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Abstract. Cooperation plays a fundamental role in multi-agent systems in which
individual agents must interact for the overall system to function effectively.
However, cooperation inherently involves an element of risk, due to the unpre-
dictable nature of other’s behaviour. In this paper, we consider the information
needed by an agent to be able to assess the degree of risk involved in a particular
course of action. In particular, we consider how this information can be used in
the process of plan selection in BDI-like agents.

1 Introduction

BDI agent architectures represent an important class of system that has been used in
an increasing number of applications. Based on the folk-psychology mental notions
of belief, desire and intention, they are also distinctly popular among the plethora of
existing agent architectures. Apart from the intuitive understanding of the BDI model,
this popularity may be due to the successful practical application of BDI systems such
as PRS [8] and dMARS [5] to diverse areas including malfunction handling on the space
shuttle and air traffic control, for example.

Though BDI architectures occupy an an important place in the design of intelligent
agents, the limitation of the approach is that it is typically focussed on what might
be called standard task planning and execution for individual agents. In contrast, our
work is concerned with the extension of a BDI-like architecture to include those higher-
level control strategies and other modifications so that domain properties of multi-agent
environments can be used to hone agent behaviour. In this paper, we consider how to
augment the process of plan-selection in such agents to provide a richer and potentially
more effective mechanism.

We begin by reviewing key components of the target architecture, including the ba-
sic control cycle and details of the actions and plans that form the basis of this work.
Then we describe the problem of plan selection and examine some of the relevant fac-
tors that may be used in multi-agent domains, and proceed to develop a detailed model
of plan selection. Before finally assessing the value and contribution of this work, a
mechanism for the critical application of the model to partial plans is presented.

2 TheBase Architectural Modél

The basic operation of BDI agents is based around their beliefs, desires and intentions.
An agent has beliefs (about itself, others and the environment), desires (in terms of



the states it wants to achieve in response) and intentions as adopted plans. In addition,
agents also maintain a repository of available plans, known as the plan library. Agents
respond to changes in their goals and beliefs, resulting from perception, by selecting
appropriate plans from the plan repository and then instantiating one of these plans as
an intention. Intentions comprise actions and subgoals to be achieved, with the latter
giving rise to the addition of new subplans to that intention.

This control cycle, while proving generally effective and useful in many domains,
does not, however, relate to the specific issues that arise in multi-agent scenarios where
cooperation among multiple interacting agents is either necessary or desirable. For ex-
ample, the questions of who to cooperate with, and how, are not addressed at all. In
this paper, we are specifically concerned with the impact of multi-agent plans on the
plan-selection process in this kind of architecture. However, before considering plan
selection itself, we must describe the nature of such plans.

For an agent situated in a multi-agent environment to take advantage of others,
its plans must include a means for it to interact with those others. Cooperation may
take the form of an agent performing an action on behalf of another, a group of agents
performing an action together or set of actions performed at the same time. Thus there
are three distinct types of action that a plan may include, described below.

Individual actionsare those performed by an individual agent, without the need for
assistance from others. An individual action may be executed by the agent owning the
plan in which it is contained, or by another agent on its behalf.

A joint action is a composite action, made up of individual actions that must be
performed together by a group of agents. Each agent involved in executing a joint action
makes a simultaneous contribution to the joint action, corresponding to the component
action that it performs. For example, if agents « and 8 perform the joint action of lifting
a table, then o must make the contribution of lifting one end of the table simultaneously
with g lifting the other.

Concurrent actions are those that can be performed in parallel by different agents,
without the need for synchronisation (except at the beginning and end of a set of con-
current actions). As with joint actions, the action an agent performs as part of a set
of concurrent actions is its contribution. For example, if agents o and 3 each write a
chapter for a book, and they perform their actions in parallel, then o and 3 perform con-
current actions where each agent’s contribution is the action of writing the appropriate
chapter.

Our definitions of joint and concurrent actions are related to the notions of strong
and weak parallelism described by Kinny et al. [9]. The key difference is that while we
consider the component actions, or contributions, that make up a joint action, Kinny
represents joint actions as a “black-box” without explicit contributions. These are prim-
itive actions from which others can be constructed. Thus, related and dependent actions
that do not fit directly into these categories can be built up from them.

