
www.elsevier.com/locate/eswa

Expert Systems with Applications 31 (2006) 849–858

Expert Systems
with Applications
Enhancing peer-to-peer collaboration using trust

Nathan Griffiths

Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK
Abstract

Distributed systems generally require their component parts to interact cooperatively, in order for the system as a whole to function
effectively. For any given activity, there are typically several alternative components that have the required capabilities. In decentralised
systems, where there is no overarching control, individual components are responsible for selecting other components with which to
cooperate. However, the candidate components may be unreliable or dishonest, and are typically locally controlled. Such decentralised
systems can be viewed as multi-agent systems, comprising autonomous agents that must cooperate for the system to be effective. Peer-to-
peer (P2P) systems are a subclass of decentralised distributed systems, in which not only is there no overarching control, but neither is
there any hierarchy of control, power, or responsibly among the system components. Selecting appropriate peers to cooperate with is a
challenging problem, since the candidate peers are autonomous and may be unreliable or dishonest. Peers need a mechanism for task
delegation that takes the uncertainly of interactions into account. In this paper we present a mechanism, called MDT-R, that enables peers
to delegate activities appropriately, using trust and the recommendations of other peers to meet individual preferences, such as minimis-
ing risk and maximising quality.
� 2006 Elsevier Ltd. All rights reserved.

Keywords: Agents; Trust; Reputation; Cooperation; Peer-to-peer
1. Introduction

Complex distributed systems such as cooperative design
processes, supply chains, and grid computing can be
viewed as multi-agent systems. Each component is consid-
ered to be an autonomous agent, and for the system to
function effectively these agents must cooperate. The indi-
vidual computational resources, knowledge bases, and
human actors in a system are represented by agents with
appropriate goals and preferences (Jennings, 1994; Luck,
McBurney, & Preist, 2003). Agents have individual capa-
bilities, knowledge and resources that are made available
to others (generally) in return for imposing some cost.
Agents are under local autonomous control, making indi-
vidual decisions to determine their own actions. Further-
0957-4174/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.

doi:10.1016/j.eswa.2006.01.017

E-mail address: nathan@dcs.warwick.ac.uk
URL: http://go.warwick.ac.uk/nathangriffiths
more, they have their own individual preferences
regarding the nature of cooperation for an activity, in par-
ticular with respect to balancing the cost, quality, timeli-
ness etc. of an interaction. Using their knowledge of
others’ capabilities agents can, according to their prefer-
ences, delegate the activities that must be performed in
order to achieve their goals.

Agents have varying degrees of reliability, quality and
honesty, and activities may fail, produce substandard
results, or may cost more and take longer than expected.
On delegating an activity, agents enter into an uncertain
interaction since a high quality, timely, and on budget out-
come is not guaranteed. Furthermore, since agents are
autonomous peers they have no control over how others
cooperate (d’Inverno & Luck, 1996). Thus, agents determine
for themselves when to delegate activities or provide assis-
tance, when to cease cooperating, and how to conduct them-
selves; they can change the nature of cooperation, or even
cease to cooperate, at any time. For example, an agent may
choose to delay execution, reduce the quality of execution,

mailto:nathan@dcs.warwick.ac.uk
http://go.warwick.ac.uk/nathangriffiths


...

...

Simulation

design

Validate
EndStart

12A

11A
10A

9A 8A

6A 7A5A

4A

3A

2A

1A

A

19A18A17A

16A
15A14A

13

Fig. 1. An example workflow fragment.

850 N. Griffiths / Expert Systems with Applications 31 (2006) 849–858
or simply fail to complete an activity. To function effectively,
agents must manage the risk of activity failure (and the risk
of reduced performance). Trust provides a mechanism for
assessing and managing this risk of failure; trust enables an
agent to assess how likely another is to fulfil its commit-
ments. Agents are able to build models of others’ trustwor-
thiness, and incorporate the resulting information into
their reasoning process, in particular at the point of choosing
a cooperative partner.

In this paper we present a mechanism, called multi-

dimensional trust with recommendations (MDT-R), in which
agents use trust and the recommendations of their peers
to manage the risks of cooperating. Agents build models
of their peers’ trustworthiness along several dimensions,
based on their experiences. When delegating an activity, a
cooperative partner can be selected by combining these
trust dimensions with peer recommendations and other
decision factors (such as cost). These decision factors are
combined in a flexible manner, allowing agents to select
cooperative partners according to their current preferences
regarding the relative importance of cost, quality, timeli-
ness, and risk etc. The MDT-R mechanism was initially
described in Griffiths and Sun (2005). In this paper we
expand our discussion of MDT-R, refine the mechanism
itself, and introduce our experimental results.

2. Peer-to-peer agents and cooperative design

In this paper, we describe the proposed MDT-R mecha-
nism within the domain of computer supported coopera-
tive work (CSCW) and cooperative design in particular.
The last decade has seen a significant increase in the appli-
cation of agents to CSCW. Initially, developers were
attracted to agents due to the intelligence, automation,
and communication skills that they exhibit (Guilfoyle,
1998). This early application of agents to CSCW was lar-
gely based on the view of agents as an extension to objects,
where agents provide the communication, cooperation and
intelligence needed to support the human actors in a sys-
tem. More recently, however, agents have been incorpo-
rated into CSCW systems as actors in their own right;
autonomous intelligent entities able to perform tasks on
behalf of human actors, or other agents (Luck, McBurney,
& Preist, 2004; Yiming, 2003). In a cooperative design envi-
ronment, for example, agents might act as personal assis-
tants performing tasks on behalf of users (Zhang,
Ghenniwa, & Shen, 2005), or act as independent entities
able to contribute to the overall design task (Chen, Wu,
Han, & Xiao, 2005).

