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Abstract 
 

Distributed systems generally require their 
component parts to interact cooperatively, in order for 
the system as a whole to function effectively. For any 
given activity, several alternative components may have 
the required capabilities.  However, these components 
may be unreliable or dishonest, and are typically 
locally controlled. We view such systems as multi-agent 
systems, comprising autonomous agents that must 
cooperate for the system to be effective.  In this paper 
we propose a mechanism, called MDT-R, for agents to 
delegate activities appropriately, using trust and the 
recommendations of their peers to meet preferences 
such as minimising risk and maximizing quality. 
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1. Introduction 
 

Complex distributed systems such as cooperative 
design processes, supply chains, and Grid computing 
can be viewed as multi-agent systems. Each component 
is considered to be an autonomous agent, and for the 
system to function effectively these agents must 
cooperate. The individual computational resources, 
knowledge bases, and human actors in a system are 
represented by agents with appropriate goals and 
preferences [11, 12]. Agents have individual sets of 
capabilities, knowledge and resources that are made 
available to others (typically) in return for imposing 
some cost. Using their knowledge of others' capabilities 
agents can delegate the activities that must be 
performed in order to achieve their own goals.  Agents 
are equal peers, and there is no overarching system 
control. 

Agents have varying degrees of reliability, quality 
and honesty, and activities may fail, produce 
substandard results, or may cost more and take longer 
than expected. On delegating an activity, agents enter 
into an uncertain interaction since a high quality, 
timely, and on budget outcome is not guaranteed. 
Furthermore, since agents are autonomous peers they 
have no control over how others cooperate [10]. Thus, 
agents determine for themselves when to delegate 
activities or provide assistance, when to cease 

cooperating, and how to conduct themselves; agents can 
change the nature of cooperation, or even cease to 
cooperate, at any time. For example, an agent may 
choose to delay execution, reduce the quality of 
execution, or simply fail to complete an activity.  To 
function effectively, agents must manage the risk of 
activity failure (or reduced performance). 

In this paper we propose a mechanism, called multi-
dimensional trust with recommendations (MDT-R), in 
which agents use trust and the recommendations of their 
peers to manage the risks of cooperating.  Agents build 
models of their peers' trustworthiness along several 
dimensions, based on their experiences.  When 
delegating an activity, a cooperative partner can be 
selected by combining these trust dimensions with peer 
recommendations and other decision factors (such as 
cost). 
 
2. Cooperative design 
 

In this paper, we describe our proposed MDT-R 
mechanism within the domain of cooperative design.  
We view the workflow of the design process as a 
directed graph, whose nodes correspond to activities 
and edges show dependencies between these activities. 
An edge from activity Ai to Aj indicates that Ai is 
dependent on Aj being performed. Furthermore, nodes 
may represent complex activities, and can be 
decomposed into corresponding primitive activities. For 
example, the activity of validating a design might be 
decomposed into configuring and running a simulation, 
followed by analysis of the results.  Figure 1 illustrates 
an example fragment of workflow (shown at the bottom 
of the figure), where the sub-graph contained in the 
circle represents the decomposition of the indicated 
node. Thus, the workflow fragment at the bottom of the 
figure might represent the steps involved in validating a 
design, while the steps within the circle correspond to 
the lower-level tasks involved in executing one of these 
steps, such as the detailed steps that are required to run 
a simulation. 

Individual activities might be specific design tasks or 
computational tasks such performing a simulation, 
however for our purposes we abstract out the details. 
An activity has certain requirements in terms of the 
capabilities and resources (e.g. knowledge or network 
bandwidth) needed for completion. For an agent to 
successfully perform an activity, these requirements 
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must be met.  An activity is (typically) dependent on 
other precondition activities (its children), and is a 
prerequisite for some activity (its parent). 

 
Figure 1. An example workflow fragment. 