Inthe BDI model, the plans in a plan library are partial plansin that they are incom-
plete, and contain subgoals in addition to actions. We do not consider the arguments for
and against such a choice of representation here, since it is has been addressed else-
where, but note that this is one standard form of organisation [1].



We thus define a plan as sequence of steps, where a step is either an individual
action, a joint action, a set of concurrent actions, or a subgoal. In addition, since plans
apply only to particular situations, they must also have preconditions.

3 Cooperative Plan Selection

In the BDI model, an agent’s actions are determined by its intentions. When an agent
forms an intention to achieve a given goal, it does so by committing to a plan to achieve
that goal. However, for any particular goal there may be several plans to achieve it that
are applicable in the current situation, since their preconditions are satisfied. Some of
these plans may contain actions beyond the agent’s capabilities (or joint or concurrent
actions) which, if chosen, require assistance from another agent.

Thus, an agent’s choice of plan determines whether it must cooperate to achieve its
goal. If all the applicable plans for a goal contain actions that cannot be performed by
the agent alone, cooperation is necessary. If there is a choice between plans that are
performable alone and those that are not, then cooperation is optional. If choosing to
cooperate in this case, there must be some inherent advantage to the cooperation, for
example by minimising effort, since it can also be achieved by the agent alone.

In existing work, several researchers have considered the situation where coopera-
tion is necessary. For example, Castelfranchi et al. have developed a model of coopera-
tion based upon the notion of dependence, where an agent is dependent on another for
an action if it is unable to perform that action itself [3]. However, the issues involved
in determining why an agent might choose to cooperate when this is optional, have
been largely unaddressed. One exception is Wooldridge and Jennings’ [15] formalisa-
tion of cooperative problem solving, in which they argue that it begins with an agent
recognising the potential for cooperation, either because it is unable to achieve its goal
alone (and cooperation is necessary), or because it prefers assistance (and cooperation
is optional). Since their work is relatively high level, though, many details such as why
an agent might prefer assistance are not considered. The approach to plan selection
described in this paper is an attempt to answer this question.

3.1 Plan Selection Criteria

The problem of plan selection amounts to choosing the best plan — the plan that is most
likely to be successful, with least cost in terms of time and resources, and the least risk.
(While in some circumstances, such as gambling, the influence of these factors may be
contradictory, requiring an agent to make a trade-off between the two, we assume that
in general an agent’s high-level desires are likely to be such as to attempt to minimise
both the risk and the cost of its actions.) When the plans involved do not involve other
agents, standard plan selection criteria (or planning heuristics) can be used to assess
cost. However, when one or more of the agent’s plans do involve others, an element of
risk is introduced by the inherent uncertainty of interaction. In addition to a measure
of the cost of a plan, therefore, we need to be able to assess the likelihood of finding
an agent (or agents) for actions that are required for successful plan execution; the
likelihood that once such agents are identified they will agree to cooperate; and the



likelihood that once a commitment has been given, the agents concerned will fulfill
their commitments.

We identify four primary factors relevant in comparing plans in respect of risk:
knowledge of other’s capabilities, risk from others, knowledge of view of self, and
knowledge of other’s preferences. Certainly, risk may be introduced for any number of
other reasons, but these are the key domain-independent general issues.

Agent Capabilities Knowledge of others’ capabilities helps to determine which agents
might perform the required actions. If many agents are known to have the target capa-
bilities, then successful execution of the plan is more likely than if fewer or no agents do
s0. However, in line with the motivating concerns of dynamic environments and uncer-
tain and incomplete knowledge, we cannot assume that an agent’s knowledge of others
faithfully represents them, and success at execution time may be possible even if it is
not at evaluation time, just as failure is also possible. In general, though, we assume that
there is sufficient stability for this to be useful in assessing plans prior to execution.

Risk from Others Once potential cooperating agents are identified, they may be eval-
uated in terms of the risk involved in interacting with them. Plans involving agents with
whom interaction is more likely to be successful, should be rated higher than those
involving interactions less likely to be successful.