A peer-to-peer (P2P) system is one in which two or more
peers are able to collaborate in a network of equal peers by
using appropriate information and communication sys-
tems, without the necessity for central coordination (Scho-
der & Fischbach, 2003). In many applications of CSCW,
including cooperative design, the actors in the system are
equal peers, having no explicit hierarchy of control or
power. Such CSCW environments can be viewed as P2P
systems in which the peers are autonomous agents that
can contribute to the task, along with the agents that rep-
resent human users. MDT-R is proposed as a general mech-
anism for agent-based systems where there is no central
control. In this paper we describe MDT-R and illustrate its
application to a P2P system within the context of coopera-
tive design.

2.1. The cooperative design domain

The workflow of the cooperative design process can be
viewed as a directed graph, in which the nodes correspond
to activities and the edges show dependencies between
these activities. An edge from activity Ai to Aj indicates
that Ai is instrumental to Aj being performed. For example,
Aj may represent the validation of a design and Ai may cor-
respond to generating and processing simulation results
that are required for validation. Furthermore, nodes may
represent complex activities, and can be decomposed into
corresponding primitive activities. For example, the activ-
ity of generating and processing simulation results might
be decomposed into configuring and running several itera-
tions of a simulation, followed by an analysis of the results
using a particular set of techniques. Fig. 1 illustrates an
example fragment of workflow (shown at the bottom of
the figure), where the subgraph contained in the circle rep-
resents the decomposition of the indicated node into prim-
itive activities. The workflow fragment at the bottom of the
figure represents the steps in the design process. In this
example, finalising the design (the end of the fragment) is
dependent on the design being validated, which in turn is
dependent on processing simulation results. The simulation
activity is a complex task that can be decomposed into a set
of primitive activities A1 � � � A19, as illustrated by the steps
within the circle. Each of the other steps in the workflow



N. Griffiths / Expert Systems with Applications 31 (2006) 849–858 851
fragment, including validating the design and the preceding
and proceeding steps, might also be decomposed into a set
of primitive tasks.

Individual activities might be specific design tasks or
computational tasks, such as running a single iteration of
a simulation or processing a set of results using a specific
technique. For our purposes, however, we abstract out
the low-level details of each task. An activity has certain
requirements in terms of the capabilities and resources
(e.g. knowledge or network bandwidth) needed for comple-
tion. For an agent to successfully perform an activity, these
requirements must be met.

For each activity, a corresponding set of agents will
meet the capability and resource requirements. The agent
responsible for an activity must determine which of the
capable agents to delegate the required instrumental activ-
ities to. Thus, if an edge exists from Ai to Aj then the agent
responsible for Aj should delegate Ai. In the above exam-
ple, this means that the agent responsible for validating
the design must delegate the processing of the simulation.
(The task of validating the design will in turn have been
delegated by the agent responsible for the task for which
it is instrumental.) Where an agent represents an individual
human or a design team a human can typically override the
agent’s choice of delegate if required. The overarching
(final) activity is allocated to an agent by the person (or
agent) that instigates the design process (or the overall task
in the case of tasks decomposed into primitive activities). It
is important to note that the edges in the workflow graph
only represent dependencies, and not control. Agents are
equal peers and delegation does not imply control over
how the delegate performs an activity.

In this paper we focus on segments of workflow where
the agents are true independent entities contributing to
the design task. As an example, suppose that the decompo-
sition of running a simulation shown in Fig. 1 is such that
tasks A1 � � � A19 are to be executed by autonomous agents.
Thus, each of the agents involved is an independent entity
contributing to the overall design task. In this context the
delegation process involves one autonomous agent selecting
another, in such a way as to maximise the likelihood of suc-
cess and minimise cost etc. Our proposed model is equally
applicable to agents that represent humans or design teams,
but since these humans are typically able to over-rule the
agent’s choice of delegate there is an extra element to task
delegation that is beyond the scope of this paper.

There is no central or hierarchical control. Agents are
equal peers with no control over others, other than the abil-
ity to delegate activities. Thus, the cooperative design pro-
cess is a P2P system with the agents themselves managing
the allocation of activities. If substandard, erroneous or
late results occur at one stage, these problems can propa-
gate to subsequent activities, leading to errors, lateness,
or complete failure. Furthermore, if failure occurs in an
activity we assume that the agent responsible for the activ-
ity for which it is required re-delegates execution to an
alternative agent. Thus, all activities must be executed for
the process as a whole to be successful. So, for example,
if the agent processing the simulation results fails, then
the agent responsible for validating the design will reallo-
cate the simulation task to an alternative peer.

3. Trust

Trust is a well recognised mechanism for assessing the
potential risk associated with cooperating with autono-
mous agents (Castelfranchi & Falcone, 1998; Gambetta,
1988; Marsh, 1994a). Specifically, trust represents an
agent’s estimate of how likely another is to fulfil its com-
mitments. Previous work on trust can be roughly divided
into two categories according to how trust is used. Firstly,
trust can be used to enhance security, and secondly it can
be used to enhance quality of service (note that these roles
are not mutually exclusive). In the context of CSCW and
cooperative design we are not concerned with the security
aspects of trust, since we assume that all peers are permit-
ted to be members of the system and have been configured
with appropriate access privileges. Instead we use trust in a
quality of service role, to enable peers to maximise the
‘‘quality’’ of their interactions according to their current
preferences regarding cost, timeliness, etc. Previous work
focusing on trust in P2P systems, tends to concentrate on
addressing the security aspects (Bursell, 2005; Waldman,
Cranor, & Rubin, 2001). Our proposed MDT-R mechanism
builds on existing work on service-oriented trust in agent-
based systems, as discussed later in this section. The pro-
posed mechanism allows trust to be used to address the
quality of service issues associated with P2P systems.

Trust itself can be divided into two categories: experi-

ence-based and recommendation-based. In the former, trust
is based on individual experience, while in the latter it is
based on information provided by others. Experience-
based trust is simplest, where agents delegate activities
and update their individual models of others’ trustworthi-
ness according to the outcome. Recommendation-based
trust is more complex, requiring agents to share informa-
tion (based on their experiences) about the perceived trust-
worthiness of another. Our approach combines these two
categories: agents maintain individual experience-based
trust assessments of others, and combine these with infor-
mation provided by other peers.

