase linearly with the number of machines, due to

communication and synchronisation overheads. The proposed

system is, however, more efficient than the standalone version.

8. Related work and discussion

In this paper, we have investigated coordinating Grid

Services using BPEL4WS. Our approach differs from other

research by developing a flexible Grid Services coordination

mechanism for cooperative design, which utilises the com-

plementary functionality of Grid Services and BPEL4WS.

Various approaches have been proposed for coordinating

and composing Grid Services or Web Services. For instance,

Ref. [8] proposes a framework for automatically discovering

and composing Grid Services using Semantic Web technolo-

gies. This framework is claimed to support dynamic workflow

composition, and to enable users to share workflows of different

granularities. However, this framework does not take into

account the issue of Grid Service coordination with BPEL4WS.

Existing research mainly employs BPEL4WS to coordinate

and compose Web Services. Hull and Su [9] report on the

current manual and automated composition of Web Services.

The authors analyse various modelling and compositional

aspects of Web Services. The analysis is based on classifying

current research and standards along various dimensions

including message passing, action processing, and behaviour

modelling. Another useful survey is conducted in Ref. [10],

which illustrates various existing methods of Web Services

composition within the context of workflow composition and AI
planning. The composition process is illustrated in terms of:

Web Services presentation, translation of Web Services

languages, the main composition process, evaluation and the

execution of composite Web Services. Refs. [9,10] identify that

a fully automated and precise composition of Web Services has

not been achieved through the existing techniques.

An agent-based approach is presented in Ref. [11] and the

LARKS language is proposed to enable service matchmaking

among Internet agents. LARKS supports both syntactic and

semantic matchmaking of services. This matchmaking is based

on parameters (or filters) including context matching, profile

comparison, similarity matching and constraint matching.

LARKS resolve service mismatch to some extent but is unable

to ensure full matchmaking of heterogeneous services. Ref.

[12] proposes an approach to automatically compose Web

Services transactional workflow ontology. Such ontology is

used to describe Web Services workflows such that agents can

automatically find a composed workflow of Web Services.

Moreover, a Case-Based Reasoning technique is applied to

discover and compose different Web Services [13], allowing

proactive and reactive composition. The claimed advantages of

this approach are reduced composition cost, service collabora-

tion and client satisfaction, and efficient service discovery and

composition. Despite these advantages this approach fails to

achieve precise composition of Web Services.

The above approaches incorporate various technologies to

implement the composition process of Web Services, such as

BPEL4WS, BMPL, OWL-S, and so on. The industry proposed

Business Process Modelling Language (BPML) aims at

modelling business data through a meta-language [14], but

as yet there is no supported run-time environment. The

Semantic Web community has proposed OWL-S [15] for

describing the semantics of Web Services and composition

mechanisms. However, there is no sophisticated engine like

BPWS4J or Collaxa to support the OWL-S specification. Ref.

[16] defines the semantics of Web Services via OWL-S and

K.-M. Chao et al. / Computers in Industry 57 (2006) 778–786 785

Fig. 5. A snipet of BLEP4WS for design coordination.

Fig. 6. Processing time with different PCs.
translates the descriptions to BPEL4WS. Thus, BPWS4J can

provide a run-time environment to execute Web Services

accordingly. Other on-going research is to use agents with a

specific reasoning mechanism, such as GoLog [17], to compose

Web services.
Based on our analysis of current research we observe that

current approaches do not focus on Grid Service coordination

with BPEL4WS. This is mainly due to the issues associated

with using BPEL4WS in Grid Services. Our approach aimed at

tackling those issues so as to ensure the coordination of Grid

Services with BPEL4WS.

9. Conclusion

Large and complex engineering designs (e.g. in the

automotive industry) often require significant computational

resources and involve complicated design activities. Increasing

utilisation of existing idle resources is the key to improving the

efficiency and effectiveness of the design. The improvement of

computational efficiency without a certain degree of relability

is not a satisfactory solution. Ensuring consistency of design

activities through a coordination protocol is important. In this

paper, we have proposed a novel architecture for integrating

Grid Services with BPEL4WS to allow designers to specify

workflow between design activities with a high-level language

as well as ensuring that the product model is consistent. The

proposed architcture overcomes the incompatibility between

BPEL4WS and Grid services by introducing the VGS, which is

a web service, to support their seamless integration. The

simplified case study adopted from automotive design

demonstrates the feasibility and effectiveness of the proposed

system.

The BPEL4WS is a standard scripting language requiring

a prescribed workflow and known Web Services before the

engine can be used. It can model static workflow, but it lacks

flexibility and ability of modelling dynamic behaviours. A

system being able to dynamically generate and change the

workflow according to run-time awareness is desirable, since

the design often requires flexible interactions, dynamic

coordination mechanism, and intensive communication

among design teams [18]. We are currently planning larger

scale experiments involving a number of design teams and

software systems, with the introduction of intelligent agent

technology. The release of GT4 (an WS-Resource Frame-

work implementation) is immement. Further investigation

into GT4, which aims to provide coherent interfaces with

standard Web Service technologies, is required for future

development.

Acknowledgements

We would like to thank Rob Mahon from Jaguar Cars Ltd.

for providing us with case study and valueable information. We

also would like to acknowledge the technical assistances

received from C.-J. Chen. We also would like to express our

gratitudes to the anonymous reviewers for their valuable

comments.

References

[1] OGSI, Open Grid Services Infrastructure (OGSI) Version 1.0, http://www-

unix.globus.org/toolkit/documentation.html.

http://www-unix.globus.org/toolkit/documentation.html
http://www-unix.globus.org/toolkit/documentation.html

K.-M. Chao et al. / Computers in Industry 57 (2006) 778–786786
[2] Business Process Execution Language for Web Services Version 1.1,

http://www-106.ibm.com/developerworks/webservices/library/ws-bpel.

