
Trusting Agents for Grid Computing *

Justin R.D. Dyson, Nathan E. Griffiths, Hélène N. Lim Choi Keung,
Stephen A. Jarvis, Graham R. Nudd

University of Warwick
Coventry, UK

justin@dcs.warwick.ac.uk

* 0-7803-8566-7/04/$20.00 © 2004 IEEE.

Abstract - The Grid vision is to allow compute resources
to be shared and utilised globally, with these distributed
resources belonging to the same Virtual Organisation
(VO). These resources execute jobs submitted by users,
who are not in the resources’ local domain and hence have
no control over these resources. Conversely these users
are not controlled by the resource owners. Certificates
provide a common, useful security mechanism to overcome
these barriers and set out access rights, but they do not
guarantee that the resources, or users, can be trusted. This
is due to the fact that resources and users may be
unreliable; this situation may not be reflected in the users’
perception of the reliability of the resource owner as a
whole or vice versa. This paper describes a trust
framework model for Grid computing, which enables users
to execute their jobs on reliable and efficient resources,
thereby satisfying clients’ quality-of-service (QoS)
requirements.

Keywords: Grid, Trust, Agents, Security, Resource
Management

1 Introduction
 Grid computing [3] can be seen as a multi-agent
system facilitating the sharing of compute resources,
allowing users to discover and use remote resources. Users
are able to submit jobs to remote resources and typically
have no explicit control over the resources themselves.
Thus, both users and resources can be viewed as
autonomous agents, having control of their own behaviour.
This autonomy gives rise to inherent uncertainty, since an
individual cannot predict how another will respond to
changing situations. In this paper, the notion of trust
provides a mechanism for such agents to manage the risk
from interacting with others who may have different
objectives, or may fail to fulfil their commitments.
 Applying trust to Grid computing is a relatively new
area of research. For example, based on the work of Abdul-
Rahman et al. [1], Azzedin et al. [2] has proposed a trust
framework to monitor security overheads and improve
scheduling. Hui et al. [6] use the notion of “mission-aware”
trust models, which take into account the cost of
performing allocated tasks. However, trust has not been
used to add negotiation and monitoring in a Grid
environment, as is proposed in this paper.

 We investigate the effectiveness of using trust to
manage interactions in a Grid computing context.
Furthermore, we describe a trust framework for Grid
computing and explore a range of trusting dispositions.
Finally, we describe a simulated Grid environment
showing how users can choose to execute their jobs on
reliable resources, and how resources can be utilised in an
efficient way.

2 Trusting Agents
 The environment is a multi-agent system comprising
two fundamental types of agent: resource agents and user
agents. The former corresponds to the resources that are
available and the second corresponds to the users who are
interested in utilising these resources. The physical entities
onto which these logical resources can be mapped are any
processing power, data storage, software, or any
component which can be accessed and utilised over a
network. Examples of typical Grid resources include
telescopes, large databases, supercomputers and pools of
desktop computers. Moreover, the classes of users are
varied and examples include students, scientists, academics
and corporate employees. In addition to user and resource
agents, the multi-agent system includes negotiating agents
to broker interactions between users and resources. A
definition of these agents and their separate, yet
interdependent roles, is given below:

• User Agents The goal of the user agents is to use
the resources that are available to them, whilst
meeting the requirements of the user and adhering
to acceptable trust limits. User agents respond to
requests for a particular resource usage. For
example, a user may make a request to access a
database that is situated in a remote location. The
user agent will then need to find an appropriate
resource.

• Resource Agents The agents which offer resource
access have the goal of ensuring that the resources
under their management are utilised to their
maximum capacity, whilst keeping within their
own trust limits. The resource agents not only
process current requests, but they are also able to
reserve resources for future usage. For example, a

user may wish to access a telescope immediately
and may also want to reserve the usage of a
database for a later time.

