
A CUDA implementation of the High
Performance Conjugate Gradient benchmark

Everett Phillips and Massimiliano Fatica

NVIDIA Corporation
Santa Clara, CA 95050, USA

Abstract. The High Performance Conjugate Gradient (HPCG) bench-
mark has been recently proposed as a complement to the High Perfor-
mance Linpack (HPL) benchmark currently used to rank supercomput-
ers in the Top500 list. This new benchmark solves a large sparse linear
system using a multigrid preconditioned conjugate gradient (PCG) al-
gorithm. The PCG algorithm contains the computational and communi-
cation patterns prevalent in the numerical solution of partial differential
equations and is designed to better represent modern application work-
loads which rely more heavily on memory system and network perfor-
mance than HPL. GPU accelerated supercomputers have proved to be
very effective, especially with regard to power efficiency, for accelerating
compute intensive applications like HPL. This paper will present the de-
tails of a CUDA implementation of HPCG, and the results obtained at
full scale on the largest GPU supercomputers available: the Cray XK7
at ORNL and the Cray XC30 at CSCS. The results indicate that GPU
accelerated supercomputers are also very effective for this type of work-
load.

1 Introduction

After twenty years of the High Performance Linpack (HPL) benchmark, it is
now time to complement this benchmark with a new one that can stress dif-
ferent components in a supercomputer. HPL solves a dense linear system using
Gaussian Elimination with partial pivoting, and its performance is directly cor-
related with dense matrix-matrix multiplication. While there are applications
with similar workload (material science codes like DCA++ or WL-LSMS, both
winners of the Gordon Bell awards), the vast majority of applications cannot be
recast in terms of dense linear algebra and their performance poorly correlates
with the performance of HPL.

In 2013, Dongarra and Heroux [1] proposed a new benchmark designed to
better represent modern application workloads that rely more heavily on memory
system and network performance than HPL. The new benchmark, HPCG, solves
a large sparse linear system using an iterative method. It is an evolution of one
of the Mantevo Project applications from Sandia [12]. The Mantevo Project was
an effort to provide open-source software packages for the analysis, prediction
and improvement of high performance computing applications. This is not the

first time that a new benchmark has been proposed to replace or augment the
Top 500 list. The HPCC benchmark suite [2] and the Graph 500 benchmark [4]
are two well known proposals, but up to now the uptake has been limited. Graph
500 after 4 years is still listing only 160 systems.

This paper presents a CUDA implementation of HPCG and the results on
large supercomputers. Although we use CUDA, the algorithms and methods are
applicable in general on highly parallel processors. The paper is organized as
follows: after a short introduction to CUDA, we describe the algorithmic details
of HPCG. A description of the CUDA implementation and optimization is then
given, followed by a section on results and comparison with available data.

2 GPU Computing and CUDA

The use of GPUs in high performance computing, sometimes referred to as GPU
computing, is becoming very popular due to the high computational power and
high memory bandwidth of these devices coupled with the availability of high
level programming languages.

CUDA is an entire computing platform for C/C++/Fortran on the GPU. Us-
ing high-level languages, GPU-accelerated applications run the sequential part of
their workload on the CPU - which is optimized for single-threaded performance
- while accelerating parallel processing on the GPU.

CUDA follows the data-parallel model of computation. Typically each thread
executes the same operation on different elements of the data in parallel. Threads
are organized into a 1D, 2D or 3D grid of thread-blocks. Each block can be 1D,
2D or 3D in shape, and can consist of up to 1024 threads on current hardware.
Threads within a thread block can cooperate via lightweight synchronization
primitives and a high-speed on-chip shared memory cache.

Kernel invocations in CUDA are asynchronous, so it is possible to run CPU
and GPU in parallel. Data movement can also be overlapped with computations
and GPU can DMA directly from page-locked host memory. There are also a
large number of libraries, from linear algebra to random number generation. Two
libraries that are particularly relevant to this benchmark are CUBLAS [8] and
CUSPARSE [9], that implement linear algebra operations on dense or sparse
matrices. In the benchmark, we also used Thrust [10], a C++ template library
for CUDA based on the Standard Template Library (STL), to sort and find
unique values.