[3] W3C Note Web Services Definition Language (WSDL) 1.1, http://

www.w3.org/TR/WSDL.

[4] K.-M. Chao, M. Younas, N. Griffiths, I. Awan, R. Anane, Analysis of Grid

Service composition with BPEL4WS, in: Conference Proceedings of 18th

Advanced Information and Network Applications, IEEE CS, 2004.

[5] Service-Oriented Architecture (SOA) Definition: http://www.

servicearchitecture.com/web-services/articles/serviceoriented_architecture

_soa_definition.html.

[6] Globus Toolkit 3, http://www-unix.globus.org/toolkit/documentation.

html.

[7] J.M. Vidal, P. Buhler, C. Stahl, Multiagent systems with workflows, IEEE

Internet Computing January/February (2004) 76–82.

[8] S. Majithia, D.W. Walker, W.A. Gray, Automated composition of semantic

Grid Services, in: Proceedings of the UK e-Science All Hands Meeting

(AHM), 31st August–3rd September, Nottingham, UK, 2004.

[9] R. Hull, J. Su, Tools for design of composite Web Services Tutorial: ACM

SIGMOD, June 2004, Paris, France.

[10] J. Rao, X. Su, A survey of automated Web Service composition methods,

in: First International Workshop on Semantic Web Services and Web

Process Composition, San Diego, CA, USA, July, 2004.

[11] K. Sycara, S. Widoff, LARKS: dynamic matchmaking among hetero-

geneous software agents in cyberspace, Autonomous and Multi-Agent

Systems, 5, Kluwer Academic Publishers, 2002 173–203.

[12] J. Korhonen, L. Pajunen, J. Puustjärvi, Automatic composition of Web

Service workflows using a semantic agent, in: IEEE/WIC International

Conference on Web Intelligence (WI’03), October, Halifax, Canada, 2003.

[13] B. Limthanmaphon, Y. Zhang, Web Service composition with case-based

reasoning, in: 14th Australasian Database Conference (ADC 2003),

Adelaide, South Australia, February, (2003), pp. 201–208.

[14] BMPI.org, Business Process Modelling Language Specifications, http://

www.bpmi.org/bpml.esp.

[15] OWL Services Coalition. OWL-S: Semantic Markup for Web Services.

OWL-S v. 1.0 White Paper, http://www.daml.org/services/daml-s/0.7/

daml-s-wsdl.html, September 2003.

[16] S. McIlraith, T. Son, Adapting Golog for composition of semantic Web

Services, in: Conference Proceedings on Knowledge Representation and

Reasoning, April, 2002.

[17] E. Sirin, J. Hendler, B. Parsia, Semi-automatic composition of Web

Services using semantic descriptions, in: Proceedings of Web Services:
Modeling, Architecture and Infrastructure workshop in conjunction with

ICEIS2003, 2002.

[18] W.D. Li, J.Y.H. Fuh, Y.S. Wang, Collaborative computer-aided design—

research and development trend, in: Proceedings of CAD’04 Conference,

May 24–29, Pattaya, Thailand, 2004.

Kuo-Ming Chao received the MSc degree and the

PhD degree in computer science from Sunderland

University UK, in 1993 and 1997. He was a research

associate in the Engineering Design Centre at Uni-

versity of Newcastle-upon-Tyne in 1997–2000. In late

2000, he joined the School of Mathematical and

Information Sciences at Coventry University as a

senior lecturer. His research interest includes intelli-

gent agent technologies, game theory, engineering

design, supply chain management, grid computing
and web services.

Muhammad Younas is a senior lecturer in computer

science in the Department of Computing, Oxford

Brookes University, Oxford, UK. He received his

PhD degree in computer science from the University

of Sheffield, UK. His research interests include Web

and database technologies, transaction processing,

agent technology, and mobile computing. He has

published more than 40 research papers in interna-

tional journals, conferences, and workshops. He has

also edited three books. He is the guest editor for
various international journals. He has been involved in the steering, organizing

and program committees on a number of international conferences and work-

shops.

Nathan Griffiths is a lecturer in computer science

at the University of Warwick, Coventry, UK.

He received his BSc and PhD in computer science

from the University of Warwick in 1996 and 2000.

Prior to his current post he ran a software engineering

company. His research interests are distributed artifi-

cial intelligence, multi-agent systems and Grid com-

puting. Recent work has involved the application of

coopertive agents to Grid and peer-to-peer computing.

http://www-106.ibm.com/developerworks/webservices/library/ws-bpel
http://www.w3.org/TR/WSDL
http://www.w3.org/TR/WSDL
http://www.servicearchitecture.com/web-services/articles/serviceoriented_architecture_soa_definition.html
http://www.servicearchitecture.com/web-services/articles/serviceoriented_architecture_soa_definition.html
http://www.servicearchitecture.com/web-services/articles/serviceoriented_architecture_soa_definition.html
http://www-unix.globus.org/toolkit/documentation.html
http://www-unix.globus.org/toolkit/documentation.html
http://www.bpmi.org/bpml.esp
http://www.bpmi.org/bpml.esp
http://www.daml.org/services/daml-s/0.7/daml-s-wsdl.html
http://www.daml.org/services/daml-s/0.7/daml-s-wsdl.html

	BPEL4WS-based coordination of Grid Services in design
	Introduction
	Automotive simulation
	Grid Services
	Workflow definition
	Comparing Grid Services and BPEL4WS
	The proposed approach
	Motivation
	Components of the proposed architecture
	Coordinating design process

	Case study and expermential results
	Related work and discussion
	Conclusion
	Acknowledgements
	References