Risk from view of Self Knowledge of the view of oneself in the eyes of others in terms
of risk of interaction may also be useful in assessing plans. It can provide a measure of
the likelihood that another agent will agree to cooperate, since an agent is more likely
to cooperate with another if it has confidence in the success of that interaction. Thus,
the agents identified in competing plans can be evaluated in respect of their view of the
risk involved in cooperating with the planning agent. It is, however, difficult to maintain
an assessment of how one is viewed by others.

Agent Preferences It might also be possible to assess plans in relation to the higher-
level motivations of the agents involved in them, and whether cooperation would be
likely. This would require a detailed model of the motivations and goals of other agents,
however, which is unlikely to be accurate.

3.2 Trust

How then to assess risk in interaction? Fortunately, as recognised by several researchers
[2,4,7,10,11], this has a relatively simple solution in the form of trust. The risk of
whether to cooperate and with whom, may be determined by, among other things, the
degree of confidence or trust in other agents. Despite the notion of trust being com-
monplace in our everyday interactions, there are few formal definitions. However, it is
generally accepted that trust implies some form of risk, and that entering into a trusting
relationship is choosing to take an uncertain path that can lead to either benefit or cost
depending on the behaviour of others [12].



In this paper, we view trust as one of the means available to an agent for estimating
the risk involved in cooperation, in terms of an estimation of the degree of expectation
that others will do what they agree to do, i.e. an expectation of risk. This is a synthetic
notion of trust since, unlike Deutsch [4] and Luhmann [10], for example, we are not
concerned with how trust operates in humans, but with how the concept of trust can
be used in relation to cooperation between artificial agents. We are also primarily con-
cerned with how an agent can use the degree of trust it has in another in reasoning about
cooperation, rather than how an agent determines this degree of trust in the first place.

4 A Mode of Cooperative Plan Selection

4.1 Plan Ratings

The problem of plan-selection is essentially the same as that of finding effective heuris-
tics for plan construction. In that sense, we can apply standard domain-independent
heuristics for evaluating plans which perform a valuable, if limited, service. These
heuristics include, for example, the length of a plan as the number of its actions, the
cost based on the cost of the actions it contains, and the duration of plan execution
based on the duration of individual actions. We will not consider this further in this
paper, since these issues are well addressed by textbooks (for example [14]), but suffice
it to state that any such heuristics may be used to arrive at an assessment of a plan in
terms of its standard rating.

This evaluation of a plan does not, however, address our key concerns of assessing
plans in relation to the dynamic multi-agent nature of the environment. If one or more
of the plans available to an agent requires interaction with another, the standard rating
is inadequate, since this interaction introduces an element of risk. A second rating is
therefore necessary in these terms, which we call the cooperative rating.

4.2 Trust

The perceived risk of cooperating with a particular agent is determined by that agent’s
reliability, honesty, etc., embodied by the notion of trust. Thus an agent can use its trust
in others as a means of assessing the risk involved in cooperating with them. Describing
trust in terms of risk allows us to consider the limits of trust more precisely, and to
quantify it. An agent with a high trust value is more trusted than an agent with a low
trust value, and represents less risk in terms of cooperation, for example. This suggests
an inverse relationship between trust, 7', and risk, R, as follows.

1
R= M)
An agent’s trust of another is dependent on a variety of factors, including the other’s
believed reliability, honesty, veracity, etc. However, modelling all such potentially rele-
vant factors is excessive, and can add to the complexity of the solution, when typically
they will not be needed. Consequently, we base our model of trust upon Marsh’s for-
malism [11] and the work of Gambetta [7], and define the trust in an agent «, to be a



value from the interval between 0 and 1: T,, € [0,1]. The numbers merely represent
comparative values, and are not meaningful in themselves. Values approaching 0 rep-
resent complete distrust, and those approaching 1 represent complete, blind trust. In
this paper we are not concerned with how an agent should update its trust of others,
but Marsh [11] describes a possible approach that will suffice. This representation of
trust corresponds to Marsh’s notion of general trust. However, Marsh also introduces
situational trust, where an agent’s trust in another is dependent on the importance of
the situation being considered. For example, while an agent may trust another to extract
product information from a database, it might not trust it to determine which product
represents the best value for money. Although conceptually this situational trust is a
more powerful mechanism that general trust, the computational overhead involved in
identifying trust in tasks can be prohibitive, and we do not consider it further.