3 HPCG

The new HPCG benchmark is based on an additive Schwarz Preconditioned
Conjugate Gradient (PCG) algorithm [3].
The benchmark has 8 distinct phases:

1. Problem and Preconditioner setups
2. Optimization phase

3. Validation testing

4. Reference sparse Matrix-vector multiply and Gauss-Seidel kernel timings

5. Reference PCG timing and residual reduction

6. Optimized PCG setup

7. Optimized PCG timing and analysis

8. Report results

During the initial setup, data structures are allocated and the sparse matrix
is generated. The sparse linear system used in HPCG is based on a simple elliptic
partial differential equation discretized with a 27-point stencil on a regular 3D
grid. Each processor is responsible for a subset of matrix rows corresponding to a
local domain of size Nx×Ny ×Nz, chosen by the user in the hpcg.dat input file.
The number of processors is automatically detected at runtime, and decomposed
into Px × Py × Pz, where P = PxPyPz is the total number of processors. This
creates a global domain Gx × Gy × Gz, where Gx = PxNx, Gy = PyNy, and
Gz = PzNz. Although the matrix has a simple structure, it is only intended to
facilitate the problem setup and validation of the solution, and may not be taken
advantage of to optimize the solver.

Between the initial setup and validation, the benchmark calls a user-defined
optimization routine, which allows for analysis of the matrix, reordering of the
matrix rows, and transformation of data structures, in order to expose paral-
lelism and improve performance of the SYMGS smoother. This generally requires
reordering matrix rows using graph coloring for performance on highly parallel
processors such as GPUs. However, this introduces a slowdown in the rate of
convergence, which in turn increases the number of iterations required to reach
the solution. The time for these additional iterations, as well as the time for the
optimization routine, is counted against the final performance result.

Next, the benchmark calls the reference PCG solver for 50 iterations and
stores the final residual. The optimized PCG is then executed for one cycle to
find out how many iterations are needed to match the reference residual. Once
the number of iterations is known, the code computes the number of PCG sets
required to fill the entire execution time. The benchmark can complete in a
matter of minutes, but official results submitted to Top500 require a minimum
of one hour duration.

3.1 The PCG algorithm

The PCG algorithm solves a linear system Ax = b given an initial guess x0 with
the following iterations:

Algorithm 1 Preconditioned Conjugate Gradient [13]
1: k = 0
2: Compute the residual r0 = b−Ax0
3: while (||rk|| < ε) do
4: zk =M−1rk
5: k = k + 1
6: if k = 1 then
7: p1 = z0
8: else
9: βk = rTk−1zk−1/r

T
k−2zk−2

10: pk = zk−1 + βkpk−1

11: end if
12: αk = rTk−1zk−1/p

T
kApk

13: xk = xk−1 + αkpk
14: rk = rk−1 − αkApk
15: end while
16: x = xk

We can identify these basic operations:

A. Vector inner products α := yT z. Each MPI process computes its local inner
product and then calls a collective reduction to get the final value.

B. Vector updates w = αy+βz. These are local updates, where performance is
limited by the memory system.

C. Application of the preconditioner w := M−1y, where M−1 is an approxi-
mation to A−1. The preconditioner is an iterative multigrid solver using a
symmetric Gauss-Seidel smoother (SYMGS). Application of SYMGS at each
grid level involves neighborhood communication, followed by local computa-
tion of a forward sweep (update local elements in row order) and backward
sweep (update local elements in reverse row order) of Gauss-Seidel. The or-
dering constraint makes the SYMGS routine difficult to parallelize, and is
the main challenge of the benchmark.

D. Matrix-vector products Ay. This operation requires neighborhood commu-
nication to collect the remote values of y owned by neighbor processors, fol-
lowed by multiplication of the local matrix rows with the input vector. The
pattern of data access is similar to a sweep of SYMGS, however the rows
may be trivially processed in parallel since there are no data dependencies
between rows (the output vector is distinct from the input vector).