• Negotiating Agents Both user agents and resource
agents have their own trusting dispositions and
may trust other agents differently from their peers.
Before user and resource agents can cooperate, the
requirements of both have to be analysed and met.
This is achieved by a mediating negotiation agent,
which takes the requirements of a user agent and
finds a suitable match for collaboration. Each user
agent has its own negotiation agent who performs
all the mediations for them. For example, a user
agent may wish to find a suitable supercomputer
for its user. However, there could be many
available matching resources with different
constraints and costs. The negotiating agent would
then match the user requirements with the
availability and characteristics of appropriate
resources

2.1 Trust
 As agents encounter each other, they may choose to
interact. During this interaction, there is an associated
degree of risk, which is inherent. The interaction could
involve parties who have little or no prior experience of
performing transactions with one another; therefore the
potential outcome cannot be foreseen. The use of trust in
such scenarios, where uncertainty is prevalent, can help
assess the associated risk involved for the interaction to
take place [7].
 In this work, trust T in an agent α, based on Marsh’s
formalism [7] and the work of Griffiths [5], is represented
using a value in the interval between 0 and 1: Tα ∈ [0,1].
As this value approaches 0, the agent becomes increasingly
distrusting and conversely, as it approaches 1 the agent has
complete or blind trust. The value represents the view of an
individual agent and cannot be directly compared with that
of other agents due to its subjectivity.
 Trust is initially set to a value according to the agent’s
disposition. This disposition determines both the initial
value that trust takes and how trust is altered after an
interaction with another agent. When the initial trust is
represented by a low value, then the agent can be
considered to be pessimistic, whilst conversely higher
values represent optimism.

3 Agent Trust Framework

3.1 Adaptive Functions

 As an agent encounters new experiences E with a
particular agent α, its trust of that agent Tα is adjusted
accordingly. An experience is represented as a tuple
E(S,EO), where the experience is the result of an outcome

EO from a particular situation S. The situation can be any
goal that the agent wishes to accomplish and the impact of
the situation will be determined by the outcome. For
example, if a resource fails 1 s before a request is
completed, the impact for a 1 min duration request will be
less than one which takes 1 week of execution. If the
experience is considered to be negative, then a degrading
function ƒd is applied to trust. Conversely, for positive
experiences, an increasing function ƒi is applied. These
functions use past experiences and the current trust value to
calculate the trust change. Past experience is taken into
account by using a sliding window of experiences, the size
of which varies according to an individual agent. The value
by which the function changes trust is also be affected by
the disposition of the agent. For example, optimistic agents
will use an ƒi which will increase trust by a higher value
than a pessimist.
 Over time, trust values relating to past experiences
will become inaccurate and outdated. A decay function ƒγ
is applied to converge the trust value to the initial value as
set by the agent. This is applied regardless of whether the
ascribed trust value represents distrust or trust; thus the
positive effect of successful interactions on trust will
reduce over time, as will the negative effect of
unsuccessful interactions.
 Each of these functions for manipulating trust can be
defined by each individual agent. Equation 1 illustrates an
example for the increasing function which is used in the
scenario described in Section 4. Here, ƒi is defined as the
product of the current trust disposition and the entity’s
overall feeling of trust. The current view is come about by
analysing and weighting all the conditions C set out before
the cooperation and seeing whether the outcome O for each
of the conditions was considered acceptable AO; then the
mean average is taken. The overall trust Toverall is a
weighted value, which uses the set of past experiences
Tprevious and the entity’s disposition Tdisposition.

 overallcurrenti TTf ×= (1)

n

OAOCWT
T

n

i
iii

current

∑
== 1

,))((
 (2)

)},({ ndispositiopreviousoverall TTWTT = (3)

3.2 Negotiating Usage
 As the sharing of resources involves a degree of risk,
a mediating agent called a negotiator is used during the
allocation process. The purpose of the negotiator is to
match potential resources with the requests that are
submitted to the user agent. For example, a request could
be put forward for the use of data storage in a known
location, but the user may not know the exact storage

capabilities. Furthermore, it is possible that the user will
not know where to locate such storage in the first instance.
For the process to be efficient and consistent each time, a
standardised negotiation mechanism is essential. It is
crucial that user and resource constraints are stated clearly
and unambiguously to avoid problematic situations.
 A contract net [8] is based on the principle of contract
tendering and is a possible solution for problem solving.
Contracts are tendered using networks of communicating
problem solvers; in this case the problem solvers are the
resource providers. The steps involved when using a
contract net are summarised in Figure 1. The process is
started by the submission of a user request for resource
usage by a user agent to a negotiating agent.

