
1

Supporting Peer-To-Peer Collaboration Through Trust

Nathan Griffiths and Shanghua Sun
Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK

nathan@dcs.warwick.ac.uk

Abstract

Distributed systems generally require their
component parts to interact cooperatively, in order for
the system as a whole to function effectively. For any
given activity, several alternative components may have
the required capabilities. However, these components
may be unreliable or dishonest, and are typically
locally controlled. We view such systems as multi-agent
systems, comprising autonomous agents that must
cooperate for the system to be effective. In this paper
we propose a mechanism, called MDT-R, for agents to
delegate activities appropriately, using trust and the
recommendations of their peers to meet preferences
such as minimising risk and maximizing quality.

Keywords: Agents, Trust, Cooperation, Peer-to-Peer.

1. Introduction

Complex distributed systems such as cooperative
design processes, supply chains, and Grid computing
can be viewed as multi-agent systems. Each component
is considered to be an autonomous agent, and for the
system to function effectively these agents must
cooperate. The individual computational resources,
knowledge bases, and human actors in a system are
represented by agents with appropriate goals and
preferences [11, 12]. Agents have individual sets of
capabilities, knowledge and resources that are made
available to others (typically) in return for imposing
some cost. Using their knowledge of others' capabilities
agents can delegate the activities that must be
performed in order to achieve their own goals. Agents
are equal peers, and there is no overarching system
control.

Agents have varying degrees of reliability, quality
and honesty, and activities may fail, produce
substandard results, or may cost more and take longer
than expected. On delegating an activity, agents enter
into an uncertain interaction since a high quality,
timely, and on budget outcome is not guaranteed.
Furthermore, since agents are autonomous peers they
have no control over how others cooperate [10]. Thus,
agents determine for themselves when to delegate
activities or provide assistance, when to cease

cooperating, and how to conduct themselves; agents can
change the nature of cooperation, or even cease to
cooperate, at any time. For example, an agent may
choose to delay execution, reduce the quality of
execution, or simply fail to complete an activity. To
function effectively, agents must manage the risk of
activity failure (or reduced performance).

In this paper we propose a mechanism, called multi-
dimensional trust with recommendations (MDT-R), in
which agents use trust and the recommendations of their
peers to manage the risks of cooperating. Agents build
models of their peers' trustworthiness along several
dimensions, based on their experiences. When
delegating an activity, a cooperative partner can be
selected by combining these trust dimensions with peer
recommendations and other decision factors (such as
cost).

2. Cooperative design

In this paper, we describe our proposed MDT-R
mechanism within the domain of cooperative design.
We view the workflow of the design process as a
directed graph, whose nodes correspond to activities
and edges show dependencies between these activities.
An edge from activity Ai to Aj indicates that Ai is
dependent on Aj being performed. Furthermore, nodes
may represent complex activities, and can be
decomposed into corresponding primitive activities. For
example, the activity of validating a design might be
decomposed into configuring and running a simulation,
followed by analysis of the results. Figure 1 illustrates
an example fragment of workflow (shown at the bottom
of the figure), where the sub-graph contained in the
circle represents the decomposition of the indicated
node. Thus, the workflow fragment at the bottom of the
figure might represent the steps involved in validating a
design, while the steps within the circle correspond to
the lower-level tasks involved in executing one of these
steps, such as the detailed steps that are required to run
a simulation.

Individual activities might be specific design tasks or
computational tasks such performing a simulation,
however for our purposes we abstract out the details.
An activity has certain requirements in terms of the
capabilities and resources (e.g. knowledge or network
bandwidth) needed for completion. For an agent to
successfully perform an activity, these requirements

2

must be met. An activity is (typically) dependent on
other precondition activities (its children), and is a
prerequisite for some activity (its parent).

Figure 1. An example workflow fragment.

For each activity, a corresponding set of agents will
meet the capability and resource requirements. The
agent responsible for an activity must determine which
of the capable agents to delegate its children to. For
example, if an edge exists from Ai to Aj then the agent
responsible for Ai should delegate Aj. Agents that
represent individual humans or design teams are also
responsible for delegating child activities (although a
human can typically override this choice if required).
The root activity is allocated to an agent by the person
(or agent) that instigates the design process. It is
important to note that edges only represent
dependencies, and not control. Agents are equal peers
and delegation does not imply control over how the
delegate performs an activity.