All of these are BLAS1 (vector-vector) or BLAS2 (sparse matrix-vector) opera-
tions. We are not able to use BLAS3 operations, such as DGEMM, as we were
able to do for HPL. An important point is that the benchmark is not about
computing a highly accurate solution to this problem, but is only intended to
measure performance of the algorithm.

3.2 Preconditioner

The problem is solved using a domain decomposition where each subdomain is
locally preconditioned. The preconditioner in initial version (v1.x) was based
on a symmetric Gauss-Seidel sweep. The latest version (v2.x) is based on a
multigrid preconditioner where the pre and post smoothers are also a symmetric
Gauss-Seidel sweep.

Gauss-Seidel preconditioner Since the PCG method could be used only on
a symmetric positive definite matrix, the preconditioner must also be symmetric
and positive definite. The matrix M is computed from lower triangular (L),
diagonal (D) and upper triangular (U) parts of A:

MSGS = (D + L)D−1(D + U)

It is easy to verify that this matrix is symmetric and positive definite using the
identity (D+U)T = (D+L). The application of the preconditioner requires the
solution of upper and lower triangular systems.

Multigrid preconditioner The latest version of the benchmark is using a
multigrid preconditioner instead of the simple iterative Gauss-Seidel. An iter-
ative solver like Gauss-Seidel is very effective in damping the high frequency
components of the error, but is not very effective on the low frequency ones. The
idea of the multigrid is to represent the error from the initial grid on a coarser
grid where the low frequency components of the original grid become high fre-
quency components on the coarser one [14]. The multigrid V-cycle includes the
following steps:

A. Perform a number of Gauss-Seidel iterations to smooth the high frequencies
and compute the residual rH = AxH − b, where the superscript H denotes
the grid spacing.

B. Transfer the residual rH on a coarser grid of space 2H. This operation is
often called restriction, and R the restriction matrix.

r2H = RrH

C. Perform a number of Gauss-Seidel iterations to smooth the error on the
coarser grid residual equation

Ae2H = r2H

D. Transfer the correction e2H back on the fine grid of space H. This operation
is often called prolongation, and P the prolongation matrix.

eH = Pe2H

The process can be extended to multiple levels. The HPCG benchmark is
using a V-cycle strategy with 3 coarser levels and performs a single pre- and
post- smoother Gauss-Seidel at each level.

3.3 Selecting node count

HPCG detects the number of MPI tasks at runtime and tries to build a 3D
decomposition. Clearly if the number of tasks, N, is a prime, the only possible 3D
decomposition is N×1×1 (or a permutation). While this is a valid configuration,
it is highly unlikely that a real code would run with such a configuration. We
always try to select a 3D configuration that is as balanced as possible. Since
the jobs on large supercomputers go through a batching system and the number
of available nodes may vary due to down nodes, it is useful to know the best
node count in a certain range. We have extracted the routine internally used
by HPCG and made a standalone program that we use to analyze the possible
decompositions. A simple criterion is to sort N1,N2,N3 and compute the product
of the ratios N_max/N_min and N_mid/N_min. The closer to the unity this
product is, the more balanced the decomposition is.

4 CUDA implementation

The GPU porting strategy is primarily focused on the parallelization of the
Symmetric Gauss-Seidel smoother (SYMGS), which accounts for approximately
two thirds of the benchmark Flops. This function is difficult to parallelize due to
the data dependencies imposed by the ordering of the matrix rows. Although it
is possible to use analysis of the matrix structure to build a dependency graph
which exposes parallelism, we find it is more effective to reorder the rows using
graph coloring.

Our implementation begins with a baseline using CUDA libraries, and pro-
gresses into our final version in the following steps:

A. CUSPARSE (CSR)
B. CUSPARSE + color ordering (CSR)
C. Custom Kernels + color ordering (CSR)
D. Custom Kernels + color ordering (ELL)

4.1 Baseline CUSPARSE

Starting with CUSPARSE has the benefit of keeping the coding effort low, and
hiding the complexity of parallelizing the Symmetric-Gauss-Siedel smoother. It
also allows us to easily validate the results against the reference solution, and
perform experiments with matrix reordering.

