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Abstract 

Quite often workflow control and computational power 
are not available for engineers and scientists either due to 
the availability of resources which can be exacerbated by 
the lack of process controls or the amount of data 
produced. The availability of grid services (e.g. GT3) 
presents a potential feasible method to overcome the 
barriers of sharing heterogeneous computational 
resources. However, lack of sophisticated coordination 
mechanisms to specify the workflow would deter the 
prevailing of the grid services. There is a need for a 
seamless, flexible, demand based service for 
engineers/scientists who are able to submit jobs to a 
computational grid from a remote source in a manner 
that would ensure the job is executed in an efficient, 
controlled method. In this paper, we propose a system 
that adopts BPEL4WS as a coordination language to 
define and manage the workflow among grid services to 
meet engineering requirements. A prototype system is 
built and evaluated with a case study from the automotive 
industry to demonstrate the feasibilities of the proposed 
system.  
 
1. Introduction 
 

Large and complex engineering design in the 
automotive industry often involves multiple disciplinary 
design teams with each design team using specialised 
software tools which often require exhaustive 
computational resources and produce large amount of 
data in order to produce designs and effective predictive 
models. Each design team does not only have to comply 
with its design requirements (e.g. design specifications 
and finishing time) but also has to ensure that a consistent 
product model is produced alongside other design teams. 
The interactions among multiple design teams are 
inevitable for sharing the information and knowledge. 
During the design process one particular design team 
specialises in crash worthiness. This is the study of 
protecting the occupants of vehicles during various modes 
of impacts and minimising the amount of damage such as 
high impact head on collisions, side on impacts and low 
impact shunts.  

In order to certify design processes to be efficient and 
effective, a workflow is introduced to coordinate the 
design activities. The exploitation of idle computational 
resources in the organisation is needed to shorten the 

design process or to improve efficiency of design 
activities. The concept of computational grid is deployed 
to integrate the heterogeneous computational resources 
and provide a seamless and flexible environment for 
design simulations and job execution. This paper presents 
a novel Computer Supported Cooperative Work (CSCW) 
architecture that enables multiple disciplinary design 
teams to work seamlessly via grid computing such as 
Open Grid Service Architecture (OGSA) [1] and 
BPEL4WS (Business Process Exestuation Language for 
Web Services)[2].  

This paper is structured as follows: The next section 
will describe a realistic automotive design scenario in 
order to illustrate the issues encountered by the industry.  
Section 3 describes current problems encountered and a 
possible solution to address the identified issues. Section 
4 gives an overview of the specifications of (OGSA) and 
its main characteristics. A new industry standard for 
composing web services and managing the workflow 
among web services, BPEL4WS, will be introduced in 
Section 5. Section 6 describes a proposed grid enabling 
architecture that integrates OGSA and BPEL4WS to 
provide a seamless and manageable CSCW environment 
for engineering crashworthiness design. In Section 7, a 
case study will be used to demonstrate the proposed 
architecture. The discussion and conclusion will be 
presented in the last Section. 
 

 
Figure 1. Illustrates an Finite Element analysis of a high speed frontal 

impact using an offset deformable barrier 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
2. Automotive Simulation   
 
 In automotive design, Safety engineers create 
mathematical models to represent the structural integrity, 
dynamic response and durability of vehicles to name just 
a few. This methodology uses techniques called Finite 
Element Analysis (FEA), the solution of simultaneous 
equations on geometry and materials represented by 
elements/nodes, producing definitive results for a given 
problem (see Fig. 1). The complexity of defined problems 
has increased dramatically with the advance of 
computational resources. For example, engineers submit 
multiple FEA impact simulations, optimisation or design 
of experiments analysis on multi-processor servers 
producing large quantities of data which takes time to 
process and analyse. Full vehicle analysis can produce 
gigabytes of data for a single crash mode with the latest  
safety models taking up to 2 days to complete on new 
multi-CPU high end servers. During Design of 
Experiments (DOE) or Optimisation analysis results can 
be collated statistically and results presented via charts 
and graphs to the analyst. This type of analysis is 
sometimes called Design or Experiments, Optimisation, 
Robustness Design or Sensitivity Analysis and generally 
involves larger amounts of computation and hence 
resources over regular single FE jobs. The aim of this 
type of analysis is to show performance trends rather than 
specific animations with an aim to provide a greater 
feeling of performance reliability and build quality. This 
involves a number of design teams and tools with a 
coherent coordination approach to ensure a consistent 
product model produced.  Fig. 2 shows a number of 
design teams involved in creating a car model at various 
stages of design process and the high level workflow. 