There is no central or hierarchical control. Agents
are considered equal, and have no control over others,
with the exception of delegating activities. Thus, the
cooperative design process is viewed as a peer-to-peer
multi-agent system, where agents themselves manage
the allocation of activities. If substandard, erroneous or
late results occur at one stage, these problems can
propagate to subsequent activities, leading to errors,
lateness, or complete failure. Furthermore, if failure
occurs in an activity we assume that the agent
responsible for the parent activity re-delegates
execution to an alternative agent, i.e. all activities must
be executed for the process as a whole to be successful.

3. Trust

Trust is a well recognised mechanism for assessing the
potential risk associated with cooperating with
autonomous agents [5, 6, 13]. Specifically, trust
represents an agent's estimate of how likely another is

to fulfil its commitments. Trust is divided into two
categories: experience-based and recommendation-
based. In the former, trust is based on individual
experience, while in the latter it is based on information
provided by others. Experience-based trust is simplest,
where agents delegate activities and update their trust
models according to the outcome. Recommendation-
based trust is more complex, requiring agents to share
information (based on their experiences) about the
perceived trustworthiness of another. Our approach
combines these two categories: agents maintain
individual experience-based trust assessments of others,
and combine these with information provided by others.

An obstacle to using recommendation-based trust is
the subjectivity of trust. Agents build trust models
based on individual experiences, and such subjective
information may not be directly useful when shared
with another agent. Thus, an agreed trust semantics is
needed to enable recommendation-based trust. Agents
must be able to interpret the information provided
others. Our solution to this problem is described in
Section 5.

3.1. Multi-dimensional trust

We take a multi-dimensional view of trust,

decomposing it into beliefs about the different
dimensions of an interaction, such as quality and
timeliness. Activities are typically more than simple
succeed or fail interactions. Agents cooperate with an
expectation of successful performance, to a given
quality and for some anticipated cost. In addition to
possible failure, activities may succeed but be of lower
than expected quality or at a higher than expected cost.
Agents can model such characteristics as dimensions of
trust. MDT-R does not prescribe specific trust
dimensions, and agents can model trust along any
number of dimensions. However, for the purposes of
this paper the trust of an agent α is modelled in the
dimensions of:

• success (denoted

!

T"
s): the likelihood that α will

successfully execute the task,
• cost (denoted

!

T"
c): the likelihood that the cost

of α executing the task will be no more than
expected,

• timeliness (denoted

!

T"
t): the likelihood that α

will complete the task no later than expected,
and

• quality (denoted

!

T"
q): the likelihood that the

quality of results provided by α will meet
expectations.

Trust in any given dimension encompasses beliefs
about competence, disposition, dependence, and
fulfillment [4]. For example, if an agent is trusted in
the quality dimension, then it is believed to be capable
of performing an activity to a high quality
(competence), actually doing so (disposition), being the

3

preferred agent to do it (dependence), and being the
means for activity achievement (fulfilment).

3.2 Representing trust

Trust initially takes a value according to an agent's

disposition (optimistic or pessimistic). Optimists ascribe
high initial values (implying low perceived risk), and
pessimists ascribe low values. An agent's disposition
also determines how trust is updated [14]. After
interacting, optimists increase their trust more than
pessimists in the dimensions where expectations were
met and, conversely, pessimists decrease trust to a
greater extent when expectations are not met. An
agent's disposition comprises: the initial trust Tinitial
ascribed in a trust dimension prior to interacting, and
functions for updating trust after successful and
unsuccessful interactions, updatesuccess and updatefail
respectively. These functions are heuristics applying to
all trust dimensions, and they have no standard
definition. Instead, it is the responsibility of the system
designer to choose an appropriate heuristic. In this
paper we use the following definitions to update the
trust in agent α along dimension d:

!

updatesuccess(T"
d
) = T"

d
+ ((1#T"

d
) $ (%s $T"

d
))

!

update fail (T"
d
) = T"

d
((1#T"

d
) $ (% f $T"

d
))

where ωs and ωf are weighting factors defined by the
disposition. The trust for an agent α in a dimension d
has an associated numerical confidence level,

!

C"

d , that
is incremented on each application a trust update
function.