4.3 Agent Models

In order to choose between plans that may require cooperation for their execution, an
agent needs some knowledge about the other agents that it may cooperate with. Dur-
fee [6] notes that in order to cooperate effectively an agent may need to know certain
information about others, about themselves, about how they view others and are viewed
themselves and so on. However, since an agent’s reasoning is resource bounded, if taken
to an extreme, the amount of knowledge an agent possesses to facilitate its coopera-
tion might overwhelm its limited reasoning capabilities. Thus agents need just enough
knowledge to coordinate well, and no more, since any additional knowledge may sim-
ply hinder the reasoning process of the agent.

An agent has a model of each other agent with which it may interact, that contains
its knowledge of the other’s capabilities and the degree to which it is trusted. These
agent models form part of the agent’s wider knowledge base, or beliefs. The conceptual
form such models may take in an agent’s knowledge base is shown in Figure 1, which
represents an agent’s models of two others, o and 5. For each agent, the model contains
a set of capabilities, and the degree of trust in that agent.

Agentid: a Agentid: B

Capabilties: | pickup(b), putdown(b), Capabilties: pushto(b), tag(b)
carryto(l,b), tag(b)

Trust: 0.6 Trust: 0.3

Fig. 1. Example agent models



4.4 Assessing Actions

In assessing the merit of a plan, an agent must make a judgement about the risk attached
to each action in the plan requiring cooperation, by examining the trust value in its
model of each of the possible cooperating agents. Suppose that an agent knows of n
others, a1, s, . . ., a,, With the required capabilities for performing a given action, and
orderedsuch thatT,,_, > T,_, where T, denotes the trust in .. Several possibilities
for assessing the risk involved in cooperating with others are discussed below.

We might only consider trust in the most trusted agent involved so that the risk of a
particular action would be as follows.

1
Raction = T, )
1

Though simple, the problem with this approach is that this most trusted agent might
not be the actual agent involved in the cooperative action, for any number of reasons.
In particular, the autonomous nature of agents underlying this model suggests that it is
impossible to determine the behaviour of another agent in advance. As a consequence,
cooperation with less trusted others may be needed, and this must be factored into the
measure of risk. Alternatively, then, we might consider the additive total of trust in all
agents in the set of potential agents for the action.

1
Raction = = @)

i=1

This avoids the problem of only considering the most trusted agent, and considers
all agents to an equal extent, but does not address the decreased likelihood of coop-
eration with less trusted agents. An agent would first try to cooperate with «; and, if
unsuccessful, would then try as, and so on, but for each successive agent, the likeli-
hood of success decreases. To address this, we can adjust the formula to increase the
significance of more trusted agents, by dividing the trust of successive agents by a cor-
respondingly increasing factor.

1
Raction = = )

>
i=1 ¢
Thus, trust in all relevant agents is considered, but in relation to the likelihood of

cooperation with them. Using this measure of risk, we can determine the cooperative
rating of a plan by summing the risk associated with each action in it. Thus a plan with
few high risk actions may be rated better (or less risky) than a plan with many low risk
actions. For a plan with m actions, a1, as,- .., an, the cooperative rating C for that
plan is given by the following equation.

C=> R, (5)



45 Plan Quality

Once both the standard and cooperative ratings of a plan have been determined, they
must be combined to form an overall measure of plan quality to select between alter-
native applicable plans. It would not be sensible simply to add the two values together,
since one measures the cost of the plan, and the other the risk involved in it, and the
relative importance of these may vary for each agent. We therefore include a weighting
for these ratings for a particular agent in the overall quality measure, @, as follows,
where w, and w,. represent the influence weighting applied to the standard rating, S
and cooperativerating, C, respectively.

Q:(ws*5)+(wc*c) (6)

Different agents may use different weightings, the values used reflecting, in part, an
agent’s predisposition, since agents that place greater importance on the standard rating
are inclined to minimise the cost of achieving their goals, whether or not this requires
cooperation. Conversely, agents that place most importance on the cooperative rating
are predisposed to minimising the risk involved in cooperating with others, even if this
increases the cost involved in achieving their goals. Thus agents that place more impor-
tance on the standard rating are more inclined to take risks associated with cooperation
in order to minimise the cost of their plans, when compared to agents that place more
importance on the cooperative rating. The values of the weighting that provide the best
selection of plans depends on an agent’s environment.