With CUSPARSE, we are required to use a compatible matrix data format,
which is based on compressed sparse row (CSR). The matrix elements and col-
umn index arrays must be stored in contiguous memory in row major order. An
additional requirement is a row_start index array which gives the position of
the starting element of each row. By contrast, the matrix format in HPCG uses
arrays of row pointers, with a separate memory allocation for the elements and
column indices for each row. There is also an array which gives the number of
nonzero elements per row.

Additionally, the CUSPARSE triangular solver routine requires elements
within each row to be sorted such that elements with column index smaller
than the diagonal appear before the diagonal, and elements with column index
larger than the diagonal appear after the diagonal. The default matrix format
in HPCG violates this assumption in rows that are on the boundary of the local
domain. In these rows the halo elements (those received from a neighbor pro-
cessor) have column indices larger than the number of rows, but may appear
before the diagonal because the order is inherited from the natural ordering of
the global matrix.

Next, we describe the implementation of the SYMGS smoother, using the
CUSPARSE and CUBLAS library routines. The main computational kernel, the
sparse triangular solve, requires information about the structure of the matrix
in order to expose parallelism. Thus, a pre-processing step is required to ana-
lyze the matrix structure using cusparseDcsrsv_analysis before any calls to
cusparseDcsrsv_solve can be made. The analysis function essentially builds a
task dependency graph that is later used when the solver is called. We must per-
form the analysis for both the upper and lower triangular portions of the matrix.
This analysis phase maps nicely to the optimization phase of the benchmark,
and the time spent here is recorded in the optimization timing.

The following lists the library calls that are made to perform SYMGS:

r <-- rhs cublasDcopy
r <-- r - A*x cusparseDcsrmv (SPMV)
y <-- L*y=r cusparseDcsrsv_solve
y <-- y*D cublasDaxpy
dx <-- U*dx=y cusparseDcsrsv_solve
x <-- x+dx cublasDaxpy

This sequence is not as efficient as the reference algorithm which combines
the SPMV, vector updates, and triangular solves, reducing the number of steps
and the number of times data must be accessed from memory. The WAXPBY
is another example of a function which looses efficiency when implemented with
library calls, in general it requires three calls: cublasDcopy, cublasDscale, and
cublasDaxpy. Other routines are more straightforward using the libraries, Dot-
Product is simply a call to cublasDdot, SPMV is a single call to cusparseDcsrmv.

The only CUDA kernels we wrote for this version, are for the routines which
have irregular access patterns to gather or scatter values based on an index array.
This occurs when gathering elements from the local domain that must be sent
to neighbor processors, and also when performing restriction and prolongation
operators (the coarse grid elements each read or write to a fine grid element
given by the f2c index array).

4.2 Reordering with Graph Coloring

The matrix can be re-ordered based on a multi-coloring where every row is as-
signed a color that is not shared with any rows to which it has a connection.

Parallel algorithms have been developed to solve this problem [19,20]. The basic
idea is to assign a random value to each row, and then designate a color to rows
whose values are local maxima when comparing their random values with con-
nected uncolored rows. The process is repeated, adding a new color in each step.
Although this can be done completely in parallel, several iterations are required
before all rows are assigned a color, and the number of colors is typically sub
optimal (larger than the minimum number of colors which would be computed
using a serial greedy algorithm).

We adopt several improvements proposed by Cohen et al. [21]. Namely, we
replace the random number generation with an on-the-fly hash of the row in-
dex, and each row redundantly computes the hash of all neighbors. This trades
off additional computation in order to avoid storing the hash values and re-
duces memory bandwidth requirements. We also compute two independent sets
of colors in each step, one for local maxima, and another for local minima. The
following code illustrates the basic coloring algorithm where minmax_hash_step
assigns two colors in each iteration, where A_col is the matrix column index
array, and colors is a vector of integers representing the color of each row:

while(colored < rows){
minmax_hash_step<<<>>>(A_col, colors...);
colored += thrust::count(colors, ...);
}