An obstacle to using recommendation-based trust is the
subjectivity of trust. Agents build trust models based on
individual experiences, and such subjective information
may not be directly useful when shared with another agent.
Thus, an agreed trust semantics is needed to enable recom-
mendation-based trust. Agents must be able to interpret
the information provided others. Our solution to this prob-
lem is described in Section 5.

3.1. Multi-dimensional trust

Activities are typically more complex than simple succeed
or fail interactions. Agents cooperate with an expectation



852 N. Griffiths / Expert Systems with Applications 31 (2006) 849–858
of successful performance, to a given quality and for some
anticipated cost. In addition to possible failure, activities
may succeed but be of lower than expected quality or at a
higher than expected cost. Building on our previous work,
we take a multi-dimensional view of trust, decomposing it
into beliefs about the different dimensions of an interaction,
such as quality and timeliness (Griffiths, 2005b). Agents can
model such characteristics as different trust dimensions. MDT-

R is not restricted to specific prescribed trust dimensions, and
agents can model trust along any number of dimensions.
However, for the purposes of this paper the trust of an agent
a is modelled in the following four dimensions:

• success (denoted T s
a): the likelihood that a will success-

fully execute the task,
• cost (denoted T c

a): the likelihood that the cost of a exe-
cuting the task will be no more than expected,

• timeliness (denoted T t
a): the likelihood that a will com-

plete the task no later than expected, and
• quality (denoted T q

a): the likelihood that the quality of
results provided by a will meet expectations.

Trust in any given dimension encompasses beliefs about
competence, disposition, dependence, and fulfilment (Cas-
telfranchi, 2004). For example, if an agent is trusted in
the quality dimension, then it is believed to be capable of
performing an activity to a high quality (competence),
actually doing so (disposition), being the preferred agent
to do it (dependence), and being the means for activity
achievement (fulfilment).

3.2. Representing trust

Our representation of trust is based on the theoretical
work of Gambetta (1988), the formalism proposed by
Marsh (1994a), and our previous work (Griffiths, 2005a;
Griffiths, Luck, & d’Inverno, 2003). The trust in agent a
along dimension d is defined to be a real number in the
interval between 0 and 1: T d

a 2 ½0; 1�. Trust values are
merely comparative, and have no strong semantic meaning
in themselves. Values approaching 0 represent complete
distrust, and those approaching 1 represent complete trust.
Trust is inversely related to the perceived risk of interact-
ing: cooperating with a trusted agent has a low perceived
risk of failure in the trusted dimensions, while a high risk
is associated with distrusted agents. Trust values represent
an individual’s subjective view, based on experience, and so
are not directly comparable across agents. A measure of
confidence is associated with each value according to the
breadth of experience on which it is based; as agents gain
experience this confidence increases.

Trust initially takes a value according to an agent’s dis-
position: optimistic or pessimistic. Optimists ascribe high
initial values (implying low perceived risk), and pessimists
ascribe low values (implying high perceived risk). An
agent’s disposition also determines how trust is updated
(Marsh, 1994b). After interacting, optimists increase their
trust more than pessimists in the dimensions where expec-
tations were met and, conversely, pessimists decrease trust
to a greater extent when expectations are not met. An
agent’s disposition includes: the initial trust Tinitial ascribed
in a trust dimension prior to interacting, and functions for
updating trust after successful and unsuccessful interac-
tions, updatesuccess and updatefail respectively. These func-
tions are heuristics applying to all trust dimensions, and
they have no standard definition. Instead, it is the respon-
sibility of the system designer to choose an appropriate
heuristic. In this paper we use the following definitions to
update the trust in agent a along dimension d:

updatesuccessðT d
aÞ ¼ T d

a þ ðð1� T d
aÞ � ðxs � T d

aÞÞ ð1Þ
updatefailðT d

aÞ ¼ T d
a � ðð1� T d

aÞ � ðxf � T d
aÞÞ ð2Þ

where xs and xf are weighting factors in the interval [0 :1]
defined by the agent’s disposition. The weighting factors
determine how optimistic or pessimistic agents are in
updating trust after an interaction. An optimistic agent a
will typically use weights xsa and xfa such that xsa > xfa .
Conversely, a pessimistic agent b will typically use weights
xsb

and xfb
such that xsb

< xfb
. Furthermore, where a is an

optimist and b is a pessimist it is typically the case that
xsa > xsb

and xfa < xfb
.

In addition to the trust value itself, the trust for an agent
a in a dimension d has an associated numerical confidence
level, Cd

a, that is incremented on each application of the
trust update function. This allows agents to factor into
their decision making the extent of their previous experi-
ence with a particular agent in a given dimension. (The
extent of experiences varies in different dimensions, e.g.
quality is only relevant for successful interactions.) An
agent can be more certain of trust values that are based
on extensive experience in comparison to those that are
based on a small number of interactions.
3.3. Trust decay

Over time trust values may become outdated, if the
experiences that gave rise to them are no longer relevant.
To address this we apply a decay function to converge trust
values to Tinitial in the lack of subsequent experience. Thus,
unless reinforced by recent interactions, the positive effect
of expectations being met reduces over time, as does the
negative effect of failed expectations. The decay function
for the trust in agent a along dimension d is defined as:

decaytrustðT d
aÞ ¼ T d

a � ððT d
a � T initialÞ � xtdÞ ð3Þ

where the trust decay rate xtd 2 [0 :1] is defined by the
agent’s disposition. Low decay rates mean that an agent’s
experiences remain relevant for longer (this is analogous
to having a large memory window), while a high decay rate
leads to experiences rapidly becoming irrelevant (analo-
gous to having a small memory window). As trust values
become outdated, the confidence in them also reduces.



N. Griffiths / Expert Systems with Applications 31 (2006) 849–858 853
Thus, when applying decaytrust the corresponding confi-
dence level must also be reduced. We define a similar decay
function for the confidence level as

decayconfidenceðCd
aÞ ¼ Cd

a � ðCd
a � xcdÞ ð4Þ

where the confidence decay rate xcd 2 [0 :1] is also defined
by the disposition.