 
For each activity, a corresponding set of agents will 
meet the capability and resource requirements. The 
agent responsible for an activity must determine which 
of the capable agents to delegate its children to.  For 
example, if an edge exists from Ai to Aj then the agent 
responsible for Ai should delegate Aj. Agents that 
represent individual humans or design teams are also 
responsible for delegating child activities (although a 
human can typically override this choice if required). 
The root activity is allocated to an agent by the person 
(or agent) that instigates the design process. It is 
important to note that edges only represent 
dependencies, and not control. Agents are equal peers 
and delegation does not imply control over how the 
delegate performs an activity. 

There is no central or hierarchical control. Agents 
are considered equal, and have no control over others, 
with the exception of delegating activities. Thus, the 
cooperative design process is viewed as a peer-to-peer 
multi-agent system, where agents themselves manage 
the allocation of activities.  If substandard, erroneous or 
late results occur at one stage, these problems can 
propagate to subsequent activities, leading to errors, 
lateness, or complete failure. Furthermore, if failure 
occurs in an activity we assume that the agent 
responsible for the parent activity re-delegates 
execution to an alternative agent, i.e. all activities must 
be executed for the process as a whole to be successful. 

 
3. Trust 
 
Trust is a well recognised mechanism for assessing the 
potential risk associated with cooperating with 
autonomous agents [5, 6, 13]. Specifically, trust 
represents an agent's estimate of how likely another is 

to fulfil its commitments.  Trust is divided into two 
categories: experience-based and recommendation-
based. In the former, trust is based on individual 
experience, while in the latter it is based on information 
provided by others.  Experience-based trust is simplest, 
where agents delegate activities and update their trust 
models according to the outcome. Recommendation-
based trust is more complex, requiring agents to share 
information (based on their experiences) about the 
perceived trustworthiness of another.  Our approach 
combines these two categories: agents maintain 
individual experience-based trust assessments of others, 
and combine these with information provided by others. 

An obstacle to using recommendation-based trust is 
the subjectivity of trust. Agents build trust models 
based on individual experiences, and such subjective 
information may not be directly useful when shared 
with another agent. Thus, an agreed trust semantics is 
needed to enable recommendation-based trust. Agents 
must be able to interpret the information provided 
others. Our solution to this problem is described in 
Section 5. 

 
3.1. Multi-dimensional trust 

 
We take a multi-dimensional view of trust, 

decomposing it into beliefs about the different 
dimensions of an interaction, such as quality and 
timeliness. Activities are typically more than simple 
succeed or fail interactions. Agents cooperate with an 
expectation of successful performance, to a given 
quality and for some anticipated cost. In addition to 
possible failure, activities may succeed but be of lower 
than expected quality or at a higher than expected cost. 
Agents can model such characteristics as dimensions of 
trust. MDT-R does not prescribe specific trust 
dimensions, and agents can model trust along any 
number of dimensions. However, for the purposes of 
this paper the trust of an agent α is modelled in the 
dimensions of: 

• success (denoted 

! 

T"
s): the likelihood that α will 

successfully execute the task, 
• cost (denoted 

! 

T"
c ): the likelihood that the cost 

of α executing the task will be no more than 
expected, 

• timeliness (denoted 

! 

T"
t ): the likelihood that α 

will complete the task no later than expected, 
and 

• quality (denoted 

! 

T"
q ): the likelihood that the 

quality of results provided by α will meet 
expectations. 

Trust in any given dimension encompasses beliefs 
about competence, disposition, dependence, and 
fulfillment [4].  For example, if an agent is trusted in 
the quality dimension, then it is believed to be capable 
of performing an activity to a high quality 
(competence), actually doing so (disposition), being the 
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preferred agent to do it (dependence), and being the 
means for activity achievement (fulfilment).  
 