We improve the coloring quality in cases where the number of colors is too
large, by performing a re-coloring. We loop over each original color, from greatest
to smallest, and every row of that color attempts to reassign itself a lower color
not shared with any neighbors. Since all rows of the same color are independent,
we can safely update their colors in parallel. The process could be repeated to
further reduce the color count, but the benefits are reduced with each pass. The
following code snippet shows a single re-coloring pass:

if(max_color > target){
for(color=max_color; color>0; color--)
recolor_step<<<>>>(A_col, colors...);

}

After the coloring is completed, we use the color information to create a per-
mutation vector, which is used to reorder the rows in the matrix according to
their colors. The permutation vector is initialized with the natural order, and
then sorted by key, using colors as the key. The following code snippet shows
the creation of the perm vector using the THRUST sort_by_key routine:

thrust::sort_by_key(colors, colors+rows, perm);

4.3 Custom kernels CSR version

Next, we replace the CUSPARSE calls with our own routines. This allows us
to adopt a more flexible matrix format which simplifies the reordering of the

matrix, and removes the need for sorting of the row elements with respect to
the diagonal. Using the reordered matrix, we can perform the SYMGS sweeps
using the same algorithm as the reference. The following code shows the SYMGS
kernel:

__global__ void smooth(double* A_vals, ...
{
int row_index = threadIdx.x ...
if(row_index < last_row){
double sum = rhs[row_index];
for(i=start_index; i<end_index; i+=stride){
if(A_col[i] != -1)
if(A_col[i] != row_index){
sum += -A_vals[i] * x[A_col[i]];

}else{
diag = A_vals[i];

}
}
x[row_index] = sum/diag;

}
}

The smoother is applied to one color at a time for both the forward and backward
sweeps. The following is the CPU code which calls the smoother kernels:

for(color=0; color<num_colors; color++)
smooth<<<>>>(A_vals, A_col, rhs, x,...);

for(color=num_colors; color>=0; color--)
smooth<<<>>>(A_vals, A_col, rhs, x,...);

4.4 Optimized version

From our experience in the CUDA porting of the Himeno benchmark on clus-
ters with GPUs [17], optimizing memory bandwidth utilization is a key design
element to achieve good performance on codes with low compute intensity (the
ratio between floating point operations and memory accesses). In this case most
of the data access is to the matrix, so we are able to improve the performance
by storing the matrix in the ELLPACK format. This allows matrix elements to
be accessed in a coalesced access pattern.

In addition to the optimized matrix storage format, we also performed several
other optimizations, listed here:

A. SYMGS: removing redundant communications and work
B. SPMV: overlapping communications with computations
C. CG: overlapping MPI_Allreduce with vector update
D. SYMGS + SPMV: using LDG load instructions

SYMGS: removing redundant work The SYMGS routine is called for the
pre-smoother and post-smoother of the multi-grid V-cycle. The initial value of
the solution at each level is set to zero, which allows us to avoid some of the
communications and computations that occur during the first application of
the smoother at each level. The SYMGS smoother routine begins by calling
exchange_halo, which communicates boundary elements of the local matrix
with neighbor processors. Since we know the values are all zeros, we can skip
this communication step. We may also avoid processing the zero elements of the
initial solution vector by restricting the forward sweep to matrix elements below
the diagonal. We use a special smoother kernel for this case that checks if the
column index is lower than the row index by adding if(A_col[i] < row_index)
in the kernel code. We also note that in the CUSPARSE implementation, the
zero values could allow one to skip the SPMV used to construct the residual
(since the right hand side will be equal to the residual in this case), and the
vector update in the last step of SYMGS where the computed delta is added to
the initial solution.

SPMV: overlapping communications with computations The SPMV
routine also begins with a call to exchange_halo, which updates the portion
of the solution that is owned by other processors. However, these points, re-
ferred to as the halo points, are only required for the computation of the rows
that are along the boundary of the local domain. Thus, we can safely split the
computation into two phases, first computing the points which do not require
the boundary, called interior, and next computing those which do require the
boundary, called exterior. In this way we can overlap the computation of the
interior with the halo communications.

The communications involve copying of the boundary data from GPU to
CPU, MPI send/recv with neighbor processes, and copy results back to the
GPU. We overlap the CPU to GPU communication by using cuda streams, with
the copies placed into a different stream than the computation kernels.

