
Online Submission of Coursework – a Technological Perspective

Mike Joy and Nathan Griffiths
Department of Computer Science

University of Warwick
Coventry CV4 7AL

UK
{M.S.Joy,N.E.Griffiths}@warwick.ac.uk

Abstract

The development of an online submission system at
the authors' Computer Science department over the
last few years is described. The changing technologies
used by the in-house software are discussed, together
with the pedagogic and administrative issues that are
affected by the process. The authors conclude by
examining the issues that currently direct the future
development of the software.

1. Introduction

The use of software to facilitate and add value to the
process of student submission of assignments, and the
subsequent marking by teaching staff, is becoming
common, facilitated by the ubiquity of Internet access,
and the relative affordability of computing equipment.
Public domain and commercial course management
tools are available which include assignment
submission and automated assessment as part of the
software functionality, for example WebCT [1] and
Questionmark Perception [2]. However, such tools do
not address the specific needs of computer
programming assignments. In particular a system is
required to support academics in assessing student
submissions, through collecting submissions,
performing automatic tests on them, checking for
plagiarism, and providing an interface for marking and
delivering feedback.

The “BOSS” Online Submission System has been
developed over a number of years, as a tool to
facilitate the online submission and subsequent
processing of programming assignments [3]. In this
paper we discuss the development of BOSS from a

technological standpoint, and reflect on the issues that
have affected it, both technical and process related.

2. Description of the software

The BOSS software permits users to perform six
principle tasks.

1. Students are able to run automatic tests on their
programs prior to submission (and afterward if
they wish to resubmit within the prescribed
deadline).

2. Students submit their (programming) assignments
online.

3. Staff are able to run automatic tests on the set of
student submissions, and as part of the marking
process.

4. Plagiarism detection software identifies potential
intracorpal source-code plagiarism.

5. Teaching staff can mark a submission online, by
viewing the results of the automatic tests, running
the submitted program, and viewing the submitted
source code.

6. Teaching staff give feedback on each submission,
and BOSS collates the feedback from the set of
markers of a given submission and provides a
mechanism for communicating this back to the
student.

The software uses a client-server architecture with
separate clients for students and for authorized
staff (for security reasons). Each client is provided
both as a secure web client and as a stand-alone
application, so maximizing the flexibility of the
system in terms of users’ working environments.

An overview of the system architecture can be seen in
Figure 1, showing its primary components. There
are four data repositories (represented by rounded
boxes), which store information about students,
student submissions, the results of automated tests,
and the results of plagiarism detection. There is an
automatic test server which is responsible for
performing tests on students’ submissions and
storing the results (or passing feedback to the
student if the test is being run prior to submission).
The staff and student servers provide appropriate
functions and data access to staff and students
respectively. Both the staff and student servers
have a web-based interface and a standalone Java
application interface. The web interfaces
communicate with the other system components
via a secure webserver using SSL. The staff
interface also provides access to the plagiarism
detection software (called Sherlock) which
analyses the stored submissions and stores various
metrics for assessment by teaching staff [4].

The software has been made available as Open Source
under the GNU General Public License. There are
three primary reasons for taking the Open Source
route. Firstly, the development of BOSS is not
commercially viable given the level of
commitment to support and on going development
that would have to be made locally. Secondly,
making the software Open Source encourages take-
up by other institutions and the subsequent
community support and development that naturally
follow. Finally, placing the source code of the
system in the public domain enables other
institutions not only to use the system, but to
customize and extend it without any license

restrictions (and hopefully feed back their
extensions to the user community).

3. The technological dimension

The initial software package was developed in the
mid 1990s, when the majority of terminals were still
text-only, and students would normally interact with
the University computer systems from on-campus.

The technology initially deployed was an

application with a text interface, which ran on a central
UNIX server. Coding was in ANSI C, and designed in
as re-usable and modular a fashion as the language
would easily allow. Security was achieved by means
of standard UNIX file permissions, and judicious use
of the “setUID” mechanism. The Snefru [5] hash
algorithm was used to sign each submission and
ensure the integrity of submitted data.

This solution was successful, but the rapid advent
of higher-quality terminals with graphic capability
suggested that an improved user interface was
desirable. Not only would staff productivity increase
with a “point and click” interface, but student
perception of the software would improve, since it
would appear more “up to date”. The immediate

Data Repositories

Sherlock Coresoft DB Submission Tests

Automatic Test
Server

Secure
Web Server

Student ServerStaff ServerSherlock

Java UI Web UIWeb UI Java UI

Staff Client Student Client

Figure 1. The BOSS architecture

solution was to add a front-end coded in Tcl/Tk, which
was relatively easy to implement due to the modular
structure of the underlying code [3]. Whilst this
solution was effective, it exposed a fundamental
weakness in the choice of technology – the scalability
was poor. For example, the modular constructs of
Tcl/Tk are few and primitive, and the Tcl/Tk scripting
language is weakly typed. It was felt that the software
was not amenable to significant development in its
current state, and a permanent solution was sought.

