

Cooperative Design in Grid Services

Rob Mahon1, Kuo-Ming Chao2, Muhammad Younas2, Nathan Griffiths3

1Product Development IT, Jaguar Cars Ltd, UK
rmahon@jaguar.com

2School of MIS, Coventry University, UK
{k.chao, m.younas}@coventry.ac.uk

3Department of Computer Science, University of Warwick, UK
nathan@dcs.warwick.ac.uk

Abstract

Quite often workflow control and computational power
are not available for engineers and scientists either due to
the availability of resources which can be exacerbated by
the lack of process controls or the amount of data
produced. The availability of grid services (e.g. GT3)
presents a potential feasible method to overcome the
barriers of sharing heterogeneous computational
resources. However, lack of sophisticated coordination
mechanisms to specify the workflow would deter the
prevailing of the grid services. There is a need for a
seamless, flexible, demand based service for
engineers/scientists who are able to submit jobs to a
computational grid from a remote source in a manner
that would ensure the job is executed in an efficient,
controlled method. In this paper, we propose a system
that adopts BPEL4WS as a coordination language to
define and manage the workflow among grid services to
meet engineering requirements. A prototype system is
built and evaluated with a case study from the automotive
industry to demonstrate the feasibilities of the proposed
system.

1. Introduction

Large and complex engineering design in the
automotive industry often involves multiple disciplinary
design teams with each design team using specialised
software tools which often require exhaustive
computational resources and produce large amount of
data in order to produce designs and effective predictive
models. Each design team does not only have to comply
with its design requirements (e.g. design specifications
and finishing time) but also has to ensure that a consistent
product model is produced alongside other design teams.
The interactions among multiple design teams are
inevitable for sharing the information and knowledge.
During the design process one particular design team
specialises in crash worthiness. This is the study of
protecting the occupants of vehicles during various modes
of impacts and minimising the amount of damage such as
high impact head on collisions, side on impacts and low
impact shunts.

In order to certify design processes to be efficient and
effective, a workflow is introduced to coordinate the
design activities. The exploitation of idle computational
resources in the organisation is needed to shorten the

design process or to improve efficiency of design
activities. The concept of computational grid is deployed
to integrate the heterogeneous computational resources
and provide a seamless and flexible environment for
design simulations and job execution. This paper presents
a novel Computer Supported Cooperative Work (CSCW)
architecture that enables multiple disciplinary design
teams to work seamlessly via grid computing such as
Open Grid Service Architecture (OGSA) [1] and
BPEL4WS (Business Process Exestuation Language for
Web Services)[2].

This paper is structured as follows: The next section
will describe a realistic automotive design scenario in
order to illustrate the issues encountered by the industry.
Section 3 describes current problems encountered and a
possible solution to address the identified issues. Section
4 gives an overview of the specifications of (OGSA) and
its main characteristics. A new industry standard for
composing web services and managing the workflow
among web services, BPEL4WS, will be introduced in
Section 5. Section 6 describes a proposed grid enabling
architecture that integrates OGSA and BPEL4WS to
provide a seamless and manageable CSCW environment
for engineering crashworthiness design. In Section 7, a
case study will be used to demonstrate the proposed
architecture. The discussion and conclusion will be
presented in the last Section.