While it is possible to use the same matrix structure for both interior and
exterior computations, the efficiency of the exterior is greatly reduced because
there is little locality in the access of the boundary matrix entries. It is more
efficient to use a separate data structure, which only contains the boundary
rows of the matrix, to process the boundary elements. For this purpose we also
construct a boundary row index array which gives the row index of all boundary
rows.

The fastest way to compute the boundary index array is to start with a
copy of the already existing elementsToSend index array, and simply apply
thrust::sort and thrust::unique functions. Then the boundary index array
can be used to copy rows from the original matrix into the much smaller bound-
ary matrix. The overhead of these operations are included in the optimization
phase timing, and represent only a small fraction of the total optimization time.

CG: Overlapping MPI_Allreduce with vector update In the CG algo-
rithm, the solution vector x is never required as an input to any of the steps. So
we may delay the vector update of the solution in order to overlap the update
time with the next dot product MPI_Allreduce() time. This scheme allows one
of the three dot products in the CG solver to overlap with computations.

LDG: read-only cache load instructions The Kepler class of GPUs have a
read-only data cache, which is well suited for reading data with spatial locality
or with irregular access patterns. In previous GPU generations, a programmer
would have to bind memory to texture objects and load data with special texture
instructions to achieve this. However, on Kepler, the GPU cores can access any
data with a new compute instruction called LDG. These special load instructions
may be generated by the compiler provided it can detect that the data is read-
only and no aliasing is occurring. This can be achieved by marking all the pointer
arguments to a kernel with __restrict keywords. Unfortunately, this method
will not always produce the best use of the memory system. For example, in
the SYMGS kernels, the matrix is read-only, but the X vector is both read
and written. Thus, when using __restrict, the compiler will use LDG for the
matrix data, and regular loads for the solution vector. Ironically, the Matrix
data is better suited to regular loads, since there is no data reuse and the access
pattern is coalesced, while the irregular access of the solution vector is better
suited to the read-only cache. By omiting the __restrict keywords, and using
the __ldg() intrinsic for the load of X, we are able to increase performance by
an additional 4%.

5 Results

In this section, we present results for single node and for clusters. The single
node experiments allow us to have a better understanding of the relationship
between HPCG performance and processor floating point and memory band-
width capabilities.

5.1 Comparison of different versions

Before looking at the single node results on different hardware, we compare the
effects of the optimizations applied in the four implementations discussed in the
previous section. Figure 1 shows the timing of the four versions of the code on
a K20X GPU with ECC enabled. As we can see the matrix reordering has the
most relevant effect, since it exposes more parallelism in the SYMGS routine.

Figure 2 shows a detailed timing breakdown for the optimized version on a
single GPU. The SYMGS kernel on all the multigrid levels takes up 55% of the
time, followed by the SPMV kernel with 26%.

0 50 100 150 200 250

OPTIMIZED

 CUSTOM KERNELS

COLOR/REORER

BASELINE CUSPARSE

Time in one CG iteration (ms)

HPCG time comparison (K20X 128^3)

SYMGS SPMV OTHER OPT

Fig. 1. Time comparison between the initial CUSPARSE implementation and the other
custom versions, with 1283 domain, on K20X with ECC enabled

SYMGS-L0

51%

SYMGS-L1

8%

SYMGS-L2

3%

SYMGS-L3

1%

SPMV

31%

WAXPBY

2%

DOT

2%

OPT

2%

Optimized HPCG time (K20X)

Fig. 2. Time distribution for Optimized version with 1283 domain, on K20X with ECC
enabled

5.2 Single node results

Next, we compare the performance on different classes of Kepler GPUs rang-
ing from the smallest CUDA-capable GK20A found in the Tegra K1 mobile
processor, to the highest performing Tesla K40. The Tesla K20X and K40 are
both Kepler based, but they differ in the number of Symmetric Multiprocessors
(SM), the amount of memory (6GB for the K20X vs 12GB for the K40) and the
core/memory clocks (detailed specs are in Table 1). The K40 can also boost the
core clock to 875MHz, which also results in a better memory throughput.