A common issue is identifying the funds to secure 
computational resources. Dedicated compute resources 
are generally too costly for large scale analysis and PC or 
workstation scavenging is not dedicated or does not 
ensure the compute resource for analysis work. 
Workstations are not usable in a grid whilst an 

engineer/scientist is using it in his/her general day-to-day 
design activities as it slows the operation to a crawl unless 
it is a high end multi-processor desktop workstation. 
Nightly analysis windows are not long enough for non-
linear predictive analysis as once jobs are started it is 
difficult to transfer to another workstation.  

Another large problem is processing the vast amounts of 
data created by the analysis. This is a problem from the 
model conceptual stage right through to the post 
processing and storage. It currently takes too much time 
to process individual jobs. More automation is needed to 
control the information flow and process this data. The 
compute grid and web technology are introduced in order 
to address the aforementioned issues.    
 
3. Working Practices 
 

The solution is to build a compute grid made up from 
various sources, dedicated high end servers and by 
clustering workstations and PC’s into one large pool. 
MPP (Massively Parallel Processor) analysis utilising 
libraries such as MPI (Message Passing Interface) are 
used to distribute jobs and speed up analysis on 
workstations to ensure jobs could complete overnight 
whilst the dedicated resources run continuously. 
Comparable analysis can be a problem with certain types 
of jobs executed on different types of compute servers. 
Where this is the case efficient resource management 
associated with operating system and hardware set-up are 
critical.  

The infrastructure of the overall system is based on 
client-server architecture and a centralised 
fileserver/database system for sharing information. Web 
interfaces on the client would be used to control and track 
analysis. A web page template written with standard web 
protocols is used for visualising job set-up and process to 
ensure correct practice. Physical inputs and job 
characteristics are stated or standard inputs like barrier 
models, input loads, velocities and material properties can 
be obtained from central FE (Finite Element) libraries. 

Vehicle 
Performance 

Figure 2. Shows multidisciplinary tasking within automotive engineering 

Car Simulation 
tool: 

Computational 
Grid 

CAE 
Mesh 
Build 

CAD 
Model 
Build

Target 
Setting 

Prototype Vehicle Test 

Structural 
Model 
Build

Manufacturing  

Geometric Hard Points 

Manufacture 
Simulation data 

Vehicle 
Performance 

Safety 
Model 
Build

Durability 
Model 
Build

CFD Model 
Build 



 

This could be accessed on the client via a secure web 
server. Jobs can be tracked individually or job statistics 
can be obtained and displayed for grid capacity planning 
or historic data used for comparison or utilisation 
purposes. 

The third party grid enabling software focuses on 
scheduling on the computational resources. LSF, PBS-
Pro, and Codine are examples of commercial schedulers 
that distribute work packets to computational resources. 
Currently the LSF from Platform is adopted. 
 

 
 

Figures 3 and 4.  CAE simulation in initial positions, courtesy of TNO 
 

  
 

Figures 5 and 6.  Impact and airbag delivery for a belted female adult 
and an unbelted child. 

 
With the latest scheduling software it is possible to 

intelligently schedule and guarantee completion of batch 
workloads across a distributed IT environment. Load 
balancing techniques help meet service levels agreements 
with customers and helps ensure the right resources are 
automatically allocated to the right users with maximum 
efficiency.  

With the use of web technologies the steps involved in 
the analysis procedure can be controlled.  Process control 
is a subject on its own but in the context of this work it is 
enough to say that each step through the analysis setup, 
submission and post processing is tightly controlled via 
the web interface content.  

Once all the input data has been succesfully gathered in 
to the pre-analysis input files the user can define the 
output parameters and initiate the task. Analysis templates 
and wrapper scripts are used to control job submission 
with additional software codes such as Storm by Easi 
Engineering or ISight by Engenious Software to control 
the manner in which the optimisation analysis is executed. 
These type of codes specialise in optimisational 
algorithms used for this Design of Experiments (DoE) or 
Optimisation analysis. The results are gathered for each 

job and collated where post job scripts can automatically 
process the results and present the data to the shared areas 
where dynamic web pages are written with the results 
contained. Job tracking showing the state of jobs and 
servers are accessed via a web console from the remote 
location. Results are presented via animations, graphs and 
other statistical methods to gain a good understanding of 
design variables within the design envelope.  
Figures 3-6 shows animation stills from TNO’s Madymo 
occupant analysis software.  