Over time, trust values may become outdated if the
experiences that gave rise to them are no longer
relevant. To address this, we apply a decay function to
converge trust values to Tinitial in the lack of subsequent
experience. Thus, unless reinforced by recent
interactions, the positive effect of expectations being
met reduces over time, as does the negative effect of
failed expectations. The decay function for the trust in
agent α along dimension d is defined as:

!

decaytrust (T"
d
) = T"

d
((T"

d
#Tinitial) /$ td)

where the trust decay rate ωtd is defined by the
disposition. As trust values become outdated, the
confidence in them reduces. Thus, when applying
decaytrust the corresponding confidence level must be
reduced. We define a decay function for the confidence
level as:

!

decayconfidence(C"

d
) = C"

d
(C"

d
/$cd)

where the confidence decay rate ωcd is defined by the
disposition.

4. Stratified trust

We represent trust values numerically, however
some researchers note that this can introduce ambiguity
since the semantics are hard to represent [1, 13]. This is
problematic when using recommendation-based trust,
where agents share trust information. One solution is to
divide the trust continuum into labelled strata, and use
these to represent trust values [1]. However, the
resulting semantics remain subjective, with different
agents ascribing the same experiences to different
strata. Furthermore, this representation reduces
sensitivity and accuracy, and comparisons become
coarse grained since the trust of agents with a stratum is
indistinguishable. For this reason, we concur with
Marsh in rejecting the use of strata in favour of
numerical values [13]. Additionally, updating
numerical trust is straightforward, yet stratified
approaches often omit details of how strata are related
to experience [1, 2].

However, the use of strata minimises overfitting;
numerical values are not considered and so insignificant
numerical differences in trust are not misinterpreted as
important. An ideal trust model has the sensitivity and
accuracy of a numerical approach, combined with the
minimal risk of overfitting of a stratified approach. To
this end, we use a variable size stratifying of trust at the
time of trust comparisons. Trust values are translated
into strata immediately before comparison. The number
of strata is not fixed, although typically an agent will
use the same number of strata for each trust dimension
and in each comparison. Fewer strata minimise the risk
of overfitting but give the least precise comparison,
while more strata retain precision, but at an increased
risk of overfitting.

5. Interaction summaries

To enable sharing of trust information, there must be
a clear semantics to the information provided. As
discussed above, although stratified trust provides a
possible solution, it still suffers from subjectivity.
Several alternative approaches to recommendation-
based trust have been developed, however each of them
suffer from potential problems due to the subjectivity of
information provided [9, 15, 17]. In MDT-R we avoid
the subjectivity problem since, rather than attempting to
provide an explicit assessment of trust, agents provide a
summary of their relevant previous interactions. Thus,
when agent α shares information with β about γ, rather
than communicating its trust value in a given dimension

!

T"
d , it communicates a summary of the experiences that

led to

!

T"
d (but not the value itself). As described in

Section 3, trust is determined by whether an agent's
expectations are met in a given dimension. For
example, trust in the quality dimension

!

T"
q is

4

determined by whether previous interactions were of
suitable quality. When sharing information, α can
communicate to β the number of previous interactions
with γ in which quality expectations were met,

!

I"#
q+, and

the number in which the quality was below that which
was expected,

!

I"#
q$. The receiving agent β therefore

obtains a summary of α's interactions with γ, and an
indication of the extent of α's relevant experience (since
α has had

!

I"#
q+

+ I"#
q$ relevant interactions).

The first step in delegating an activity, is for the
delegating agent to ask its trusted peers, where the
general trust is above a minimum threshold, to provide
information about each potential delegate. (General
trust combines all trust dimensions and is based on
Marsh's notion of general trust [13].) Only trusted peers
should be asked for recommendations, to minimise the
risk of dishonest or misleading information. Thus, each
trusted peer α will provide

!

I"#
d + and

!

I"#
d$, for each

potential delegate γ in each of the trust dimensions d.
The delegating agent can then combine this information
into a single recommendation value for each trust
dimension. For each dimension d the set of responses
from the trusted peers about a potential delegate γ are
combined by summing the proportions of interactions
where expectations are met, weighted by the extent of
the peer's experience. Thus, the recommendation for a
dimension,

!

R"
d , is defined as:

!