Contract Net

(a) Announce
(b) Bid

(c)
Award

Figure 1: Contract Net

 The negotiator inspects the request and sends out a
request for tenders from the resource agents in its vicinity.
The request would contain details about the resource
needed and any constraints involved. For example, the
request could be for general machine usage for a specific
architecture. When a collection of tenders has been
received or too much time has passed, the negotiator can
select and award the contract to the most appealing
resource agent. The contract terms are originally set out by
the users as they expect a certain quality-of-service (QoS)
when utilising resources and services, especially as they
can be used at a financial cost. The terms are written out as
conditions, as described in Section 3.1, where C is a
condition which has an acceptable outcome, AO. The
acceptable outcome AO can be a range of values to allow
the negotiator to have a degree of flexibility when creating
terms for resource usage or conversely be strictly defined;
for example a resource may have to guarantee that a certain
amount of physical memory is available.
 The successful bid will also have a set of conditions
applied, which may match those of the user agent to satisfy
the potential contract, but may also set out extra conditions.
These will clearly define all elements of the contract and

protect its own QoS so as not to impact on other clients.
For example, it may be the case that memory is also an
important factor for other clients who are using the
resource at the same time, so the user would have to take
this into consideration when selecting the required
resource.
 Finally, trusting the party involved will determine the
final outcome. Resource agents will not offer their services
to users with whom they have had undesirable transactions
in the past. A resource may offer the perfect solution for
the user; however, it could have failed in the majority of
occurrences in the past. Moreover, the user may turn down
a contract if the selected resource is distrusted or may
lessen the constraints set in the contract to use a more
trusted resource. The process is summarised in Figure 2.

1. User agent receives a request from its and contacts
a negotiator

2. Negotiator creates a contract using request
conditions Cx

3. Request for tenders is sent to neighbouring
resource agents

4. Resource agents fine tune and add their own
conditions Cy, and make bids

5. Tenders are received, matched and selected

6. Finally, the contract is awarded to the resource
agent, which can be trusted and where all
conditions Cn are satisfactory

Figure 2: Negotiation Process

4 Scenario: Grid Computing
 In the following section, the Grid [3, 4] is used as an
example scenario, where the process of acquiring and
utilising resources can be viewed as a multi-agent system.
The framework proposed in Section 3 has been developed
and its reliability tested; the approach and experimental
results follow. The scenario chosen is that of a Campus
Grid [9] which enables multiple projects or departments to
share computing resources in a cooperative way. Campus
Grids may also consist of local and dispersed workstations
and servers, in departments or across the university. In this
example, resources could include workstations, clusters
and supercomputers, which are networked and publicly
accessible.

4.1 Experimentation
 To test the validity of our approach, a series of
experiments were performed. A range of agents with
differing dispositions were used: optimistic agents inferred

high trust values from their experiences, and pessimistic
agents who inferred low values. Interactions were
generated by user agents randomly requesting access to
resources. A negotiation agent was used on behalf of the
user agent to find a suitable resource. Once the negotiation
process was completed, the resource could be utilised.
After each interaction agents’ trust values were updated.
The experiments explored the different situations that may
occur with different sets of user agents: a high proportion
of optimistic agents, a high proportion of pessimistic agents
and a balanced collection of user agents. This was achieved
using a large set of requests (3000) and with trust being
used by the following groups:

• none of the agents, therefore the level of
satisfaction with each experience was not taken
into account;

• the user multi-agent system solely;

• all agents with a low rate of deception by the user
agents;

• all agents with a higher rate of deception.