Current practices improve the usage of idle 
computational resources, but they are some drawbacks. In 
a crash simulation analysis, mutliple analysis instances 
and jobs can be created by various users for different 
cases but the correlation between the discipline instances 
and jobs is not well defined. An enabling tehcnology to 
manage multiple instances and jobs is required across the 
various disiplines to improve the coordination of results 
and input/output data.   

The existing architecture is built upon Web technology. 
This leads to client side programs that cannot utilise the 
results produced by servers for further analysis. An 
investigation to Web Service technology is needed. 

The MPP process lacks definition, flexibility and 
facility for modelling the workflow. In addition, the 
stateless transition between jobs increases the difficulty in 
maintaining systems when interruptions are occur. It is 
also important to look into emerging standards and open 
source grid specification in order to gain long term 
support from IT industry. The next section briefly 
describes the Open Grid Services Infrastructure (OGSI) 
specification. 
 
4. Grid Services 
 

The OGSI specification utilises the WSDL [3] and 
XML schema definition languages from Web services to 
define an extended component model [6]. The aim of the 
specification is to address the common issues that occur 
in sophisticated distributed applications, such as the 
management of distributed long-lived states. In order to 
achieve this aim, OGSI defines the notion of a Grid 
service instance [4]. “A Grid service instance is a 
(potentially transient) service that conforms to a set of 
conventions (expressed as WSDL interfaces, extensions, 
and behaviours) for such purposes as lifetime 
management, discovery of characteristics, notification, 
and so forth.” [4]. The OGSI specification not only 
inherits the interoperability features from Web services, 
but also includes the following features. 
- Stateful interactions: serviceData is the OGSI 

approach to stateful Web services. It exposes a service 
instance’s state data to service requestors for queries, 
updates and change notifications [4]. The concept of 
serviceData is similar to a JavaBean. Thus, each item 
of data is associated with a set of methods (e.g., get 
and set) to access the state of data (attributes). 

- References: OGSI uses Grid Service Handles (GSH) 
[5] to name and manage Grid service instances. A 
client wishing to communicate with a service instance 



 

must map the GSH to a Grid Service Reference 
(GSR). This is because a GSH only contains a 
minimal set of information, such as a URI and it does 
not carry sufficient information to allow a client to 
communicate directly with the service instance. 
Instead, a GSR contains all the information that a 
client requires to communicate with the service.   

- Collection of service instances: OGSI allows a 
number of services to be grouped together so that they 
can be easily maintained by clients. A Grid service 
can define it’s relationship with other member services 
in the group. Services can join or leave a service 
group. 

- Life Cycle management: This gives a client the ability 
to create and destroy a service instance according to 
it’s requirements. 

- Inheritance: OGSI adopts some of the features from 
the WSDL 1.2 such as portType inheritance which 
allows one portType to extend from other portTypes. 
To distinguish between WSDL 1.1 and 1.2, OGSI uses 
GWSDL to name the WSDL 1.2 portTypes.  

- Asynchronous notification: OGSI provides a facility 
for asynchronous notification of state change using a 
pull/push mechanism.  

In summary, the OGSI specification is an attempt to 
provide an environment for Grid services to be more 
manageable within large and complex distributed 
applications and to provide a platform for higher-level 
mechanisms to compose services. However, it does not 
address the issue of workflow management in the grid 
services. The following section summarises one of the 
new industry standards in composing web services.  
 
5. Workflow (BPEL4WS) 
 

BPEL4WS is an industry standard specification for 
defining the workflow between Web services [2]. It is 
intended to provide a workflow language to model 
complex and non-deterministic business processes. The 
characteristics of correlating business processes often 
depend on the data and BPEL4WS provides a set of 
activities to model data-dependent behaviours. BPEL4WS 
provides conditional and time-out constructs in order to 

address non-deterministic situations which often occur in 
business processes. BPEL4WS also provides developers 
with the ability to specify exception conditions and their 
consequences, including recovery sequences. The most 
important feature of BPEL4WS is to support business 
process coordination among multiple parties. This enables 
the outcome (success or failure) of units of work at 
various levels of granularity of the business processes. 
BPEL4WS enables modelling of long-running 
interactions between business processes with nested units 
of work between them and each with its own data 
requirements.  

BPEL4WS is built upon three XML-based 
specifications: WSDL 1.1, XML Schema 1.0 and XPath 
1.0. Partners are used by BPEL4WS to model interacting 
services in business processes. Each partner has a unique 
name and other services can interact with the partner 
through it’s name. Each partner is associated with a 
WSDL document, which describes the information that a 
service contains. The process model allows developers to 
specify the relationships between partners through a set of 
pre-defined activities in order to orchestrate Web services.  