3.2 Representing trust 

 
Trust initially takes a value according to an agent's 

disposition (optimistic or pessimistic). Optimists ascribe 
high initial values (implying  low perceived risk), and 
pessimists ascribe low values. An agent's disposition 
also determines how trust is updated [14].  After 
interacting, optimists increase their trust more than 
pessimists in the dimensions where expectations were 
met and, conversely, pessimists decrease trust to a 
greater extent when expectations are not met.  An 
agent's disposition comprises: the initial trust Tinitial 
ascribed in a trust dimension prior to interacting, and 
functions for updating trust after successful and 
unsuccessful interactions, updatesuccess and updatefail 
respectively.  These functions are heuristics applying to 
all trust dimensions, and they have no standard 
definition. Instead, it is the responsibility of the system 
designer to choose an appropriate heuristic. In this 
paper we use the following definitions to update the 
trust in agent α along dimension d: 

 

! 

updatesuccess(T"
d
) = T"

d
+ ((1#T"

d
) $ (%s $T"

d
))  

 

! 

update fail (T"
d
) = T"

d
# ((1#T"

d
) $ (% f $T"

d
))  

 
where ωs and ωf are weighting factors defined by the 
disposition. The trust for an agent α in a dimension d 
has an associated numerical confidence level, 

! 

C"

d , that 
is incremented on each application a trust update 
function. 

Over time, trust values may become outdated if the 
experiences that gave rise to them are no longer 
relevant.  To address this, we apply a decay function to 
converge trust values to Tinitial in the lack of subsequent 
experience. Thus, unless reinforced by recent 
interactions, the positive effect of expectations being 
met reduces over time, as does the negative effect of 
failed expectations. The decay function for the trust in 
agent α along dimension d is defined as: 

 

! 

decaytrust (T"
d
) = T"

d
# ((T"

d
#Tinitial ) /$ td )  

 
where the trust decay rate ωtd is defined by the 
disposition. As trust values become outdated, the 
confidence in them reduces. Thus, when applying 
decaytrust the corresponding confidence level must be 
reduced. We define a decay function for the confidence 
level as: 
 

! 

decayconfidence(C"

d
) = C"

d
# (C"

d
/$cd )  

 
where the confidence decay rate ωcd is defined by the 
disposition. 

 
4. Stratified trust 
 

We represent trust values numerically, however 
some researchers note that this can introduce ambiguity 
since the semantics are hard to represent [1, 13]. This is 
problematic when using recommendation-based trust, 
where agents share trust information. One solution is to 
divide the trust continuum into labelled strata, and use 
these to represent trust values [1].  However, the 
resulting semantics remain subjective, with different 
agents ascribing the same experiences to different 
strata.  Furthermore, this representation reduces 
sensitivity and accuracy, and comparisons become 
coarse grained since the trust of agents with a stratum is 
indistinguishable.  For this reason, we concur with 
Marsh in rejecting the use of strata in favour of 
numerical values [13].  Additionally, updating 
numerical trust is straightforward, yet stratified 
approaches often omit details of how strata are related 
to experience [1, 2]. 

However, the use of strata minimises overfitting; 
numerical values are not considered and so insignificant 
numerical differences in trust are not misinterpreted as 
important. An ideal trust model has the sensitivity and 
accuracy of a numerical approach, combined with the 
minimal risk of overfitting of a stratified approach.  To 
this end, we use a variable size stratifying of trust at the 
time of trust comparisons. Trust values are translated 
into strata immediately before comparison. The number 
of strata is not fixed, although typically an agent will 
use the same number of strata for each trust dimension 
and in each comparison. Fewer strata minimise the risk 
of overfitting but give the least precise comparison, 
while more strata retain precision, but at an increased 
risk of overfitting. 
 
5. Interaction summaries 
 

To enable sharing of trust information, there must be 
a clear semantics to the information provided. As 
discussed above, although stratified trust provides a 
possible solution, it still suffers from subjectivity.  
Several alternative approaches to recommendation-
based trust have been developed, however each of them 
suffer from potential problems due to the subjectivity of 
information provided [9, 15, 17]. In MDT-R we avoid 
the subjectivity problem since, rather than attempting to 
provide an explicit assessment of trust, agents provide a 
summary of their relevant previous interactions. Thus, 
when agent α shares information with β about γ, rather 
than communicating its trust value in a given dimension 

! 

T"
d , it communicates a summary of the experiences that 

led to 

! 

T"
d  (but not the value itself). As described in 

Section 3, trust is determined by whether an agent's 
expectations are met in a given dimension.  For 
example, trust in the quality dimension 

! 