R"
d

=
I
i"
d +

I
i"
d +

+ I
i"
d#
$

I
i"
d +

+ I
i"
d#

totalInteractions

%

&
' '

(

)
* *

i=+

,

-

where α, β, …, ξ are the set of trusted peers, and
totalInteractions is the total number of interactions
across all trusted peers with agent γ in dimension d,
defined as:

!

totalInteractions = I
i"
d + + I

i"
d#()

i=$

%

&

Applying this approach, the delegating agent can

determined recommendations in each of the trust
dimensions of success, cost, timeliness and quality,
denoted

!

R"
s ,

!

R"
c ,

!

R"
t and

!

R"
q respectively.

6. Delegating by combining trust
dimensions

When delegating an activity, the various dimensions
of trust, the recommendations from trusted peers, and
any other relevant decision factors (such as advertised
cost and quality) must be considered. An agent's
preferences and its confidence in its trust models
determine the emphasis given to these factors. For
example, one agent may prefer to minimise the risk of
failure and achieve the highest quality, while another

may prefer to minimise cost. Similarly, if an agent has
relatively low confidence in its own trust models, it may
place more emphasis on peer recommendations.

To select between agents we use a weighted product
model to combine choice factors and give a single
performance value for each agent [3, 16]. Each factor is
raised to the power equivalent to its relative weight
according to the selecting agent's preferences. For each
potential partner a performance value is calculated as:

!

PV (") = f" i
()

µ i

i=1

n

where there are n factors and

!

f" i
 is the value for agent

α in terms of the i'th factor and µi is the weighting given
to the i'th factor in the selecting agent's preferences. The
values of the weightings µi are defined by the selecting
agent's preferences such that:

!

µ
i
=1

i=1

n

"

The best delegate is the agent α whose performance

value PV(α) is greater than that of all other agents.
Where several agents have equal performance values,
one is selected arbitrarily.

 Provided that the µI’s sum to 1, individual
weightings can take any value in the interval [0:1].
This flexibility is a key strength of MDT-R, since the
information maintained by an agent is the same,
regardless of its current preferences and factor
weightings. Furthermore, agents can use different
weightings in different situations. For example, if an
agent is relatively inexperienced more emphasis can be
given to others' recommendations, and as experience is
gained the emphasis can move toward its own trust
models.

Factors such as quality can be used directly in
calculating the performance value, provided that they
are numerical and should be maximised. Similarly, peer
recommendations can be used directly since they are
numerical and to be maximised. Factors that should be
minimised, such as cost, can be included by using:

!

f"c
=max "cK#c() +1$"c

where αc represents the advertised cost from agent α,
and max(αc…ξc) is the maximum advertised cost of all
potential delegates, also denoted as maxc. (The addition
of 1 ensures that for a maximal cost alternative, the
factor still has a positive value.)

Trust values must be stratified before inclusion, as
discussed above. The trust range is divided into s equal
strata such that each is given a value from 1 to s in
order. Trust values are stratified by determining the
value of the stratum they occupy. For a trust value t its
stratum is obtained by using:

!

stratify(t) = t " s# $

5

For example, using 10 strata, a trust value of 0.35 is
given a stratum value of

!

0.35 "10# $= 4 .
Recall that in this paper we are considering the trust

dimensions of success, cost, timeliness, and quality
along with the corresponding peer recommendations in
these dimensions. When delegating an activity each of
these dimensions should be considered, along with the
advertised cost and quality of each alternative agent.
Thus, an agent should calculate a performance value for
each potential partner as:

!

PV (") = maxc+1#"c()
µc $ ("q)

µq

$ stratify(T"
s
)

µ ts $ stratify(T"
c
)

µ tc

$ stratify(T"
t
)

µ tt $ stratify(T"
q
)

µ tq

$ (R%
s
)

µrs $ (R%
c
)

µrc

$ (R%
t
)

µrt $ (R%
q
)

µrq

where αc and αq are α’s advertised cost and quality
respectively; maxc is the maximum advertised cost of
the agents being considered; the weightings given to
advertised cost and quality are denoted as µc and µq; µts,
µtc, µtt and µtq are the weightings for the trust
dimensions of success, cost, timeliness, and quality
respectively; and µrs, µrc, µrt, and µrq are the
corresponding weightings for recommendations. This
approach allows an agent to balance the relevant
decision factors when selecting a peer for delegation

7. Example performance value calculation

By way of example, consider an agent selecting
between two alternatives, φ and ψ, who requests
recommendations from three trusted peers, α, β and γ.
Suppose that these peers give the following information
about their interactions with φ and ψ, with respect to the
trust dimension of success (where i takes the values α,
β and γ in turn).