In BPEL4WS, the business process begins with a 
receive activity that receives a request from the client 
which triggers the process as a whole. The reply activity 
is the end of the process that responds to the request 
associated with a receive activity. The invoke activity 
allows invocation of an operator associated with 
portTypes (which is defined in a partner Web service). 
The state of messages related to business process is 
temporarily stored in variables. 

Developers can handle known and unexpected 
exceptions with throw and compensate activities. The 
response to external events can be specified through event 
handlers. Control flow in BPEL4WS is similar to 
traditional structured process control containing 
constructs such as while, switch, and sequence. A 
sequence activity defines blocks that contain one or more 
activities that are performed sequentially. The flow 
activity allows the activities within the block to be 
performed concurrently.  Finally, the correlation 
construct specifies that only correlated instances can be 
invoked. 
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Figure 7 Proposed Grid-Based Computer Supported Cooperative Work Framework 



 

 
6. The Proposed Architecture  

 
BPEL4WS was originally designed to orchestrate 

standard Web services, but not for Grid services. The 
incompatibility between grid and web services 
complicates the application of BPEL4WS to orchestrate 
the grid services. Detailed analysis on the differences 
between grid and web services can be found in [6].  In 
order to alleviate this problem we propose an architecture 
(as shown in Fig. 7) to enable Grid service composition 
via BPEL4WS. In the proposed architecture we wrap Grid 
service clients as Web services called Proxy Web 
Services. All of the interfaces defined for the Grid 
services are re-defined in Java Beans as an XML complex 
type (in WSDL) with a public Grid service instance 
attribute. An additional operator, startGService, is defined 
and implemented in the Proxy Web Service. This operator 
is to create new Grid service instances. The process of a 
series of activities being carried out is described as 
follows: 

 
The BPEL4WS user initiates the client. The Proxy Web 
Services are invoked according to the workflow 
descriptions in BPEL4WS. The Proxy Web Services will 
trigger corresponding Grid services through an embedded 
startGService operator. The startGService operator is the 
standard procedure for creating a Grid service instance by 
calling a GSH, holding its returned value and mapping it 
to a GSR. When a Grid service instance is created, the 
startGService operator obtains a reference and stores it in 
the predefined public Grid service instance attribute. 
Thus, the GRS reference is stored as a global variable and 
is visible to the whole instance. When BPEL4WS wishes 
to call individual operators in the Grid service it calls a 
BPEL4WS engine, such as BPWS4J or Collaxa, to 
activate Proxy Web Services stored in the Web service 
container. The Proxy Web Service then uses the Grid 
service reference, which is stored in the public attribute, 
to tell the Grid service container to invoke the 
corresponding Grid services.  The Grid service replies 
with the results to the Grid service client that made the 
request. The Grid service client passes the response to its 
Proxy Web Service. The BPEL4WS engine can obtain the 
result and pass it on to the next service. This architecture 
is illustrated in Figure 7. 

This principle can be used to design a Grid service 
from existing BPEL4WS descriptions. The advantage of 
this approach is that the impact on the BPEL4WS 
descriptions and the associated WSDL can be minimised 
when the Grid service is re-deployed to different 
locations.  
 
 7. Case Study 
 

In order to evaluate the feasibility and effectivenes of 
the proposed system a relative small scale system was 
adopted.  This simple case study involves impacting a 
tube of steel into a rigid wall with a given mass and 
velocity. The model in decomposed into domains so that 

calculations can be parrallelised. The domains are 
represented by the boxes labeled A, B, C and D (see 
Figure 8). 

 
Figure 8.  An impact simulation calculating nodal displacements. 

 
Each processor(s) is responsible for solving it’s own 

domain. Communication is required between the 
processors for information across domain boundary 
conditions for each timestep. For each domain the 
following is calculated in parallel: contact forces, 
constraints and finally update node positions. In this case, 
B and C  require two inputs and outputs which are derived 
from their negbouring reaction forces. A has first impact 
and passes the force to B. D receives the force from C and 
bounces the force back to C. Displacement simulation 
software is used and located at 4 different processors 
(nodes) in the grid. The software has domain boundary 
information and maintains it’s own state. The following 
shows the snipet of BPEL4WS for modelling their 
interactions: 
 