5 Cooperation in Partial Plans

5.1 Plan Evaluation

planp
Key:
® intermediate states
© subgoals

pl p2 PS5

p3 p4

Fig. 2. Example plans

Figure 2 shows a graphical representation of a plan that includes all possible elab-
orations, where the edges represent actions, solid bullets correspond to intermediate



states between actions, and outline bullets correspond to subgoals. For each subgoal in
the plan, there are a set of applicable plans, each of which forms a branch of possible
elaboration from that subgoal. The set of plan elaborations is the set of paths from the
root of the graph to the leaves. Thus, for plan p possible elaborations are paths from
the root to the nodes labelled p1, p2, p3, p4, and p5. If this set has been determined,
the alternatives can be evaluated in respect of the criteria developed for fully elaborated
plans, and an appropriate plan selected.

A naive solution would thus be to require an agent to fully elaborate each of its
applicable plans in order to choose between them. While this would indeed allow direct
use of the criteria described above, it also requires a premature commitment to a par-
ticular plan. Such a requirement would negate the benefit of using partial plans in the
possibility of interleaving execution and deliberation to cope with the environmental
change that is typical of multi-agent scenarios. More importantly, it demands a search
through the entire tree of plans so that the quality of each possible path solution can be
measured. This is prohibitively expensive to be performed in real-time.

We assume, for reasons of simplicity, that plans are not recursive, meaning that
a plan should not contain a subgoal that is the same as the top-level goal that plan
achieves.

5.2 Pre-Execution Plan Assessment

If we are to avoid constructing the entire search tree at the time of plan selection, we
must be able to make a choice based on a limited number of alternatives, such as the
top-level applicable plans. An informed choice at this level is only possible, however,
if we have some measure of the value of plans in terms of the standard and cooperative
ratings, but clearly, this is not possible to do on the fly. Instead, we perform an off-line
pre-execution assessment of the plan library in which all of the plans in it are evaluated
in a coarse fashion with respect to the agents required for successful execution. This
approach represents a compromise between the desire to minimise the computational
overhead and that of maximising the quality of any measure of the value of a plan.

Starting with the plans that require no further elaboration, since these are the only
ones which can be directly evaluated, the standard and cooperative ratings are deter-
mined. These ratings must then be fed back into the other plans as values for subgoals
within them. For each plan containing actions that cannot be performed by the planning
agent, the set of all agents known to have the relevant capability is generated through in-
spection of its agent models, so that these ratings can be calculated as described earlier.
There are two possible approaches to incorporating these values for fully elaborated
plans into the larger partial plans of which they might form subplans.

Firstly, these values can be used in subsequent levels of plans in the library for
which the plans best satisfy subgoals, and so on until each plan has an overall quality
measure. This quality measure is an assessment of the best-case solution.

An alternative solution is to take into account all possible elaborations and calculate
a mean rating for competing plans, so that there is less reliance on one individual plan
that may not be possible at execution time. This provides a less sensitive measure, but
one which is more likely to be useful in a dynamic environment, since it might still
be relevant. The balance between the best-case and mean ratings amounts to a trade-off



between an agent trying to find the best final plan and minimising the chance of the final
plan being poor due to environmental change (in terms of these ratings). These best-
case and mean ratings for agent plans will need periodic reassessment as the agent’s
knowledge of other’s capabilities (and its trust in them) changes.

The best-case advantage (BCA) of one plan over other applicable plans is the ad-
vantage of that plan over others if its final elaboration has the best quality rating. Thus,
for two applicable plans, p and ¢, with best-case ratings of Q;(p) and Qs(q) respec-
tively the BCA is equal to the difference between the quality rating for p and that for ¢,
|Qb(p)— Qp(q)|. If there are more than two applicable plans, as is typical, then the BCA
is equal to the difference between the minimum and maximum best-case ratings. Thus
with applicable plans p, g, . . ., z the BCA is determined by the following equation.