Table 1. Specs of the GPUs and CPU used in the benchmark, with clocks in MHz.

Processor CC # # Cores Core GFLOPS Memory Memory Memory DP Flops
SM SP/DP clock DP/SP clock bus width Bandwidth per Byte

Tegra K1 3.2 1 192/8 852 13.6/327 924 64 bit 14.7 GB/s 0.93
Tesla K10 3.0 8 1536/64 745 95/2289 2500 256 bit 160 GB/s 0.59
Tesla K20X 3.5 14 2688/896 732 1312/3935 2600 384 bit 250 GB/s 5.28
Tesla K40 3.5 15 2880/960 745 1430/4291 3000 384 bit 288 GB/s 4.96
Xeon E5-2697 N/A N/A 12 2700 259/518 1866 256 bit 60 GB/s 4.32

The Compute intensity, or flops/bytes ratio, is a useful metric for deter-
mining whether an application will be bandwidth or floating point limited.
In this case, the workload is dominated by Matrix-Vector operations, where
the compute intensity may be estimated as 2 ∗ nonzerosperrowF lops/(16 +
12 ∗ nonzerosperrow)Bytes = 54/340 = 0.158. This is much lower than the
flop/byte ratios for the hardware given in table 1. Therefore, we can expect per-
formance to be limited much more by memory bandwidth than floating point
throughput capabilities.

Figure 3 shows the scaling of HPCG performance across the GPUs used in
our study. Figure 4 demonstrates the efficiency of our implementation by com-
paring the performance of the SYMGS and SPMV routines with the STREAM
banchmark [16]. We also include the same metrics for an optimized CPU im-
plementation developed by Park and Smelyanskiy [18]. As we can see in figure
5, there is an excellent correlation between the HPCG score and the STREAM
benchmark result.

5.3 Multi node results

The cluster runs were performed on the Titan system at the Oak Ridge National
Laboratory (ORNL) and on the Piz Daint system at the Swiss National Super-
computing Centre (CSCS). They are both Cray systems, but while Titan is a
Cray XK7 based on AMD Opteron and a Gemini network, Piz Daint is a new
Cray XC30 with Intel Xeon and the new Aries network. Titan has 18,688 nodes,

6.2

1.4

10.8

13.5

18.9

23.1
22.1

26.7

0

4

8

12

16

20

24

28

32

E5-2697 v2 GK20A K10 ECC K10 K20X ECC K20X K40 ECC K40

HPCG GFLOP/s COMPARISON

SPMV GF SYMGS GF TOTAL FINAL

Fig. 3. Comparison of HPCG Flop Rate on single GPUs and Xeon E5-2697-v2 12-core
CPU

50

13

104

123

182

209
218

249

0

36

72

108

144

180

216

252

288

E5-2697 v2 GK20A K10 ECC K10 K20X ECC K20X K40 ECC K40

HPCG BANDWIDTH COMPARISON

PEAK SPMV SYMGS STREAM

Fig. 4. Comparison of HPCG Flop Rate and Bandwidth on single GPUs and Xeon
E5-2697-v2 12-core CPU

Fig. 5. Correlation between STREAM and HPCG benchmark results on single GPUs
and E5-2697-v2 12-core CPU

each with a 16-core AMD Opteron processor, 32 GB of system memory and a
6GB NVIDIA K20X GPU. The network uses the Gemini routing and communi-
cations ASICs and a 3D torus network topology. Piz Daint has 5,272 nodes, each
with an Intel Xeon E5 processor, 32 GB of system memory and a 6GB NVIDIA
K20X GPU. The network uses the new Aries routing and communications ASICs
and a dragonfly network topology.

Table 2 shows the performance of the optimized version on a wide range of
nodes, up to the full size machine on Titan and Piz-Daint. The raw number is the
total performance number, before the reduction due to the increased iteration
count caused by the multi-coloring.

Table 2. HPCG Supercomputer Results in GFlops: local grid size 256× 256× 128

Nodes Titan Titan Titan Piz-Daint Piz-Daint Piz-Daint
Raw Final Eff. Raw Final Eff.