4. Stratified trust

We represent trust values numerically, however some
researchers note that this can introduce ambiguity since
the semantics are hard to represent (Abdul-Rahman &
Hailes, 2000; Marsh, 1994a). This is problematic when
using recommendation-based trust, where agents share
trust information. One solution is to divide the trust con-
tinuum into labelled strata, and use these to represent trust
values. For example, Abdul-Rahman and Hailes (2000)
represent trust values using the strata of: ‘‘very trustwor-
thy’’, ‘‘trustworthy’’, ‘‘untrustworthy’’ and ‘‘very untrust-
worthy’’. However, the resulting semantics remain
subjective, with different agents potentially ascribing the
same experiences to different strata. Furthermore, this rep-
resentation reduces sensitivity and accuracy, and compari-
sons become coarse grained since the trust of agents within
a stratum is indistinguishable. For this reason, we concur
with Marsh (1994a) in rejecting the use of strata in favour
of numerical values. Additionally, updating numerical trust
is straightforward, yet stratified approaches often omit
details of how strata are related to experience (Abdul-Rah-
man & Hailes, 2000; Azzedin & Maheswaran, 2002).

However, the use of strata minimises overfitting; numer-
ical values are not considered and so insignificant numeri-
cal differences in trust are not misinterpreted as important.
An ideal trust model has the sensitivity and accuracy of a
numerical approach, combined with the minimal risk of
overfitting of a stratified approach. To this end, we draw
on our previous work, and use a variable size stratifying
of trust at the time of trust comparisons (Griffiths, 2005b).
Trust values are translated into strata immediately before
comparison. The number of strata is not fixed, although
typically an agent will use the same number of strata for
each trust dimension and in each comparison. Using fewer
strata minimises the risk of overfitting but gives the least
precise comparison, while using more strata retains preci-
sion but at an increased risk of overfitting.

5. Interaction summaries

To enable sharing of trust information, there must be a
clear semantics to the information provided. As discussed
above, although stratified trust provides a possible solu-
tion, it still suffers from subjectivity. Several alternative
approaches to recommendation-based trust have been
developed, however each of them suffer from potential
problems due to the subjectivity of information provided
(Huynh, Jennings, & Shadbolt, 2004; Sabater & Sierra,
2002; Yu & Singh, 2002). In MDT-R we address the subjec-
tivity problem by agents providing a summary of their rel-
evant previous interactions, rather than attempting to
provide an explicit assessment of trust. Thus, when agent
a shares information with b about c, rather than communi-
cating its trust value in a given dimension, T d

c , it communi-
cates a summary of the experiences that led to T d

c (but not
the value itself). As described in Section 3, trust is deter-
mined by whether an agent’s expectations are met in a
given dimension. For example, trust in the quality dimen-
sion T q

c is determined by whether previous interactions
were of suitable quality. When sharing information, a can
communicate to b the number of previous interactions with
c in which quality expectations were met, Iqþ

ac , and the num-
ber in which the quality was below that which was
expected, Iq�

ac . The receiving agent b therefore obtains a
summary of a’s interactions with c, and an indication of
the extent of a’s relevant experience (since a has had
Iqþ
ac þ Iq�

ac relevant interactions). Similar summary informa-
tion can be communicated in each of the trust dimensions.

The sharing of interaction summaries is still subjective
with respect to the nature of the sharing agent’s expecta-
tions, and whether or not they were met. However, the
major problem of subjectivity associated with communicat-
ing an explicit numerical trust value is avoided. A numeri-
cal trust value is entirely subjective, whereas the
subjectivity in summary of interactions arises solely from
the sharing agent’s assessment of whether its expectations
were met and is independent from the sharing agent’s dis-
position. We take this to be an acceptable level of subjec-
tively. Moreover, it is largely unavoidable where
information is shared based on another’s experiences, since
that agent’s interpretation of its interactions are necessarily
subjective.

5.1. Determining recommendations

The first step in delegating an activity, is for the delegat-
ing agent to ask its trusted peers to provide information
about each potential delegate. General trust, Ta, in an
agent a combines all trust dimensions and is based on the
notion of general trust proposed by Marsh (1994a). It is
beyond the scope of this paper to discuss the alternatives
for how general trust might be calculated, but for our pur-
poses it can be considered to be the average value of trust
across all trust dimensions. We therefore define general
trust in an agent a as T a ¼ averageðT s

a; T
c
a; T

t
a; T

q
aÞ. Only

trusted peers should be asked for recommendations, to
minimise the risk of dishonest or misleading information.
Thus, the delegating agent should only ask peers whose
general trust is above a minimum threshold, i.e. Ta > Tmin,
where Tmin is a minimum trust threshold defined by the
agent’s disposition.

On receiving a request for information each trusted peer a
will provide Idþ

ac and Id�
ac , for each potential delegate c in each

of the trust dimensions d. The delegating agent can then
combine this information into a single recommendation



854 N. Griffiths / Expert Systems with Applications 31 (2006) 849–858
value for each trust dimension. For each dimension d the set
of responses from the trusted peers about a potential dele-
gate c are combined by summing the proportions of interac-
tions where expectations are met, weighted by the extent of
the peer’s experience. Thus, the recommendation for a
dimension, Rd

c , is defined as:

Rd
c ¼

Xn

i¼a

Idþ
ic

Idþ
ic þ Id�

ic

�
Idþ

ic þ Id�
ic

total interactions

 !

¼
Xn

i¼a

Idþ
ic

total interactions

 !
ð5Þ

where a,b, . . . ,n are the set of trusted peers, and total_inter-

actions is the total number of interactions across all trusted
peers with agent c in dimension d, defined as

total interactions ¼
Xn

i¼a

ðIdþ
ic þ Id�

ic Þ ð6Þ

Applying this approach, the delegating agent can deter-
mine recommendations in each of the trust dimensions of
success, cost, timeliness and quality, denoted Rs

c, Rc
c, Rt

c

and Rq
c respectively.