BCA = maz{Qs(p), Qv(q); - - -, Qp(2)} — min{Qu(p), Qs(q), ..., Qu(2)} (7)

The mean-case advantage (MCA) of one plan over other applicable plans is the
typical (or mean) extra advantage. This is a general case measure that incorporates
more information, since it takes into account all possible elaborations of the applica-
ble plans. With mean ratings for p and ¢ of @,,(p) and Q,.(q), the MCA is equal to
|Qm (p) — Qm(q)|- As above, if there are more than two applicable plans, the MCA is
equal to the difference between the minimum and maximum mean ratings. Thus with
plans p,q, ...,z the MCA is as follows.

MCA =maz{Qm(p), Qm(a),---,Qm(2)}
_min{Qm(p)a Qm(q),- - ;Qm(z)} 8

Selecting between partial plans There is a trade-off between maximising the best-
case advantage and the mean-case advantage. If the best-case advantage of a plan p over
another, ¢, outweighs the mean-case advantage of ¢ over p, then p should be selected,
but if the mean-case advantage of ¢ over p is greater than the best-case advantage of p
over g, then ¢ should be selected.

More generally, the advantage should be maximised, regardless of whether it is best
case or mean-case. If BC A > M C A then the best-case rating should be used to select
plan z, such that Q3 (z) < Qs (p) A Qs(z) <Qs(g) A. .. A Qs(x) < Qs(2). Alternatively,
if MCA > BC A then the mean-case rating of the applicable plans should be used.

Certainly, more sophisticated mechanisms involving the likelihood of elaboration
of individual plans are possible, but these require much more extensive knowledge of
the relationship of plans and environments, and the nature of change in environments,
as well as significantly more costly computation. Given that the environment is largely
unpredictable, there is unlikely to be any significant advantage, however.

This approach is suited to situations in which the likelihood of the environment and
the agent models remaining the same is high so that plan elaboration at execution time is
likely to reflect the plan quality values determined in advance for the overall partial plan
concerned. Reassessment of these quality measures will be required periodically to en-
sure they are consistent with the changes in trust of others. Although we do not address



action effect and cost performable by

pickup(b) pick up box b, (cost 2) ai
putdown(b) put down box b, (cost 2) ai
carryto(l,b) carry box b to location [, (cost 2) ai
pushto(l, b) push box b to location I, (cost 4) Qs
shelve(b) put box b on the nearest shelf, (cost 2) as
tag(b) put a tag on box b, (cost 1) a1, a2

plan py — [tag(bozx), pushto(long_term_storage, box)]

plan po — [tag(box), pickup(box), carryto(standard_storage,box), goal(stored(boz))]
plan p3 — [putdown(box)]

plan ps — [putdown(box), shelve(box)]

Fig. 3. Actions and plans in the warehouse domain

this issue in this paper, a simple strategy is for an agent to perform this reassessment
when it is not otherwise occupied, or when the change in its trust of others exceeds some
threshold. Although there will be some significant computation involved, it is limited
in the number of capable agents, the number of plans and the the numbers of actions in
those plans. Moreover, since assessment is carried out in a pre-execution strategy com-
bined with periodic reassessment, the overhead placed on an agent for plan selection
at run time is relatively low, especially if computation relating to plan reassessment is
performed when the agent is idle.

6 Warehouse Example

To illustrate this scheme, consider the example of a warehouse domain, comprising
three agents a1, as, and a3. The warehouse has three areas: a delivery area, a standard
storage area, and a long term storage area, such that boxes arrive in the delivery area and
must be moved to one of the storage areas. On the arrival of a box it is unknown how
soon it will be needed, and whether it should be put in standard or long term storage.
Boxes in the standard storage area can be kept on the floor or on shelves, with the only
constraint being that a box cannot be placed on top of another, to allow easy access.
Thus, if an agent wishes to store a box in the standard storage area, and the floor is full,
it must be stored on the shelves. In the long term storage area boxes can be stored on
the floor or on other boxes. The possible actions, the agents that are able to perform
them, along with an example set of plans, are shown in Figure 3. Each action has an
associated cost, shown in parentheses, corresponding to its standard rating.