4.2 Experimental Results
 Figure 3 is an illustrative trace of the evolution of
trust for a group of six different types of user agent. Each
line represents the overall trust achieved as the user agent
gained experience. Agents 1 through 3 are pessimists,
agent 4 is cautious, agent 5 is highly optimistic in positive
situations, yet cautious in negative ones. Finally, agent 6 is
cautious in positive situations and slightly cautious in
negative ones. The trace shows that the overall disposition
for all the agents was negative. This can be explained as
the resources used had a high failure rate. The graph
demonstrates that agent 4, who was cautious, had a more
realistic view of the actual system. The highly pessimistic
agents, especially 1 and 2, found it difficult to trust other
agents in any way, as they both encountered continuous
adverse experiences. Even with such a high failure rate, the
user agents saw a 2% increase in their number of positive
experiences when using trust.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

Tr
us

t V
al

ue

Number of Experiences

User Agent 1
User Agent 2

User Agent 3
User Agent 4

User Agent 5
User Agent 6

Figure 3: Trust Change using Unreliable Resources

 A similar trend can be seen in Figure 4, though in this
instance the resources were on average 30% more reliable.
This reliability saw the number of jobs completing rise
approximately from 56% in the results shown in Figure 3
to over 65% in Figure 4. The improvement in reliability
can be seen from the graph, as agents 4 and 5 managed to
gain positive trust for a larger continuous number of
experiences. In fact, the rate of change towards distrust is
reduced for all the agents. As in the previous scenario, the
number of positive experiences per agent increased, this
time by an average of 5%. This continuous increase in the
number of positive experiences can be attributed to the fact
that by using trust, the user agents began to distrust the
unreliable resource agents they were cooperating with and
consequently looked for alternatives. The resources that
were then utilised might not have been as satisfactory or
attractive as their predecessors, but were not distrusted at
this point. Therefore, as some of the resources were more
reliable to some extent, the number of positive experiences
increased.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

Tr
us

t V
al

ue

Number of Experiences

User Agent 1
User Agent 2

User Agent 3
User Agent 4

User Agent 5
User Agent 6

Figure 4: Trust Change using Resources with Improved
reliability

 Figures 5 and 6 show traces for when the resource
agents were more reliable than the user agents; in Figure 6
the users were 10% more reliable. The increase in
reliability can be seen in Figure 6, where the majority of
agents show an increase in the average number of positive
experiences. In both traces it can be seen that user agent 4,
who was the most cautious again had the most stable trace
and the most positive experiences. Even though the peers
utilising the same resources as agent 4 were unreliable, the
resource agents themselves were using trust. This meant
that unreliable users were filtered out and this allowed
agent 4 to utilise the resources freely. It can also been
observed that the resource agents, at least for the first 50
experiences for each agent, was trusted. This behaviour can
be attributed to the fact that resources were not heavily
loaded in the early stages as users built trust around all
those which were available.

 As the users gained experience, the number of
resources they were utilising decreased. At this stage, user
error became amplified and they were unable to deal with
the increased unreliability. Therefore, after 50 experiences,
the pessimistic user agents started to see a sharp increase in
negative experiences.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

Tr
us

t V
al

ue

Number of Experiences

User Agent 1
User Agent 2

User Agent 3
User Agent 4

User Agent 5
User Agent 6

Figure 5: Trust Change for Unreliable User Agents

 The number of jobs completed for the set of resources
used for a typical set of resources is shown in Figure 7 and
the contrary is shown in Figure 8. The average failure rate
in both charts is approximately 50%. Resource agent 2
offered excellent resources with little constraint. However,
as can been see in Figure 7, the failure rate was high. The
general failure rate for all the resources was high in this
experiment and the agents, when using trust, still found
failure with the alternative resources. Additionally, the
number of jobs submitted to each resource agent rose by an
average of 25% when trust was utilised showing the user
agents were avoiding the distrusted resource agent 2.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