6. Delegation: combining trust dimensions

When delegating an activity the various dimensions of
trust, the recommendations from trusted peers, and any
other relevant decision factors (such as advertised cost
and quality) must be considered. An agent’s preferences
and its confidence in its trust models determine the empha-
sis given to each of these factors. For example, one agent
may prefer to minimise the risk of failure and achieve the
highest quality, while another may prefer to minimise cost
at the potential expense of quality and an increased risk of
failure. Similarly, if an agent has relatively low confidence
in its own trust models, i.e. they are based on a limited
number of interactions, then it may place more emphasis
on peer recommendations.

To select between agents we use a weighted product
model to combine choice factors and give a single perfor-
mance value for each agent (Bridgeman, 1922; Triantaphyl-
lou, 2000). Each of the relevant decision factors, i.e.
advertised cost, quality, trust, and peer recommendations,
are incorporated into the calculation of the performance
value. Each factor is raised to the power equivalent to its
relative weight according to the selecting agent’s prefer-
ences.1 For each potential partner a performance value is
calculated as:

PVðaÞ ¼
Yn

i¼1

ðfaiÞ
li ð7Þ
1 Our previous work described the use of a weighted product model for
combining trust values (Griffiths, 2005b), MDT-R extends this by including
peer recommendations.
where there are n factors and fai is the value for agent a in
terms of the ith factor and li is the weighting given to the
ith factor in the selecting agent’s preferences. The values of
the weightings li are defined by the selecting agent’s prefer-
ences such that:

Pn
i¼1li ¼ 1.

The best delegate is the agent a whose performance
value PV(a) is greater than that of all other agents. Where
several agents have equal performance values, one is
selected arbitrarily.

Provided that the li’s sum to 1 the individual weightings
can take any value in the interval [0 :1]. This flexibility is a
key strength of MDT-R, since the information maintained
by an agent is the same, regardless of its current preferences
and factor weightings. Furthermore, agents can use differ-
ent weightings in different situations. For example, if an
agent is relatively inexperienced then more emphasis can
be given to others’ recommendations, and as experience
is gained the emphasis can move toward its own trust
models.

Factors such as quality can be used directly in calculat-
ing the performance value, provided that they are numeri-
cal and should be maximised. Similarly, peer
recommendations can be used directly since they are
numerical and to be maximised. Factors that should be
minimised, such as cost, can be included by using:

fac ¼ maxðac � � � ncÞ þ 1� ac ð8Þ
where ac represents the advertised cost from agent a, and
max(ac � � � nc) is the maximum advertised cost of all poten-
tial delegates, also denoted as maxc. (The addition of 1 en-
sures that for a maximal cost alternative, the factor still has
a positive value.)

Trust values must be stratified before inclusion, as dis-
cussed in Section 4. The trust range is divided into s equal
strata such that each is given a value from 1 to s in order.
Trust values are stratified by determining the value of the
stratum that they occupy. For a trust value t its stratum
is obtained by using:

stratifyðtÞ ¼ dt � se ð9Þ

For example, using 10 strata, a trust value of 0.35 is given a
stratum value of d0.35 · 10e = 4.

Peer recommendations are similar to trust in that they
are numerical values, based on (necessarily) subjective
judgements. Thus, as for trust, there is a risk of overfitting
if the numerical values are used directly. To minimise the
risk of overfitting we take the approach of also stratifying
peer recommendation values before they are included in the
calculation of a performance value.

Recall that in this paper we are considering the trust
dimensions of success, cost, timeliness, and quality along
with the corresponding peer recommendations in these
dimensions. When delegating an activity each of these
dimensions should be considered, along with the advertised
cost and quality of each alternative agent. Thus, using Eq.
(7), an agent should calculate a performance value for each
potential partner as:



N. Griffiths / Expert Systems with Applications 31 (2006) 849–858 855
PVðaÞ ¼ ðmaxc þ 1� acÞlc � ðaqÞlq

� stratifyðT s
aÞ

lts � stratifyðT c
aÞ

ltc

� stratifyðT t
aÞ

ltt � stratifyðT q
aÞ

ltq

� stratifyðRs
cÞ

lrs � stratifyðRc
cÞ

lrc

� stratifyðRt
cÞ

lrt � stratifyðRq
c Þ

lrq ð10Þ
where ac and aq are a’s advertised cost and quality respec-
tively; maxc is the maximum advertised cost of the agents
being considered; the weightings given to advertised cost
and quality are denoted as lc and lq; lts, ltc, ltt, and ltq

are the weightings for the trust dimensions of success, cost,
timeliness, and quality respectively; and lrs, lrc, lrt, and lrq

are the corresponding weightings for recommendations.
This approach allows an agent to balance the relevant deci-
sion factors when selecting a peer for delegation. For exam-
ple, an agent with limited experience can emphasise peer
recommendations by increasing lrs, lrc, lrt and lrq; or
might emphasise the importance of success (relative to
quality, cost, and timeliness) by increasing lts and lrs.
Agents are able to change their preferences regarding cal-
culating performance values simply by changing the
weighting values, with no changes needed to the underlying
trust models or the data that is stored.