!

I
i"

s+

!

I
i"

s#

!

I
i"

s+

!

I
i"

s#
α 32 17 12 18
β 65 32 79 13
γ 3 7 48 42

The delegating agent must calculate

recommendation values for both alternatives. Firstly,
the total number of interactions with agent φ is
calculated, using:

!

totalInteractions = I
i"
s+ + I

i"
s#()

i=$

%

&

which gives a value of 156. The recommendation for φ
in the success trust dimension, can now be calculated as
follows:

!

R"
s

= (32 /(32 +17) # (32 +17) /156)

+ (65 /(65 + 32) # (65 + 32) /156)

+ (3/(3+ 7) # (3+ 7) /156) = 0.64

Similarly, for alternative ψ we get

!

R"
s =0.66.

Suppose that the information received from the
trusted peers regarding the other trust dimensions is
such that the delegating agent calculates the
recommendation values given below, and suppose that
the other decision factors being considered have the
following values.

factor φ ψ
advertised cost (units per second) 10 9
advertised quality (range 1 to 10) 9 8
trust (success dimension) 0.43 0.81
trust (cost dimension) 0.90 0.64
trust (timeliness dimension) 0.71 0.87
trust (quality dimension) 0.78 0.42
recommendation (success dimension) 0.64 0.66
recommendation (cost dimension) 0.43 0.57
recommendation (timeliness dimension) 0.77 0.66
recommendation (quality dimension) 0.51 0.66

Furthermore, suppose that the following factor

weightings are used, i.e. quality is given more emphasis
that cost, trust is given the most emphasis, and
recommendations are given the least emphasis.

µc 0.08 µts 0.15 µrt 0.05
µq 0.12 µtc 0.15 µrq 0.05
 µtt 0.15 µrs 0.05
 µtq 0.15 µrc 0.05

The agent must calculate the performance value of

each of the alternative partners. Thus, applying PV() to
agent α gives:

!

PV (") = 10 +1#10()
0.08

$ 9
0.12

$ stratify(0.43)
0.15

$ stratify(0.90)
0.15

$ stratify(0.71)
0.15

$ stratify(0.78)
0.15

$ 0.64
0.05

$ 0.43
0.05

$ 0.77
0.05

$ 0.51
0.05

= 10.08 $ 90.12 $ 50.15 $100.15 $ 80.15 $ 80.15

$ 8
0.15

$ 8
0.15 = 8.15

Similarly, for agent ψ we get PV(ψ) = 6.53.

Therefore, based on these weightings, agent φ is the
alternative that best balances the factors considered.

To demonstrate how factor weightings allow agents
to balance their preferences, suppose instead that the
following weightings are used emphasising the quality
and cost of results (in terms of advertised values and the

6

perceived trustworthiness of potential partners to return
those values).

µc 0.15 µts 0.025 µrt 0.025
µq 0.15 µtc 0.15 µrq 0.15
 µtt 0.025 µrs 0.025
 µtq 0.15 µrc 0.15

In this case we get performance values of PV(φ) =

5.42 and PV(ψ) =5.57. Thus, where greater emphasis is
places on quality and cost, ψ is considered the best
alternative. In general, since each peer is autonomous
we cannot guarantee that an agent makes the absolute
optimal choice. However, our proposed approach makes
the best expected choice given the agent’s experiences
so far.

8. Discussion

To investigate the effectiveness of our proposed
MDT-R model, we have constructed a simulation
prototype. We have investigated the performance of
MDT-R using several, relatively small-scale, process
graph fragments containing around 500 activities, each
of which has specific capability and resource
requirements. Our simulation contains 100 peer agents,
each with specific capabilities, that use MDT-R to
delegate activities. Our initial results are promising,
showing that MDT-R provides a significant advantage
over alternative methods (e.g. delegation based on
advertised cost and quality, general trust, and multi-
dimensional trust without recommendations). For
example, in a mixed environment (i.e. one where there
is a uniform mix of reliable and unreliable/honest and
dishonest agents) MDT-R provides an improvement of
up to 30% in achieved quality, and up to a 20%
decrease in failure rate, over simple advertised cost and
quality delegation methods.