Tr
us

t V
al

ue

Number of Experiences

User Agent 1
User Agent 2

User Agent 3
User Agent 4

User Agent 5
User Agent 6

Figure 6: Trust Change for User Agents with Improved
reliability

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6
Resource Agent

N
um

be
r o

f J
ob

s

Total Jobs Complete Total Jobs Failed

Figure 7: Completed Jobs with no Trust Model

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6
Resource Agent

N
um

be
r o

f J
ob

s

Total Jobs Complete Total Jobs Failed

Figure 8: Completed Jobs with Trust Model

The experiments were repeated to give 9 sets of results as
shown in Figure 9. Agents with differing dispositions were
used where trust model A used a mixture of agents; trust
model B used a set of pessimists and trust model C used
optimistic agents. Furthermore, three levels of reliability
were introduced from 1 through 3 where 1 used an
unreliable agent system, 2 involved an average set of
agents and the agents used in 3 were quite reliable. The
chart shows that the trust model performed at its best when
the system was reliable and the agents were optimistic. In
this case, the increase in reliability was approximately
18%. However, in one of the nine cases, the trust model
caused the number of positive experiences to drop by 4%,
though this was due to the fact that as the agents were
pessimists, they were not building any useful relationships.

100

120

140

160

180

200

220

240

260

280

300

 A1 A2 A3 B1 B2 B3 C1 C2 C3
Trust Model

A
ve

ra
ge

 P
os

iti
ve

 E
xp

er
ie

nc
es

Without Trust With Trust

Figure 9: Model Overview

5 Conclusions and Future Work
 In this paper, we have presented a trust framework,
which uses trust to add reliability and performance to Grid
computing. This allows users to dependably utilise those
resources with increased chances of favourable usage. The
results presented have demonstrated that by using trust
models in multi-agent systems in the Grid computing
context, a tangible benefit can be achieved by both the
users and the resources. Moreover, albeit the number of
positive experiences achieved by each user agent was not
always significant, the resource agents were able to
complete more jobs. Furthermore, the average number of
jobs received by each resource agent increased, which
increased throughput. Nevertheless, the negative effect of
distributing requests, is that the chance of receiving an
unreliable request increased and therefore the likelihood of
failure, which impacts all other peers. In our current work,
we are investigating in further detail how different groups
of conditions set in a contract can have differing effects on
the agent system when they are not satisfied, and
increasing the dynamism for the change in these conditions
based on past experience. Finally, the framework is being
developed further to allow for integration with the
middleware in the High Performance Systems Group at the
University of Warwick.

Acknowledgements
 This work is sponsored by funding from the EPSRC
e-Science Core Programme (contract no. GRS0305801).

References
[1] A. Abdul-Rahman and S. Hailes. Supporting trust in
virtual communities. In Proc. of 33rd Hawaii International
Conference on System Sciences, pages 1769–1777, 2000.

[2] F. Azzedin and M. Maheswaran. Towards trust-aware
resource management in grid computing systems. In Proc.
of First IEEE International Workshop on Security and
Grid Computing, pages 452–457, 2002.

[3] I. Foster and C. Kesselman (Editors). The Grid:
Blueprint for a New Computing Infrastructure. Morgan
Kaufmann, San Fransisco, 1999.

[4] I. Foster, C. Kesselman, and S. Tuecke. The anatomy
of the grid: Enabling scalable virtual organizations.
International Journal of Supercomputer Applications,
15(3):200-222, 2001.

[5] N. Griffiths and M. Luck. Coalition formation
through motivation and trust. In Proc. of the Second
International Joint Conference on Autonomous Agents and
Multiagent Systems 2003 (AAMAS’03), pages 17–24,
Melbourne, Australia, 2003.

[6] L. Hui, P. Qinke, S. Junyi, and H. Baosheng. A
mission-aware behavior trust model for grid computing
systems. In Proc. of International Workshop on Grid and
Cooperative Computing 2002 (GCC2002), 2002.

[7] S. Marsh. Formalising Trust as a Computational
Concept. PhD thesis, University of Sterling, 1994.

[8] R. G. Smith. The contract net protocol. IEEE
Transactions on Computers, 29(12):1104-1113, 1980.

[9] Sun Microsystems Inc. Grid Technology Overview.
http://www.sun.com/software/grid/overview.html, accessed
June 2004.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

	01: 3187
	02: 3188
	03: 3189
	04: 3190
	05: 3191
	06: 3192