7. Example performance value calculation

By way of example, consider an agent selecting between
two alternative agents, / and w, for the subtask of process-
ing simulation results. Suppose that the delegating agent
requests recommendations from three trusted peers, a, b
and c. Furthermore, suppose that these peers give the fol-
lowing information about their interactions with / and
w, with respect to the trust dimension of success (where i

takes the values a, b and c in turn).
I sþ
i/
 I s�

i/
 I sþ
iw
 I sþ

iw
a
 32
 17
 12
 18

b
 65
 32
 79
 13

c
 3
 7
 48
 42
Thus in this example, in agent a’s experience, agent / has
successfully processed simulation results 32 times and has
been unsuccessful 17 times. Similarly, agent w has been suc-
cessful on 12 occasions and failed in 18 instances. Using
this information, the delegating agent must calculate rec-
ommendation values for both candidate peers. Firstly,
the total number of interactions with agent / is calculated,
as defined in Eq. (6), which gives a value of 156. The rec-
ommendation for / in the success trust dimension, can
then be calculated using Eq. (5), as follows:

Rs
/ ¼ 32=156þ 65=156þ 3=156 ¼ 0:64

Similarly, for alternative w we get Rs
w ¼ 0:66. Thus, based

on the recommendations of a, b and c agent w is more
likely to be successful.
Suppose that the information received from the trusted
peers regarding the other trust dimensions is such that
the delegating agent calculates the recommendation values
given below, and that the other decision factors being con-
sidered have the following values. (Note that the recom-
mendation values calculated above correspond to a single
row in this table, i.e. the recommendations in the success
dimension.)
Factor
 /
 w
Advertised cost, units per second (ic)
 10
 9

Advertised quality, range 1–10 (iq)
 9
 8

Trust: success dimension (T s

i )
 0.73
 0.21

Trust: cost dimension (T c

i )
 0.90
 0.64

Trust: timeliness dimension (T t

i)
 0.71
 0.37

Trust: quality dimension (T q

i )
 0.58
 0.42

Recommendation: success dimension (Rs

i )
 0.64
 0.66

Recommendation: cost dimension (Rc

i )
 0.43
 0.57

Recommendation: timeliness dimension (Rt

i)
 0.77
 0.66

Recommendation: quality dimension (Rq

i )
 0.51
 0.66
Furthermore, suppose that the following factor weigh-
tings are used: advertised quality is given more emphasis
than advertised cost, trust in all dimensions is given the
most emphasis, and recommendations are given the least
emphasis.
lc
 lq
 lts
 ltc
 ltt
 ltq
 lrt
 lrq
 lrs
 lrc
0.08
 0.12
 0.15
 0.15
 0.15
 0.15
 0.05
 0.05
 0.05
 0.05
In this example this means that the delegating agent gives
the trustworthiness of / and w primary importance, fol-
lowed by the likelihood that results will be processed to a
suitable quality, then followed by the likelihood that this
processing will be of expected cost, and finally of least impor-
tance are the peer recommendations given by a, b and c.

The delegating agent must calculate the performance
value of each of the alternative partners, / and w. Thus,
applying Eq. (10) to agent / gives:

PVð/Þ ¼ ðmaxc þ 1� 10Þ0:08 � 90:12

� stratifyð0:73Þ0:15 � stratifyð0:90Þ0:15

� stratifyð0:71Þ0:15 � stratifyð0:58Þ0:15

� stratifyð0:64Þ0:05 � stratifyð0:43Þ0:05

� stratifyð0:77Þ0:05 � stratifyð0:51Þ0:05

¼ 10:08 � 90:12 � 80:15 � 100:15 � 80:15 � 60:15 � 70:05

� 50:05 � 80:05 � 60:05

¼ 6:51

Similarly, for agent w we get PV(w) = 4.92. Therefore,
based on these weightings, agent / is the alternative that
best balances the factors considered.



856 N. Griffiths / Expert Systems with Applications 31 (2006) 849–858
To demonstrate how factor weightings allow agents to
balance their preferences, suppose that the selecting agent’s
preferences change such that the likely quality and cost of
processing the simulation results is of higher importance
than the other decision factors. In this case the agent
may use weightings such as those given below. The quality
and cost of results is emphasised (in terms of advertised
values, trustworthiness and peer recommendations of the
likelihood that potential partners will return the advertised
values) with the side effect of reducing the importance of
the success and timeliness dimensions.
lc
 lq
 lts
 ltc
 ltt
 ltq
Peer
Directo
lrt
ry
lrq
Ass
T

lrs
Pe

C

igned
asks

Fig.
lrc
0.15
 0.15
 0.025
 0.15
 0.025
 0.15
 0.025
 0.15
 0.025
 0.15
In this case, calculating the performance values gives
PV(/) = 5.25 and PV(w) = 5.31. Thus, where greater
emphasis is placed on quality and cost, w is considered
the best alternative. Changing the weightings allows the
selecting agent to make an appropriate choice according
to its current preferences, without needing to change the
underlying trust and recommendation data. In general,
since each peer is autonomous we cannot guarantee that
an agent makes the absolute optimal choice. However,
our proposed approach makes the best expected choice
given the agent’s (and its trusted peers’) experiences so far.
8. Experimental validation

To validate the proposed MDT-R model, we have con-
structed a simulation prototype. Recall from Section 2 that
we are concerned with segments of workflow in which the
agents involved are true independent entities contributing
to the overall design task. Our example in Section 2 was
that of performing a simulation, which might typically
involve a large number of steps starting with generating
configurations, then running the simulation itself, and
finally processing the raw results. These tasks can be dele-
gated to agents, and it is this scenario that the simulations
discussed in this section are intended to mirror. We have
investigated the performance of MDT-R using several work-
flow fragments containing 500–3000 primitive activities,
er model

ontrol

Wo
T

2. Peer ar
each of which has specific capability and resource require-
ments. Our simulations contain 10–100 peer agents, each
with specific individual capabilities. The actual workflow
used is not of concern. Rather, our aim is to validate
MDT-R in terms of the improvement it can offer when a
complex task, such as a simulation in the context of
CSCW, is assigned to an autonomous agent that must in
turn delegate the associated primitive subtasks. Our exper-
iments are not intended to fine tune the parameter weights
in the model (i.e. the xi’s and li’s), but rather to demon-
strate the usefulness of the model.

All agents use MDT-R to delegate activities to other
peers. The architecture of the individual peers is shown in
Fig. 2. Each peer has a set of assigned and working tasks,
the former being the tasks that it has delegated to others
and the latter being the tasks that have been delegated to
it (and any individually executed tasks). Peers also main-
tain a set of trust models of other peers, and have message
buffers for incoming and outgoing messages. There is an
external peer directory service with which peers register
on joining the system, and can be queried to determine
which peers are capable of performing a given task (along
with the advertised cost and quality for specific task
performance).