Figure 1. Illustrates an Finite Element analysis of a high speed frontal

impact using an offset deformable barrier

2. Automotive Simulation

 In automotive design, Safety engineers create
mathematical models to represent the structural integrity,
dynamic response and durability of vehicles to name just
a few. This methodology uses techniques called Finite
Element Analysis (FEA), the solution of simultaneous
equations on geometry and materials represented by
elements/nodes, producing definitive results for a given
problem (see Fig. 1). The complexity of defined problems
has increased dramatically with the advance of
computational resources. For example, engineers submit
multiple FEA impact simulations, optimisation or design
of experiments analysis on multi-processor servers
producing large quantities of data which takes time to
process and analyse. Full vehicle analysis can produce
gigabytes of data for a single crash mode with the latest
safety models taking up to 2 days to complete on new
multi-CPU high end servers. During Design of
Experiments (DOE) or Optimisation analysis results can
be collated statistically and results presented via charts
and graphs to the analyst. This type of analysis is
sometimes called Design or Experiments, Optimisation,
Robustness Design or Sensitivity Analysis and generally
involves larger amounts of computation and hence
resources over regular single FE jobs. The aim of this
type of analysis is to show performance trends rather than
specific animations with an aim to provide a greater
feeling of performance reliability and build quality. This
involves a number of design teams and tools with a
coherent coordination approach to ensure a consistent
product model produced. Fig. 2 shows a number of
design teams involved in creating a car model at various
stages of design process and the high level workflow.

A common issue is identifying the funds to secure
computational resources. Dedicated compute resources
are generally too costly for large scale analysis and PC or
workstation scavenging is not dedicated or does not
ensure the compute resource for analysis work.
Workstations are not usable in a grid whilst an

engineer/scientist is using it in his/her general day-to-day
design activities as it slows the operation to a crawl unless
it is a high end multi-processor desktop workstation.
Nightly analysis windows are not long enough for non-
linear predictive analysis as once jobs are started it is
difficult to transfer to another workstation.

Another large problem is processing the vast amounts of
data created by the analysis. This is a problem from the
model conceptual stage right through to the post
processing and storage. It currently takes too much time
to process individual jobs. More automation is needed to
control the information flow and process this data. The
compute grid and web technology are introduced in order
to address the aforementioned issues.

3. Working Practices

The solution is to build a compute grid made up from
various sources, dedicated high end servers and by
clustering workstations and PC’s into one large pool.
MPP (Massively Parallel Processor) analysis utilising
libraries such as MPI (Message Passing Interface) are
used to distribute jobs and speed up analysis on
workstations to ensure jobs could complete overnight
whilst the dedicated resources run continuously.
Comparable analysis can be a problem with certain types
of jobs executed on different types of compute servers.
Where this is the case efficient resource management
associated with operating system and hardware set-up are
critical.

The infrastructure of the overall system is based on
client-server architecture and a centralised
fileserver/database system for sharing information. Web
interfaces on the client would be used to control and track
analysis. A web page template written with standard web
protocols is used for visualising job set-up and process to
ensure correct practice. Physical inputs and job
characteristics are stated or standard inputs like barrier
models, input loads, velocities and material properties can
be obtained from central FE (Finite Element) libraries.

Vehicle
Performance

Figure 2. Shows multidisciplinary tasking within automotive engineering

Car Simulation
tool:

Computational
Grid

CAE
Mesh
Build

CAD
Model
Build

Target
Setting

Prototype Vehicle Test

Structural
Model
Build

Manufacturing

Geometric Hard Points

Manufacture
Simulation data

Vehicle
Performance

Safety
Model
Build

Durability
Model
Build

CFD Model
Build

This could be accessed on the client via a secure web
server. Jobs can be tracked individually or job statistics
can be obtained and displayed for grid capacity planning
or historic data used for comparison or utilisation
purposes.

The third party grid enabling software focuses on
scheduling on the computational resources. LSF, PBS-
Pro, and Codine are examples of commercial schedulers
that distribute work packets to computational resources.
Currently the LSF from Platform is adopted.

Figures 3 and 4. CAE simulation in initial positions, courtesy of TNO

Figures 5 and 6. Impact and airbag delivery for a belted female adult
and an unbelted child.

With the latest scheduling software it is possible to

intelligently schedule and guarantee completion of batch
workloads across a distributed IT environment. Load
balancing techniques help meet service levels agreements
with customers and helps ensure the right resources are
automatically allocated to the right users with maximum
efficiency.

With the use of web technologies the steps involved in
the analysis procedure can be controlled. Process control
is a subject on its own but in the context of this work it is
enough to say that each step through the analysis setup,
submission and post processing is tightly controlled via
the web interface content.