T"
q  is 
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determined by whether previous interactions were of 
suitable quality. When sharing information, α can 
communicate to β the number of previous interactions 
with γ in which quality expectations were met, 

! 

I"#
q+, and 

the number in which the quality was below that which 
was expected, 

! 

I"#
q$ . The receiving agent β therefore 

obtains a summary of α's interactions with γ, and an 
indication of the extent of α's relevant experience (since 
α has had 

! 

I"#
q+

+ I"#
q$  relevant interactions). 

The first step in delegating an activity, is for the 
delegating agent to ask its trusted peers, where the 
general trust is above a minimum threshold, to provide 
information about each potential delegate. (General 
trust combines all trust dimensions and is based on 
Marsh's notion of general trust [13].) Only trusted peers 
should be asked for recommendations, to minimise the 
risk of dishonest or misleading information. Thus, each 
trusted peer α will provide 

! 

I"#
d +  and 

! 

I"#
d$ , for each 

potential delegate γ in each of the trust dimensions d.  
The delegating agent can then combine this information 
into a single recommendation value for each trust 
dimension. For each dimension d the set of responses 
from the trusted peers about a potential delegate γ are 
combined by summing the proportions of interactions 
where expectations are met, weighted by the extent of 
the peer's experience. Thus, the recommendation for a 
dimension, 

! 

R"
d , is defined as:  

! 

R"
d

=
I
i"
d +

I
i"
d +

+ I
i"
d#
$

I
i"
d +

+ I
i"
d#

totalInteractions

% 

& 
' ' 

( 

) 
* * 

i=+

,

-  

 
where α, β, …, ξ are the set of trusted peers, and 
totalInteractions is the total number of interactions 
across all trusted peers with agent γ in dimension d, 
defined as: 

! 

totalInteractions = I
i"
d + + I

i"
d#( )

i=$

%

&  

 
Applying this approach, the delegating agent can 

determined recommendations in each of the trust 
dimensions of success, cost, timeliness and quality, 
denoted 

! 

R"
s , 

! 

R"
c , 

! 

R"
t  and 

! 

R"
q  respectively. 

 
6. Delegating by combining trust 
dimensions 
 

When delegating an activity, the various dimensions 
of trust, the recommendations from trusted peers, and 
any other relevant decision factors (such as advertised 
cost and quality) must be considered. An agent's 
preferences and its confidence in its trust models 
determine the emphasis given to these factors.  For 
example, one agent may prefer to minimise the risk of 
failure and achieve the highest quality, while another 

may prefer to minimise cost. Similarly, if an agent has 
relatively low confidence in its own trust models, it may 
place more emphasis on peer recommendations. 

To select between agents we use a weighted product 
model to combine choice factors and give a single 
performance value for each agent [3, 16]. Each factor is 
raised to the power equivalent to its relative weight 
according to the selecting agent's preferences. For each 
potential partner a performance value is calculated as: 

! 

PV (") = f" i
( )

µ i

i=1

n

#  

 
where there are n factors and 

! 

f" i
 is the value for agent 

α in terms of the i'th factor and µi is the weighting given 
to the i'th factor in the selecting agent's preferences. The 
values of the weightings µi are defined by the selecting 
agent's preferences such that:  

! 

µ
i
=1

i=1

n

"  

 
The best delegate is the agent α whose performance 

value PV(α) is greater than that of all other agents. 
Where several agents have equal performance values, 
one is selected arbitrarily. 

 Provided that the µI’s sum to 1, individual 
weightings can take any value in the interval [0:1].  
This flexibility is a key strength of  MDT-R, since the 
information maintained by an agent is the same, 
regardless of its current preferences and factor 
weightings.  Furthermore, agents can use different 
weightings in different situations. For example, if an 
agent is relatively inexperienced more emphasis can be 
given to others' recommendations, and as  experience is 
gained the emphasis can move toward its own trust 
models. 