The relatively novel (at the time) Java language
was chosen to form the basis of a complete re-write,
Not only was the language seen as suitable for large
scale projects, but its platform-independence would
shield us from future decisions about hardware
purchase. Moreover, the Computer Science
department uses Linux and Solaris based machines,
whilst the rest of the University uses Windows based
solutions and so it was desirable for BOSS to be
usable on each of these platforms. The use of Java
made this relatively simple (in comparison to the use
of alternative languages such as C++), by providing
the same class files to each platform via a platform
specific bootstrap mechanism.

In 2000, a small team of undergraduates was
employed over the summer vacation to implement the
rewrite, and the product – a client-server architecture
using RMI for data transport – forms the basis of the
current system. At an early stage in the development
of the Java code, we decided that any maintainable and
robust solution required a modular approach. Both
CORBA and RMI were considered, the latter chosen
on account of its Java base and consequent ease of
coding. The use of Applets was ruled out, since correct
functioning of Applet-based clients is dependent on
the browser support for Java and the power of the
client machine. Not only do some proprietary browsers
not support Java fully (and this has been the subject of
litigation both in the US and the EU), but at the time
students’ personal machines were unable to run
complex Applets acceptably fast.

3.1. Plagiarism detection

The department's plagiarism detection software,
known as “Sherlock” [4], has been developed in
parallel with BOSS, and until 2002 was a separate
tool. Sherlock reports on a collection of documents
and reports instances of pairs (or larger clusters) of
documents that contain similarities. Initially written
for use with Pascal (and now Java) programs, Sherlock
has been extended to use freetext data files. Both its

source code and free text facilities compare well, both
in terms of accuracy and of ease of use, with other
plagiarism detection tools such as CopyCatch [6].

3.2. HCI issues

The development of both web-based and
application clients – which may appear a duplication
of effort – is motivated by two main factors.

Students demand a simple to use product to submit
their work, both from the campus and when working at
home, suggesting a web client as being appropriate.

Figure 2. Web client screenshot

Figure 2 shows screenshot of a dialogue from the
web-based client for staff.

Staff who are marking assignments for large classes
desire an interface which is quick to use, and
minimizing of key strokes. This type of interface is
simpler to code as an application, and when used on a
machine directly connected to the campus network
avoids the delays inherent in the web-based solution.
The corresponding screenshot is presented in figure 3.

Both interfaces have been coded to take account of
appropriate “good practice” [7]. For example, the web
interfaces are structured as collections of relatively
small individual pages with many navigation aids and
shortcuts, and are appropriate for remote access to the
server where the connection may be slow or
unreliable. The application interfaces maximize the
amount of relevant information available on each

screen, to enable the user to navigate through the
dialogues and complete their task, and is appropriate
for local high-speed connections normally available to
staff. Both student and staff clients have been coded
with both types of interface, and evaluation of the
usage patterns is ongoing.

3.3Data storage

Central to a data-bound application such as BOSS
is the storage and management of the data. In addition
to storage of submitted assignments as archives on
secure backed-up file systems an SQL database is used
for other data, such as times of submissions, basic
student identity information, and marks awarded. The
initial deployment of a proprietary database was found
to be unsuccessful (due to the repeated requirement of
systems staff to manage the database), and free
databases such as MySQL, MSQL and PostgreSQL
have since been used. Differences between the dialects
of SQL used are a continual source of frustration,
though the latest versions of MySQL and PostgreSQL
allow interchangeability with minimal intervention,

assisted by the use of JDBC to connect with the Java
servers.

In order to facilitate the import of data from
external sources (such as the University's Student
Record System, or SRS), an “institution-independent”
database schema – CoreSoft – was developed [8]. The
aim of CoreSoft was to present the minimum data
required for BOSS (and other related applications
requiring similar data) in a format that would be
compact, and use appropriately normalized tables with
easy to remember names. The translation of data from
external databases to the CoreSoft schema (and vice-
versa) is – at least in principal – a straightforward task.

4. University process

In order for a system such as BOSS to be used
effectively, it must interact with institution processes
efficiently and accurately, and several issues have
arisen during the deployment of BOSS that may well
apply to many other institutions.

4.1. Databases

The quality of data received from the SRS is
sometimes poor. For example, delays in updating
student data centrally often preclude the automatic
generation of accurate lists of students registered for a
given module.