Once all the input data has been succesfully gathered in
to the pre-analysis input files the user can define the
output parameters and initiate the task. Analysis templates
and wrapper scripts are used to control job submission
with additional software codes such as Storm by Easi
Engineering or ISight by Engenious Software to control
the manner in which the optimisation analysis is executed.
These type of codes specialise in optimisational
algorithms used for this Design of Experiments (DoE) or
Optimisation analysis. The results are gathered for each

job and collated where post job scripts can automatically
process the results and present the data to the shared areas
where dynamic web pages are written with the results
contained. Job tracking showing the state of jobs and
servers are accessed via a web console from the remote
location. Results are presented via animations, graphs and
other statistical methods to gain a good understanding of
design variables within the design envelope.
Figures 3-6 shows animation stills from TNO’s Madymo
occupant analysis software.

Current practices improve the usage of idle
computational resources, but they are some drawbacks. In
a crash simulation analysis, mutliple analysis instances
and jobs can be created by various users for different
cases but the correlation between the discipline instances
and jobs is not well defined. An enabling tehcnology to
manage multiple instances and jobs is required across the
various disiplines to improve the coordination of results
and input/output data.

The existing architecture is built upon Web technology.
This leads to client side programs that cannot utilise the
results produced by servers for further analysis. An
investigation to Web Service technology is needed.

The MPP process lacks definition, flexibility and
facility for modelling the workflow. In addition, the
stateless transition between jobs increases the difficulty in
maintaining systems when interruptions are occur. It is
also important to look into emerging standards and open
source grid specification in order to gain long term
support from IT industry. The next section briefly
describes the Open Grid Services Infrastructure (OGSI)
specification.

4. Grid Services

The OGSI specification utilises the WSDL [3] and
XML schema definition languages from Web services to
define an extended component model [6]. The aim of the
specification is to address the common issues that occur
in sophisticated distributed applications, such as the
management of distributed long-lived states. In order to
achieve this aim, OGSI defines the notion of a Grid
service instance [4]. “A Grid service instance is a
(potentially transient) service that conforms to a set of
conventions (expressed as WSDL interfaces, extensions,
and behaviours) for such purposes as lifetime
management, discovery of characteristics, notification,
and so forth.” [4]. The OGSI specification not only
inherits the interoperability features from Web services,
but also includes the following features.
- Stateful interactions: serviceData is the OGSI

approach to stateful Web services. It exposes a service
instance’s state data to service requestors for queries,
updates and change notifications [4]. The concept of
serviceData is similar to a JavaBean. Thus, each item
of data is associated with a set of methods (e.g., get
and set) to access the state of data (attributes).

- References: OGSI uses Grid Service Handles (GSH)
[5] to name and manage Grid service instances. A
client wishing to communicate with a service instance

must map the GSH to a Grid Service Reference
(GSR). This is because a GSH only contains a
minimal set of information, such as a URI and it does
not carry sufficient information to allow a client to
communicate directly with the service instance.
Instead, a GSR contains all the information that a
client requires to communicate with the service.

- Collection of service instances: OGSI allows a
number of services to be grouped together so that they
can be easily maintained by clients. A Grid service
can define it’s relationship with other member services
in the group. Services can join or leave a service
group.

- Life Cycle management: This gives a client the ability
to create and destroy a service instance according to
it’s requirements.

- Inheritance: OGSI adopts some of the features from
the WSDL 1.2 such as portType inheritance which
allows one portType to extend from other portTypes.
To distinguish between WSDL 1.1 and 1.2, OGSI uses
GWSDL to name the WSDL 1.2 portTypes.

- Asynchronous notification: OGSI provides a facility
for asynchronous notification of state change using a
pull/push mechanism.

In summary, the OGSI specification is an attempt to
provide an environment for Grid services to be more
manageable within large and complex distributed
applications and to provide a platform for higher-level
mechanisms to compose services. However, it does not
address the issue of workflow management in the grid
services. The following section summarises one of the
new industry standards in composing web services.