Factors such as quality can be used directly in 
calculating the performance value, provided that they 
are numerical and should be maximised. Similarly, peer 
recommendations can be used directly since they are 
numerical and to be maximised. Factors that should be 
minimised, such as cost, can be included by using: 

 

  

! 

f"c
=max "cK#c( ) +1$"c

 
 
where αc represents the advertised cost from agent α, 
and max(αc…ξc) is the maximum advertised cost of all 
potential delegates, also denoted as maxc. (The addition 
of 1 ensures that for a maximal cost alternative, the 
factor still has a positive value.) 

Trust values must be stratified before inclusion, as 
discussed above.  The trust range is divided into s equal 
strata such that each is given a value from 1 to s in 
order. Trust values are stratified by determining the 
value of the stratum they occupy. For a trust value t its 
stratum is obtained by using: 
 

! 

stratify(t) = t " s# $ 
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For example, using 10 strata, a trust value of 0.35 is 
given a stratum value of 

! 

0.35 "10# $= 4 . 
Recall that in this paper we are considering the trust 

dimensions of success, cost, timeliness, and quality 
along with the corresponding peer recommendations in 
these dimensions. When delegating an activity each of 
these dimensions should be considered, along with the 
advertised cost and quality of each alternative agent. 
Thus, an agent should calculate a performance value for 
each potential partner as: 

! 

PV (") = maxc+1#"c( )
µc $ ("q )

µq

$ stratify(T"
s
)

µ ts $ stratify(T"
c
)

µ tc

$ stratify(T"
t
)

µ tt $ stratify(T"
q
)

µ tq

$ (R%
s
)

µrs $ (R%
c
)

µrc

$ (R%
t
)

µrt $ (R%
q
)

µrq

 

where αc and αq are α’s advertised cost and quality 
respectively; maxc is the maximum advertised cost of 
the agents being considered; the weightings given to 
advertised cost and quality are denoted as µc and µq; µts, 
µtc, µtt and µtq are the weightings for the trust 
dimensions of success, cost, timeliness, and quality 
respectively; and µrs, µrc, µrt, and µrq are the 
corresponding weightings for recommendations. This 
approach allows an agent to balance the relevant 
decision factors when selecting a peer for delegation 
 
7. Example performance value calculation 
 

By way of example, consider an agent selecting 
between two alternatives, φ and ψ, who requests 
recommendations from three trusted peers, α, β and γ. 
Suppose that these peers give the following information 
about their interactions with φ and ψ, with respect to the 
trust dimension of success (where i takes the values α, 
β and γ in turn).  
 

 

! 

I
i"

s+  

! 

I
i"

s# 

! 

I
i"

s+  

! 

I
i"

s#  
α 32 17 12 18 
β 65 32 79 13 
γ 3 7 48 42 

 
The delegating agent must calculate 

recommendation values for both alternatives. Firstly, 
the total number of interactions with agent φ is 
calculated, using: 

! 

totalInteractions = I
i"
s+ + I

i"
s#( )

i=$

%

&  

which gives a value of 156. The recommendation for φ 
in the success trust dimension, can now be calculated as 
follows: 
 

! 

R"
s

= (32 /(32 +17) # (32 +17) /156)

+ (65 /(65 + 32) # (65 + 32) /156)

+ (3/(3+ 7) # (3+ 7) /156) = 0.64

 

 
Similarly, for alternative ψ we get 

! 

R"
s =0.66.  

Suppose that the information received from the 
trusted peers regarding the other trust dimensions is 
such that the delegating agent calculates the 
recommendation values given below, and suppose that 
the other decision factors being considered have the 
following values. 

 
factor φ ψ 
advertised cost (units per second) 10 9 
advertised quality (range 1 to 10) 9 8 
trust (success dimension) 0.43 0.81 
trust (cost dimension) 0.90 0.64 
trust (timeliness dimension) 0.71 0.87 
trust (quality dimension) 0.78 0.42 
recommendation (success dimension) 0.64 0.66 
recommendation (cost dimension) 0.43 0.57 
recommendation (timeliness dimension) 0.77 0.66 
recommendation (quality dimension) 0.51 0.66 

  
Furthermore, suppose that the following factor 

weightings are used, i.e. quality is given more emphasis 
that cost, trust is given the most emphasis, and 
recommendations are given the least emphasis. 