The warehouse requires that once boxes arrive in the delivery area they are moved
to one of the storage areas, and that the first agent to perceive a box in the delivery
area should adopt the goal to move the box. Suppose that agent «; notices a box in
the delivery area, and forms the goal of the box being placed in a storage area. Now, it
has two applicable plans for this goal, p; and p». Plan p; is fully elaborated and can be



executed without further elaboration, while p- is partial and requires elaboration before
it can be fully executed. There are two plans, ps and py4, that can be used to elaborate
p2. Which of these plans will be used for elaboration depends on the circumstances at
the time of elaboration. For example, if there is sufficient floor space in the standard
storage area then p3 can be used, but if there is no free space then p4 must be used.
We use the notation pys) to refer to p, when elaborated with p3, and p,(4) when with
ps. Note that agent «; has sufficient capabilities to execute py(3) by itself, but it must
cooperate to execute both p; and py(4).

The standard rating for the possible plans can be determined from the cost of the
actions, and is equal to 5 for py, 7 for py(3) and 9 for p,(4). However, since agent a;
is unable to execute p; without assistance, and may be unable to execute p, without
assistance (depending on how it is elaborated), it must consider the plan’s cooperative
rating. Suppose that a; has a trust value of 0.8 for both agent a.» and a3. The only agent
capable of performing the action required for p,, pushto(l, b), is az, so the cooperative
rating for plan p; is equal to % = 1.25. For po, if the agent elaborates the plan with
ps3 then cooperation is not needed, so the rating is 0. However, if elaborated with p4, the
agent must cooperate with as, so the rating is 0%8 = 1.25.

If we suppose for simplicity that the weighting used in combining the standard and
cooperative rating (i.e. ws; and w,) are both equal to 1, then the overall rating for the
plans can be determined. Since p; is fully elaborated the rating is simply arrived at from
the formula (ws * S) + (w. * C), i.e. 5+ 1.25 = 6.25. The rating for p» depends on the
ratings for each of its possible elaborations, p,(3y and pa(4). The rating for py sy is equal
to 7+0 = 7, and similarly 9+1.25 = 10.25 for p,(4). Thus the best-case rating for p, is
7, while the mean rating is +10:25 — 8.625. In this example the best-case advantage is
7—6.25 = 0.75, and the mean-case advantage is 8.625 — 6.25 = 2.375. The mean-case
advantage is greater so the agent should use the mean rating in plan selection. Since p;
has the lowest mean-rating, it should be selected by the agent.

Alternatively, if a; has a trust value of 0.2 for agent a-, the best-case, and mean,
rating for p; becomes 5+ 01—2 = 10. Here, the best-case advantage outweighs the mean-
case advantage, so the best-case rating is used to select the best plan, in this case ps.

7 Conclusions

In this paper we have presented a mechanism for plan selection in BDI-like agents that
takes into account the inherent risk involved in cooperation. We describe how an agent
can assess the risk for a given plan in the light of its knowledge of others’ capabilities,
and its trust in them. Plans are judged both in terms of the risk they involve and their
cost according to standard criteria. However, computational constraints mean that a full
analysis of plans is not possible at execution time and a pre-execution assessment is
performed instead, allowing an agent to make an informed selection between plans.
The work described in this paper is part of a wider effort investigating the process
of cooperation with respect to BDI-like agents. As part of this, several questions remain
open with respect to the mechanisms described in this paper. Firstly, we might consider
how to incorporate the notion of an agent’s rights [13] to perform actions, both in terms
of an agent not having right to perform an action and so needing to cooperate, and also



when assessing the risk involved in a plan in relation to the rights of other. Secondly,
as Marsh [11] points out, an agent’s trust in another is dependent on the action being
considered. This would provide a richer basis for plan selection if incorporated into the
assessment of plans, but at a cost of increasing the overhead of modelling others. In
order to take further advantage of the dynamic multi-agent nature of the environment
further exploration of these and other issues will be required. Nevertheless, in this paper
we propose an effective mechanism for cooperative plan selection that moves us a step
forward towards to better exploiting the potential benefits of the multi-agent domain.

Acknowledgements Thanks to Kevin Bryson and the anonymous referees for many
helpful comments.
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