5. Workflow (BPEL4WS)

BPEL4WS is an industry standard specification for
defining the workflow between Web services [2]. It is
intended to provide a workflow language to model
complex and non-deterministic business processes. The
characteristics of correlating business processes often
depend on the data and BPEL4WS provides a set of
activities to model data-dependent behaviours. BPEL4WS
provides conditional and time-out constructs in order to

address non-deterministic situations which often occur in
business processes. BPEL4WS also provides developers
with the ability to specify exception conditions and their
consequences, including recovery sequences. The most
important feature of BPEL4WS is to support business
process coordination among multiple parties. This enables
the outcome (success or failure) of units of work at
various levels of granularity of the business processes.
BPEL4WS enables modelling of long-running
interactions between business processes with nested units
of work between them and each with its own data
requirements.

BPEL4WS is built upon three XML-based
specifications: WSDL 1.1, XML Schema 1.0 and XPath
1.0. Partners are used by BPEL4WS to model interacting
services in business processes. Each partner has a unique
name and other services can interact with the partner
through it’s name. Each partner is associated with a
WSDL document, which describes the information that a
service contains. The process model allows developers to
specify the relationships between partners through a set of
pre-defined activities in order to orchestrate Web services.

In BPEL4WS, the business process begins with a
receive activity that receives a request from the client
which triggers the process as a whole. The reply activity
is the end of the process that responds to the request
associated with a receive activity. The invoke activity
allows invocation of an operator associated with
portTypes (which is defined in a partner Web service).
The state of messages related to business process is
temporarily stored in variables.

Developers can handle known and unexpected
exceptions with throw and compensate activities. The
response to external events can be specified through event
handlers. Control flow in BPEL4WS is similar to
traditional structured process control containing
constructs such as while, switch, and sequence. A
sequence activity defines blocks that contain one or more
activities that are performed sequentially. The flow
activity allows the activities within the block to be
performed concurrently. Finally, the correlation
construct specifies that only correlated instances can be
invoked.

Protocol 1
(binding)

Specific Stub

Protocol 1
(binding)

Specific Stub

Protocol 1
(binding)

Specific Stub

Handle
Resolver

Grid
ServiceHandle

Resolver
Grid

Service

Cache

Handle
Resolver

Grid
Service

Handle Scheme
Specific Resolver

Protocol

Client
Application

Proxy
Web Service

Client
(BPEL)

In
vo

ca
tio

n
of

 G
rid

S
er

vi
ce

Figure 7 Proposed Grid-Based Computer Supported Cooperative Work Framework

6. The Proposed Architecture

BPEL4WS was originally designed to orchestrate

standard Web services, but not for Grid services. The
incompatibility between grid and web services
complicates the application of BPEL4WS to orchestrate
the grid services. Detailed analysis on the differences
between grid and web services can be found in [6]. In
order to alleviate this problem we propose an architecture
(as shown in Fig. 7) to enable Grid service composition
via BPEL4WS. In the proposed architecture we wrap Grid
service clients as Web services called Proxy Web
Services. All of the interfaces defined for the Grid
services are re-defined in Java Beans as an XML complex
type (in WSDL) with a public Grid service instance
attribute. An additional operator, startGService, is defined
and implemented in the Proxy Web Service. This operator
is to create new Grid service instances. The process of a
series of activities being carried out is described as
follows:

The BPEL4WS user initiates the client. The Proxy Web
Services are invoked according to the workflow
descriptions in BPEL4WS. The Proxy Web Services will
trigger corresponding Grid services through an embedded
startGService operator. The startGService operator is the
standard procedure for creating a Grid service instance by
calling a GSH, holding its returned value and mapping it
to a GSR. When a Grid service instance is created, the
startGService operator obtains a reference and stores it in
the predefined public Grid service instance attribute.
Thus, the GRS reference is stored as a global variable and
is visible to the whole instance. When BPEL4WS wishes
to call individual operators in the Grid service it calls a
BPEL4WS engine, such as BPWS4J or Collaxa, to
activate Proxy Web Services stored in the Web service
container. The Proxy Web Service then uses the Grid
service reference, which is stored in the public attribute,
to tell the Grid service container to invoke the
corresponding Grid services. The Grid service replies
with the results to the Grid service client that made the
request. The Grid service client passes the response to its
Proxy Web Service. The BPEL4WS engine can obtain the
result and pass it on to the next service. This architecture
is illustrated in Figure 7.

This principle can be used to design a Grid service
from existing BPEL4WS descriptions. The advantage of
this approach is that the impact on the BPEL4WS
descriptions and the associated WSDL can be minimised
when the Grid service is re-deployed to different
locations.

 7. Case Study

In order to evaluate the feasibility and effectivenes of
the proposed system a relative small scale system was
adopted. This simple case study involves impacting a
tube of steel into a rigid wall with a given mass and
velocity. The model in decomposed into domains so that

calculations can be parrallelised. The domains are
represented by the boxes labeled A, B, C and D (see
Figure 8).

Figure 8. An impact simulation calculating nodal displacements.

Each processor(s) is responsible for solving it’s own

domain. Communication is required between the
processors for information across domain boundary
conditions for each timestep. For each domain the
following is calculated in parallel: contact forces,
constraints and finally update node positions. In this case,
B and C require two inputs and outputs which are derived
from their negbouring reaction forces. A has first impact
and passes the force to B. D receives the force from C and
bounces the force back to C. Displacement simulation
software is used and located at 4 different processors
(nodes) in the grid. The software has domain boundary
information and maintains it’s own state. The following
shows the snipet of BPEL4WS for modelling their
interactions:

<process name="Displacement Simulation"

 <variables>
 <variable name="impact1"
 messageType="tns:impactinfo"/>
 <variable name="impact2"
 messageType="tns:impactinfo"/>

 </variables>
 <partners>
 <partner name="A-displacement"
 serviceLinkType="lns:CarADisplacementLinkType"
 myRole="A-Boundary"/>
 <partner name="B-displacement"
 serviceLinkType="lns:CarBDisplacementLinkType"
 myRole="B-Boundary "/>
 <partner name="C-displacement"
 serviceLinkType="lns:CarCDisplacementLinkType"
 partnerRole=" C-Boundary "/>
 <partner name="D-displacement"
 serviceLinkType="lns:CarDDisplacementLinkType"
 partnerRole="D-Boundary "/>
 </partners>

 <Sequence>
 <receive name="initial" partner="A-displacement"
 portType="DisplaceA:CarAPT"
 operation="start" variable="impact"
 createInstance="yes">
 </receive>
 <flow>
 <links>
<link name = “AtoB” />
<link name = “BtoC”/>

</links>

A B C D

 <invoke name="A-impact" partner="A-displacement"
 portType="DisplaceA:CarBPT"
 operation="ImpactAnalysis"
 inputVariable="impact1"
 outputVariable="impact2">
 < Source linkname=”AtoB”>
 </invoke>
 <assign name="assign">
 <copy>

<from variable = "impact2"
 portType="tns:displacementinfo" />

 <to variable="impact1" PortType = "tns:impactinfo/>
 </copy>
 </assign>
 <invoke name="B-impact" partner="B-displacement"
 portType="DisplaceB:CarBPT"
 operation="ImpactAnalysis"
 inputVariable="impact1"
 outputVariable="impact2">
 < Target linkname=”AtoB”>
 < Source linkname=”BtoC”>
 </invoke>
 </flow>
 </Sequence>
</Process>

The relationship between four nodes are defined as
partners which are specified in WSDLs. The variables are
used to hold the data from one grid service and pass to
another. The operation start receives the user request and
starts the whole process. It takes one input object impact1
which contains the information about mass, velocity and
timestep. Variables impact1and impact2 are the same as
the port type but used for different purposes. The
generated displacement of nodes is stored in the system as
internal states.