 
µc 0.08 µts 0.15 µrt 0.05 
µq 0.12 µtc 0.15 µrq 0.05 
  µtt 0.15 µrs 0.05 
  µtq 0.15 µrc 0.05 

 
The agent must calculate the performance value of 

each of the alternative partners. Thus, applying PV() to 
agent α gives: 

 

! 

PV (") = 10 +1#10( )
0.08

$ 9
0.12

$ stratify(0.43)
0.15

$ stratify(0.90)
0.15

$ stratify(0.71)
0.15

$ stratify(0.78)
0.15

$ 0.64
0.05

$ 0.43
0.05

$ 0.77
0.05

$ 0.51
0.05

= 10.08 $ 90.12 $ 50.15 $100.15 $ 80.15 $ 80.15

$ 8
0.15

$ 8
0.15 = 8.15

 

 
Similarly, for agent ψ we get PV(ψ) = 6.53. 

Therefore, based on these weightings, agent φ is the 
alternative that best balances the factors considered. 

To demonstrate how factor weightings allow agents 
to balance their preferences, suppose instead that the 
following weightings are used emphasising the quality 
and cost of results (in terms of advertised values and the 
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perceived trustworthiness of potential partners to return 
those values). 

 
µc 0.15 µts 0.025 µrt 0.025 
µq 0.15 µtc 0.15 µrq 0.15 
  µtt 0.025 µrs 0.025 
  µtq 0.15 µrc 0.15 

 
In this case we get performance values of PV(φ) = 

5.42 and PV(ψ) =5.57. Thus, where greater emphasis is 
places on quality and cost, ψ is considered the best 
alternative. In general, since each peer is autonomous 
we cannot guarantee that an agent makes the absolute 
optimal choice. However, our proposed approach makes 
the best expected choice given the agent’s experiences 
so far.  
 
8. Discussion 
 

To investigate the effectiveness of our proposed 
MDT-R model, we have constructed a simulation 
prototype. We have investigated the performance of 
MDT-R using several, relatively small-scale, process 
graph fragments containing around 500 activities, each 
of which has specific capability and resource 
requirements. Our simulation contains 100 peer agents, 
each with specific capabilities, that use MDT-R to 
delegate activities. Our initial results are promising, 
showing that MDT-R provides a significant advantage 
over alternative methods (e.g. delegation based on 
advertised cost and quality, general trust, and multi-
dimensional trust without recommendations). For 
example, in a mixed environment (i.e. one where there 
is a uniform mix of reliable and unreliable/honest and 
dishonest agents) MDT-R provides an improvement of 
up to 30% in achieved quality, and up to a 20% 
decrease in failure rate, over simple advertised cost and 
quality delegation methods. 

Furthermore, MDT-R allows agents to delegate 
activities according to their current preferences, by 
selecting appropriate weightings. Thus, an agent that is 
concerned about cost can place more emphasis on 
advertised cost, and trust and recommendations in the 
cost dimension. Similarly, an agent that has relatively 
little experience, and so low confidence in its trust 
models, can emphasise peer recommendations. This is a 
very flexible approach, allowing the delegation process 
to be tailored to the priorities of an agent at any given 
node of the process graph. 
 
9. Conclusions 
 

In this paper we have proposed the notion of multi-
dimensional trust and provided a mechanism for peers 
to share information about their experiences. Our 
proposed model allows agents to model the various 
facets of trust, and combine these with information 

provided by peers (along with other decision factors) 
when delegating an activity. The MDT-R model is 
highly flexible, and system designers have full control 
of the trust dimensions modelled and the relative 
weightings given to the decision factors.  

Currently, the weightings for decision factors are 
specified by the system designer. Although the designer 
may specify different weightings for different 
situations, agents cannot determine appropriate 
weightings for themselves. Future work involves 
exploring mechanisms, such as learning and genetic 
algorithms, to enable agents to tailor the weightings 
according to their preferences (e.g. maximising quality 
or minimising failures). Although we have validated 
MDT-R in a simulation prototype, we are performing 
ongoing experimentation, and aim incorporate MDT-R 
into a real-world peer-to-peer system. 
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