<process name="Displacement Simulation"  
---- 
  <variables> 
    <variable name="impact1"  
               messageType="tns:impactinfo"/> 
    <variable name="impact2"  
               messageType="tns:impactinfo"/> 
---------- 
  </variables> 
  <partners> 
    <partner name="A-displacement"  
             serviceLinkType="lns:CarADisplacementLinkType" 
             myRole="A-Boundary"/> 
    <partner name="B-displacement"  
             serviceLinkType="lns:CarBDisplacementLinkType" 
             myRole="B-Boundary "/> 
    <partner name="C-displacement"  
             serviceLinkType="lns:CarCDisplacementLinkType" 
             partnerRole=" C-Boundary "/> 
    <partner name="D-displacement"  
             serviceLinkType="lns:CarDDisplacementLinkType" 
             partnerRole="D-Boundary "/> 
  </partners> 
 
  <Sequence> 
    <receive name="initial" partner="A-displacement"  
             portType="DisplaceA:CarAPT"  
             operation="start" variable="impact" 
             createInstance="yes"> 
      </receive> 
    <flow> 
   <links> 
<link name = “AtoB” /> 
<link name = “BtoC”/> 
-------------- 
</links> 

A B C D 



 

 

    <invoke name="A-impact" partner="A-displacement"  
            portType="DisplaceA:CarBPT"  
            operation="ImpactAnalysis" 
            inputVariable="impact1"  
            outputVariable="impact2"> 
           < Source linkname=”AtoB”> 
     </invoke> 
    <assign name="assign"> 
      <copy>  

<from variable = "impact2" 
 portType="tns:displacementinfo" /> 

         <to variable="impact1" PortType = "tns:impactinfo/> 
      </copy> 
    </assign> 
    <invoke name="B-impact" partner="B-displacement"  
            portType="DisplaceB:CarBPT"  
            operation="ImpactAnalysis" 
            inputVariable="impact1"  
            outputVariable="impact2"> 
          < Target linkname=”AtoB”> 
          < Source linkname=”BtoC”> 
  </invoke> 
   </flow> 
  </Sequence> 
</Process> 
 

The relationship between four nodes are defined as 
partners which are specified in WSDLs. The variables are 
used to hold the data from one grid service and pass to 
another. The operation start receives the user request and 
starts the whole process. It takes one input object impact1 
which contains the information about mass, velocity and 
timestep. Variables impact1and impact2 are the same as 
the port type but used for different purposes. The 
generated displacement of nodes is stored in the system as 
internal states. 

A-Impact activity is invoked to simulate the impact and 
generates the result that passes to B-Impact process. The 
C-Impact activity does not start until B-Impact activity 
produces the result. The D-Impact is the last activity 
waiting for the input from activity C-impact.  The flow is 
used to allow them to run concurrently. Modelling the 
dependency of the concurrent activities is the link. The 
exmperimental results show that the proposed approach 
produces the same result as the standalone one.  
 
8. Conclusions  
 

Large and complex engineering designs (car industry) 
often requires significant computational resources and 
involve complicated design activities.  To increase 
utilisation of the existing idle resources is the key to 
improve efficiency and effectiveness of the design. The 
improvement of compuational effeciency without a 
certain degree of relability is not a promising solution. To 
ensure the consistency of design activities through a 
coordination protocol is an important issue. In this paper 
we propose a novel architecture for integrating grid 
services with BPEL4WS to allow designers to specify 
workflow between design activities with a high level 
language as well as to ensure that the product model is 
consistent. This simplified case study adopted from car 
design industry demonstrates the feasibility and 
effectiveness of the proposed system.  

BPEL4WS is not the only specification for orchestrating 
Web services. BPML (Business Process Modelling 
Language) proposed by an industry consortium aims at 

modelling business data through a meta-language [7], but 
there is no supported run-time environment yet. The 
Semantic Web community has proposed OWL-S [8] for 
describing the semantics of Web services and 
composition mechanisms for Web services. However, 
there is no sophisticated engine like BPWS4J or Collaxa 
to support the OWL-S specification. [9] defines the 
semantics of Web services via OWL-S and translates the 
descriptions to BPEL4WS. Thus, BPWS4J can provide a 
run-time environment to execute Web services 
accordingly. Other on-going research is to use agents with 
a specific reasoning mechanisms such as GoLog [10], to 
compose Web services.   

Currently we are planning to run on larger scale 
experiments which will involve a number of design teams 
and software systems with the introduction of intelligent 
agent technology. Piror to that, a number of existing 
software tools need to be re-engineered in order to run on 
a distributed environment.  
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