A random peer is delegated to the overarching activity
(i.e. the final node) of the process graph fragment. This
peer then selects other peers, using MDT-R, for the tasks
that are instrumental to the achievement of the overarching
task, and so forth through the tree. Peers communicate via
a message transport using a simple proprietary agent com-
munication language, which allows them to request and
provide information, and allocate and manage task
execution.

We have performed a number of simulations using a
variety of experimental configurations. However, due to
space constraints we will concentrate on the four experi-
mental configurations, shown below. The failure, overrun,
overcharge, and quality columns indicate the range of the
failure, overrun, overcharge and quality deviation rates
(%), such that peers are randomly initialised with a value
in the specified range. The peers column in the table is
the number of peers of each type contained in the
simulation.
Inbox Message

Transport

rking
asks

Outbox

Peer

chitecture.



N. Griffiths / Expert Systems with Applications 31 (2006) 849–858 857
Config-
uration
Peers
 Failure
 Overrun
 Overcharge
 Quality
1
 100
 0–20
 0–30
 0–30
 10–40
2
 45
 30–50
 30–50
 30–50
 30–50

5
 0–10
 0–10
 0–10
 0–10
3
 10
 0–5
 0–5
 0–5
 0–5

30
 10–30
 10–30
 10–30
 10–30

20
 75–100
 75–100
 75–100
 75–100
4
 10
 0–5
 0–50
 0–5
 0–5

10
 0–5
 0–5
 0–50
 0–5
We performed a number of experiments using these con-
figurations of peers on workflow fragments of various sizes.
Each experimental configuration was run for 10 iterations,
with the results being averaged. The results shown are for
the interactions delegated by a single subject peer, which
has failure, overrun, overcharge, and quality deviation
rates of 0–20%. The subject peer used 10 strata when using
MDT-R, which provides a fair balance between minimising
overfitting and maximising precision. (An investigation of
alternative strata values is beyond the scope of this paper,
but our previous results have shown that 10 strata provides
a realistic balance (Griffiths, 2005b).)

One of the key benefits of using MDT-R is the increased
number of successful interactions. To illustrate this we used
configurations 1–3 and a workflow fragment containing
2000 activities. We ran two versions of the simulation, one
using MDT-R for task allocations and the other using a ran-
dom allocation method (where the choice between peers who
have the required capabilities and meet the advertised cost
and quality requirements, is made arbitrarily). The success
rates achieved are shown in the following table.
Allocation
method
Configu-
ration 1
Configu-
ration 2
Configu-
ration 3
MDT-R (%)
 58
 56
 41

Random (%)
 54
 46
 27
In these experiments MDT-R gives an improvement in
success rate of 4%, 10% and 14% in configurations 1, 2
and 3 respectively. Thus, MDT-R consistently reduces the
number of failures, with a higher advantage occurring
when there is a higher proportion of unreliable peers.
The greatest improvement is in configuration 3 where there
is a small subset of reliable peers in a population of mostly
moderate reliability and a small subset of highly unreliable
peers. In this case MDT-R enables the unreliable peers to be
avoided and the reliable peers selected, where the peer
capabilities are such that this is possible.

Since trust is based on experience, MDT-R works best
in situations where there are a large number of interactions
to allow trust models to mature. To illustrate this we have
considered configuration 3 with three different size work-
flow fragments: 500, 1750, and 3000 activities. The results
are given in the following table:
Allocation method
 Workflow size
500
 1750
 3000
MDT-R (%)
 31
 41
 67

Random (%)
 27
 27
 28
As trust models mature the success rate increases signif-
icantly, more than doubling from 31% with immature trust
models (although this is still better than the 27% achieved
with random allocation) to 67% once the models have
matured. It should be noted that with larger workflows
than 3000 activities no further improvement is achieved,
since after around 2500 activities the trust models give a
fairly accurate representation of peers’ trustworthiness.

Finally, to illustrate the effect of the weightings using in
calculating the performance value (the li’s in Eq. 10) we
used three sets of weights. The first, where all factors were
give equal emphasis, the second where the cost factors
(advertised cost and trust and reputation in the cost dimen-
sions) were emphasised, and finally where timeliness was
emphasised. Using these weightings and configuration 4,
gave the following results:
Disposition
 Success
(%)
Timeliness
(%)
Cost
(%)
Equal emphasis
 86
 89
 65

Emphasise cost
 87
 87
 71

Emphasise timeliness
 86
 95
 63
Thus, using weights that favour cost increased the num-
ber of interactions in which cost expectations were met, but
also decreased the number in which timeliness expectations
were met. Conversely, using weights that emphasised time-
liness increased the proportion of interactions in which
timeliness was met, but decreased the number in which cost
expectations were met. Emphasising cost or timeliness has
little impact on the success rate. Similar results have been
obtained for the quality dimension.

9. Conclusions

In this paper we have described the notion of multi-
dimensional trust and provided a mechanism for peers to
share information about their experiences. Our proposed
framework allows agents to model the various facets of trust,
and combine these with information provided by peers
(along with other decision factors) when delegating an activ-
ity. The MDT-R model is highly flexible, and system designers
have full control of the trust dimensions modelled and the
relative weightings given to the decision factors. Our model
is generally applicable, but in this paper our inspiration has



858 N. Griffiths / Expert Systems with Applications 31 (2006) 849–858
been the automated elements of a cooperative design task. In
particular we have described a mechanism that can be
applied to segments of workflow that are performed and
allocated by autonomous agents. We have shown by simula-
tion that MDT-R increases the proportion of successful inter-
actions. Furthermore we have demonstrated that the
weighting factors used to combine decision factors can be
used successfully to emphasise particular factors according
a peer’s (or the designer’s) current preferences.