A-Impact activity is invoked to simulate the impact and
generates the result that passes to B-Impact process. The
C-Impact activity does not start until B-Impact activity
produces the result. The D-Impact is the last activity
waiting for the input from activity C-impact. The flow is
used to allow them to run concurrently. Modelling the
dependency of the concurrent activities is the link. The
exmperimental results show that the proposed approach
produces the same result as the standalone one.

8. Conclusions

Large and complex engineering designs (car industry)
often requires significant computational resources and
involve complicated design activities. To increase
utilisation of the existing idle resources is the key to
improve efficiency and effectiveness of the design. The
improvement of compuational effeciency without a
certain degree of relability is not a promising solution. To
ensure the consistency of design activities through a
coordination protocol is an important issue. In this paper
we propose a novel architecture for integrating grid
services with BPEL4WS to allow designers to specify
workflow between design activities with a high level
language as well as to ensure that the product model is
consistent. This simplified case study adopted from car
design industry demonstrates the feasibility and
effectiveness of the proposed system.

BPEL4WS is not the only specification for orchestrating
Web services. BPML (Business Process Modelling
Language) proposed by an industry consortium aims at

modelling business data through a meta-language [7], but
there is no supported run-time environment yet. The
Semantic Web community has proposed OWL-S [8] for
describing the semantics of Web services and
composition mechanisms for Web services. However,
there is no sophisticated engine like BPWS4J or Collaxa
to support the OWL-S specification. [9] defines the
semantics of Web services via OWL-S and translates the
descriptions to BPEL4WS. Thus, BPWS4J can provide a
run-time environment to execute Web services
accordingly. Other on-going research is to use agents with
a specific reasoning mechanisms such as GoLog [10], to
compose Web services.

Currently we are planning to run on larger scale
experiments which will involve a number of design teams
and software systems with the introduction of intelligent
agent technology. Piror to that, a number of existing
software tools need to be re-engineered in order to run on
a distributed environment.

References
[1]. OGSI, Open Grid Services Infrastructure (OGSI)

Version 1.0, http://www-unix.globus.org/toolkit/
documentation.html

[2]. Business Process Execution Language for Web
Services Version 1.1, http://www-
106.ibm.com/developerworks/webservices/library/ws-
bpel/

[3]. W3C Note "Web Services Definition Language
(WSDL) 1.1", http://www.w3.org/TR/WSDL

[4]. Service-Oriented Architecture (SOA) Definition:
http://www.servicearchitecture.com/web-
services/articles/serviceoriented_architecture_soa_defi
nition.html.

[5]. Globus toolkits 3, http://www-
unix.globus.org/toolkit/documentation.html

[6]. Chao, Kuo-Ming, Younas, Muhammad, Griffiths,
Nathan, Awan, Irfan, and Anane, R. “Analysis of Grid
Service Composition with BPEL4WS”, to appear in
Conference Proceedings of 18th Advanced Information
and Network Applications, IEEE CS, 2004.

[7]. BMPI.org, Business Process Modelling Language
Specifications, http://www.bpmi.org/bpml.esp

[8]. OWL Services Coalition. OWL-S: Semantic Markup
for Web Services. OWL-S v. 1.0 White Paper,
http://www.daml.org/services/daml-s/0.7/daml-s-
wsdl.html, Sept 2003.

[9]. S. McIlraith and T. Son. Adapting Golog for
Composition of Semantic Web Services. Conference
Proceedings on Knowledge Representation and
Reasoning, April 2002.

[10]. Evren Sirin, James Hendler, Bijan Parsia, "Semi-
automatic Composition of Web Services using
Semantic Descriptions." Proceedings of "Web
Services: Modeling, Architecture and Infrastructure"
workshop in conjunction with ICEIS2003, 2002

.