Furthermore, MDT-R allows agents to delegate
activities according to their current preferences, by
selecting appropriate weightings. Thus, an agent that is
concerned about cost can place more emphasis on
advertised cost, and trust and recommendations in the
cost dimension. Similarly, an agent that has relatively
little experience, and so low confidence in its trust
models, can emphasise peer recommendations. This is a
very flexible approach, allowing the delegation process
to be tailored to the priorities of an agent at any given
node of the process graph.

9. Conclusions

In this paper we have proposed the notion of multi-
dimensional trust and provided a mechanism for peers
to share information about their experiences. Our
proposed model allows agents to model the various
facets of trust, and combine these with information

provided by peers (along with other decision factors)
when delegating an activity. The MDT-R model is
highly flexible, and system designers have full control
of the trust dimensions modelled and the relative
weightings given to the decision factors.

Currently, the weightings for decision factors are
specified by the system designer. Although the designer
may specify different weightings for different
situations, agents cannot determine appropriate
weightings for themselves. Future work involves
exploring mechanisms, such as learning and genetic
algorithms, to enable agents to tailor the weightings
according to their preferences (e.g. maximising quality
or minimising failures). Although we have validated
MDT-R in a simulation prototype, we are performing
ongoing experimentation, and aim incorporate MDT-R
into a real-world peer-to-peer system.

10. References

[1] A. Abdul-Rahman and S. Hailes, “Supporting trust in
virtual communities”, Proceedings of the Hawaii International
Conference on System Sciences 33, 2000.

[2] F. Azzedin and M. Maheswaran, “Integrating trust into
Grid resource management systems”, Proceedings of the
International Conference on Parallel Processing, pp. 47-54,
2002.

[3] P. W. Bridgeman, Dimensional Analysis, Yale University
Press, 1922.

[4] C. Castelfranchi, “Trust mediation in knowledge
management and sharing”, Proceedings of the 2nd
International Conference on Trust Management, pp. 304-318,
2004.

[5] C. Castelfranchi and R. Falcone, “Principles of trust for
MAS: Cognitive anatomy, social importance, and
quantification.”, Proceedings of the 3rd International
Conference on Multiagent Systems, pp. 72-79, 1998.

[6] D. Gambetta, “Can we trust trust?”, Trust: Making and
Breaking Cooperative Relations, D. Gambetta (ed), pp. 213-
237, Basil Blackwell, 1988.

[7] N. Griffiths, “Task delegation using experience-based
multi-dimensional trust”, Proceedings of the 4th International
Conference on Autonomous Agents and Multiagent Systems,
2005, to appear.

[8] N. Griffiths and M. Luck, “Coalition formation through
motivation and trust”, Proceedings of the 2nd International
Conference on Autonomous Agents and Multiagent Systems,
pp. 17-24, 2003.

[9] T. D. Huynh, N. R. Jennings, and S. Shadbolt,
“Developing an integrated trust and reputation model for
open multi-agent systems”, Proceedings of the 7th
International Workshop on Trust in Agent Societies, pp. 65-
74, 2004.

7

[10] M. d'Inverno and M. Luck, “Understanding Autonomous
Interaction”, Proceedings of the 12th European Conference
on Artificial Intelligence, pp. 529-533, 1996.

[11] N. R. Jennings, “Cooperation in industrial multi-agent
systems”, World Scientific, 1994.

[12] M. Luck, P. McBurney and C. Preist, Agent Technology:
Enabling Next Generation Computing, AgentLink II, 2003.

[13] S. Marsh, “Formalising Trust as a Computational
Concept”, PhD thesis, University of Stirling, 1994.

[14] S. Marsh, “Optimism and pessimism in trust”, Proc. of
the Ibero-American Conference on Artificial Intelligence,
1994.

[15] J. Sabater and C. Sierra, “REGRET: A reputation model
for gregarious societies”, Proceedings of the 1st International
Conference On Autonomous Agents in Multi-Agent Systems,
pp. 475-482, 2002.

[16] E. Triantaphyllou, Multi-Criteria Decision Making
Methods: A Comparative Study, Kluwer Academic Publishers,
2000.

[17] B. Yu and M. P. Singh, “An evidential model of
reputation management”, Proceedings. of the 1st International
Conference on Autonomous Agents in Multi-Agent Systems,
pp. 295-300, 2002.