The schema used by the SRS is required for
generation of accurate statistical data for government
agencies, in addition to the more central management
functions. The types of statistics required affect the
table structure of the database – for example, separate
module codes are used for students resitting a module

Figure 3. Application client screenshot

– and cause the import of data into BOSS (through the
generic CoreSoft database schema) to be more
difficult than expected.

4.2. Funding and support

Both students and staff have undertaken
development of BOSS. Several final year
undergraduate projects have addressed specific
sections of the code, and from time to time students
have been employed during summer vacations to work
on the software. Funding for the latter has always been
internal to the University, both from the Department's
own resources, and from centrally managed funds
(such as the University's “Teaching Development
Fund”).

The Department’s staff have normally provided
support for the software. Central support, through the
University's IT Services Department, has usually been
inappropriate, due to the concentration of expertise in
the technologies employed being within the
Department.

5. Pedagogy and quality assurance

BOSS has been conceived as a tool targeted at a single
task – management of online programming
assignments. It is not intended to provide a suite of
learning materials, and contains no functionality to
support students' learning other than that which
directly arises from the activity of assessment. The
support for learning provided by BOSS is
encapsulated by the process of a student getting
feedback from automatic tests prior to submission,
followed by feedback from markers after submission.
Thus the learning benefits to students of using BOSS
are similar to other assessment methods, and are
primarily dependent on the academic design of the
assessment (or preferably a sequence of both
formative and summative assessments) and the quality
of feedback given by markers.
It is interesting to compare BOSS’ approach with that
of CourseMarker [9], a tool developed at the
University of Nottingham (previously known as
Ceilidh). The approach taken in CourseMarker is to
allow students to present solutions to programming
problems frequently as a formative process. Each
solution is then marked against a “template” and
against a variety of metrics, allowing the student to
improve their solution prior to submission by
assimilating the frequent feedback presented by

CourseMarker. This was an approach that we chose
not to follow, since we wished to focus on the process,
and measuring the correctness of students’ code.
Furthermore, the CourseMarker approach prescribes a
style of programming, which it might be argued is not
always appropriate, and we decided that such
functionality would be inappropriate for BOSS. Our
emphasis is on providing a tool to assist teaching staff
and encourage best practice in teaching programming
rather than to provide an online learning environment.

The use of Sherlock to assist in plagiarism detection
has been successful, and has reduced the instance of
plagiarism on large programming modules to less than
5% [4].

It should be noted that although our primary aim is to
support the teaching of programming, BOSS is also
useful as a submission and marking tool for other
types of assessment, such as essays. It provides an
effective means for the collection of submissions,
since students can submit using computers across the
campus or even from home via the web interface. The
Sherlock plagiarism tool allows teaching staff to detect
intracorpal plagiarism in the essays submitted by
students. BOSS can also be used as a repository for a
marker (or group of markers) to store feedback on
each submission. At the end of the marking process
this feedback can be collated and moderated for each
submission and then returned to the student.

6. Future directions

 Any initiative that is dependent on technology is also
at risk from changes in technology, and it would be
unwise to speculate what those changes will be.
However, the paradigm used by BOSS appears to
support a variety of courses successfully, and
significant changes are not currently envisaged. The
underlying technology will be upgraded as and when
suitable new technologies and standards are in place
(for example, the use of the Simple Object Access
Protocol – SOAP – or other XML-based standard for
encapsulating the data used by BOSS, is under
investigation).
 Since BOSS is now Open Source, it is hoped that
colleagues at other institutions will identify (and
code!) additional functionality.

7. References

[1] WebCT. http://www.webct.com/ (accessed 29 February
2004)

[2] Questionmark Perception.
http://perception.questionmark.com/ (accessed 29 February
2004).

[3] Michael Luck and Mike Joy, “A Secure On-line
Submission System”, Software - Practice and Experience 29
(8), 1999, pp. 721-740.

[4] Mike Joy and Michael Luck, “Plagiarism in
Programming Assignments”, IEEE Transactions on
Education 42(2), 1999, pp. 129-133.

[5] R.C. Merkle, “A fast software one way hash function”,
Journal of Cryptology, 3(1), 1990, pp. 43-58.

[6] CopyCatch Gold. http://www.copycatchgold.com/
(accessed 29 February 2004).

[7] Ben Shneiderman, Designing the User Interface (third
edition), Addison-Wesley, 1998

[8] Mike Joy, Nathan Griffiths, Mary Stott, Jon
Harley, Cathy Wattebot and Derek Holt, “Coresoft: A
Framework for Student Data”, Proceedings of the 3rd
Annual Conference of the LTSN Centre for
Information and Computer Sciences, Loughborough,
LTSN Centre for Information and Computer Sciences,
2002. pp. 31-36.

[9] http://www.cs.nott.ac.uk/CourseMarker/