Currently, the weightings for decision factors are speci-
fied by the system designer. Although the designer may
specify different weightings for different situations, agents
do not determine appropriate weightings for themselves.
Future work involves exploring mechanisms, such as learn-
ing using genetic algorithms, to enable agents to tailor the
weightings according to their preferences (e.g. maximising
quality or minimising failures). Although we have vali-
dated MDT-R in a simulation prototype, we are performing
ongoing experimentation, and aim incorporate MDT-R into
a real-world peer-to-peer system.

References

Abdul-Rahman, A., & Hailes, S. (2000). Supporting trust in virtual
communities. In Proceedings of the 33rd Hawaii international confer-

ence on system sciences (HICSS-00) (pp. 1769–1777). ACM Press.
Azzedin, F., & Maheswaran, M. (2002). Integrating trust into Grid

resource management systems. In Proceedings of the international

conference on parallel processing (ICPP-02) (pp. 47–54).
Bridgeman, P. W. (1922). Dimensional analysis. Yale University Press.
Bursell, M. (2005). Security and trust in P2P systems. In R. Subramanian

& B. D. Goodman (Eds.), Peer-to-peer computing: The evolution of a

disruptive technology (pp. 145–165). Idea Group Publishing.
Castelfranchi, C. (2004). Trust mediation in knowledge management and

sharing. In Jensen, C., Poslad, S., & Dimitrakos, T. (Eds.), Proceedings

of the second international conference on trust management (iTrust

2004) (pp. 304–318).
Castelfranchi, C., & Falcone, R. (1998). Principles of trust for MAS:

Cognitive anatomy, social importance, and quantification. In Pro-

ceedings of the third international conference on multi-agent systems

(ICMAS-98), Paris, France (pp. 72–79).
Chen, S., Wu, H., Han, X., & Xiao, L. (2005). Collaborative design

environment based on multi-agent. In Proceedings of the ninth

international conference on computer supported cooperative work in

design (CSCWD-05) (pp. 481–485).
d’Inverno, M., & Luck, M. (1996). Understanding autonomous interac-

tion. In W. Wahlster (Ed.), Proceedings of the twelfth European

conference on artificial intelligence (ECAI-96) (pp. 529–533). John
Wiley & Sons.

Gambetta, D. (1988). Can we trust trust? In D. Gambetta (Ed.), Trust:

Making and breaking cooperative relations (pp. 213–237). Basil
Blackwell.
Griffiths, N. (2005a). Cooperative clans. Kybernetes, 34(9–10), 1384–
1403.

Griffiths, N. (2005b). Task delegation using experience-based multi-
dimensional trust. In Proceedings of the fourth international conference

on autonomous agents and multiagent systems (AAMAS-05)

(pp. 489–496). ACM Press.
Griffiths, N., Luck, M., & d’Inverno, M. (2003). Annotating cooperative

plans with trusted agents. In R. Falcone, S. Barber, L. Korba, & M.
Singh (Eds.), Trust, reputation, and security: Theory and practise

(pp. 87–107). Springer-Verlag.
Griffiths, N., & Sun, S. (2005). Supporting peer-to-peer collaboration

through trust. In Proceedings of the ninth international conference on

computer supported cooperative work in design (CSCWD-05) (pp. 440–
445).

Guilfoyle, C. (1998). Vendors of intelligent agent technologies: A market
overview. In N. R. Jennings & M. J. Wooldridge (Eds.), Agent

technology (pp. 91–104). Springer.
Huynh, T. D., Jennings, N. R., & Shadbolt, N. R. (2004). Developing an

integrated trust and reputation model for open multi-agent systems. In
Proceedings of the 7th international workshop on trust in agent societies

(TRUST-04) (pp. 65–74).
Jennings, N. R. (1994). Cooperation in industrial multi-agent systems.

World Scientific series in computer science (vol. 43). Singapore: World
Scientific.

Luck, M., McBurney, P., & Preist, C. (2003). Agent technology: Enabling

next generation computing. AgentLink II.
Luck, M., McBurney, P., & Preist, C. (2004). A manifesto for agent

technology: Towards next generation computing. Journal of Autono-

mous Agents and Multi-Agent Systems, 9(3), 203–252.
Marsh, S. (1994a). Formalising trust as a computational concept. Ph.D.

thesis, University of Stirling.
Marsh, S. (1994b). Optimism and pessimism in trust. In Geffner, H. (Ed.),

Proceedings of the Ibero-American conference on artificial intelligence

(IBERAMIA-94) (pp. 286–297).
Sabater, J., & Sierra, C. (2002). REGRET: A reputation model for

gregarious societies. In Proceedings of the first international joint

conference on autonomous agents in multi-agent systems (AAMAS-02)

(pp. 475–482).
Schoder, D., & Fischbach, K. (2003). Peer-to-peer prospects. Communi-

cations of the ACM, 46(2), 27–29.
Triantaphyllou, E. (2000). Multi-criteria decision making methods: A

comparative study. Kluwer Academic Publishers.
Waldman, M., Cranor, L. F., & Rubin, A. (2001). Trust. In A. Oram

(Ed.), Peer-to-peer: Harnessing the power of disruptive technologies

(pp. 242–270). O’Reilly.
Yiming, Y. (2003). Agent supported cooperative work. Kluwer Academic

Publishers.
Yu, B., & Singh, M. P. (2002). An evidential model of reputation

management. In Proceedings of the first international joint conference

on autonomous agents in multi-agent systems (AAMAS-02) (pp. 295–
300).

Zhang, Y., Ghenniwa, H., & Shen, W. (2005). Enhancing intelligent user
assistance in collaborative design environments. In Proceedings of the

ninth international conference on computer supported cooperative work

in design (CSCWD-05) (pp. 107–112).


	Enhancing peer-to-peer collaboration using trust
	Introduction
	Peer-to-peer agents and cooperative design
	The cooperative design domain

	Trust
	Multi-dimensional trust
	Representing trust
	Trust decay

	Stratified trust
	Interaction summaries
	Determining recommendations

	Delegation: combining trust dimensions
	Example performance value calculation
	Experimental validation
	Conclusions
	References