1 21.23 20.77 100.0 21.25 20.79 100.0
8 168.3 161.4 99.1 168.8 161.9 99.3
64 1321 1221 97.2 1341 1239 98.6
512 10414 9448 95.8 10719 9904 98.5
2048 42777 38806 98.3
3200 62239 56473 91.6
5265 109089 98972 97.5
8192 158779 144071 91.3
18648 355189 322299 89.7

At full scale, Piz-Daint is reaching 0.098 PF, compared to the 6.2 PF during
HPL. Since we are running very close to peak bandwidth and the code has no
problem scaling up to the full machine, there is not much space left for large
improvements. Even with no coloring overhead, the full machine will deliver
only 0.1PF. Same conclusion holds for Titan, the achieved HPCG performance
of 0.322PF is far away from the sustained 17.59PF during HPL.

In Figure 6, we analyize the communication time on the Titan runs. The dot
products require all_reduce communications, that scale as the logarithm of the
node count. The other communications are instead with neighbors and remain
constant with the number of nodes. The ones in the SPMV phase are completely
overlapped with computations, in the current version the ones in the multigrid
phase are not but the overlapping will be implemented in an upcoming version.

5.4 Comparisons

The first official HPCG ranking was published at the International Supercom-
puting Conference in June 2014 and included 15 supercomputers. All the GPU
supercomputers on the list ran the optimized version described in this paper.
Table 3 summarizes the results of several of the top systems: Thiane-2 is based

0.0

2.0

4.0

6.0

8.0

10.0

12.0

8 32 128 512 2048 8192

P
e

rc
e

n
t

o
v

e
rh

e
a

d

Nodes

Titan Parallel Scaling Overhead

DDOT

SPMV

MG

Total

18648

Fig. 6. Scaling overhead on Titan.

on Xeon Phi processors (currently number one in the Top500 list), K is a CPU-
only system based on Sparc64 Processors. Instead of looking at the peak flops
of these machines, we evaluate the efficiency based on the ratio of the HPCG
result to the memory bandwidth of the processors.

Table 3. HPCG Supercomputer Results Comparison

HPCG System HPCG Itera- #Procs Processor HPCG Bandwidth Efficiency
Rank GFLOPS tions Type Per Proc Per Proc FLOP/BYTE
1 Tianhe-2 580,109 57 46,080 Xeon-Phi-31S1P 12.59 GF 320 GB/s 0.039
2 K 426,972 51 82,944 Sparc64-viiifx 5.15 GF 64 GB/s 0.080
3 Titan 322,321 55 18,648 Tesla-K20X+ECC 17.28 GF 250 GB/s 0.069
5 Piz-Daint 98,979 55 5,208 Tesla-K20X+ECC 19.01 GF 250 GB/s 0.076
8 HPC2 49,145 54 2,610 Tesla-K20X+ECC 18.83 GF 250 GB/s 0.075

HPC2 60,642 54 2,600 Tesla-K20X 23.32 GF 250 GB/s 0.093

The efficiency of the GPU implementation is comparable to the one of K and
the performance per processor is noticeably higher.

6 Conclusion and future plans

The results in the paper show that GPU accelerated clusters perform very well
in the new HPCG benchmark. Our results are the fastest per processor ever re-

ported. GPUs, with their excellent floating point performance and high memory
bandwidth, are very well-suited to tackle workloads dominated by floating point,
like HPL, as well as those dominated by memory bandwidth, like HPCG.

The current implementation is all on the GPUs, but since the CPUs could
give a significant contribution, we are investigating a hybrid scheme where both
CPU and GPU are used together.

7 Acknowledgments

This research used resources of the Oak Ridge Leadership Computing Facility at
the Oak Ridge National Laboratory, which is supported by the Office of Science
of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.
We wish to thank Buddy Bland, Jack Wells and Don Maxwell of Oak Ridge
National Laboratory for their support. This work was also supported by a grant
from the Swiss National Supercomputing Centre (CSCS) under project ID g33.
We also want to acknowledged the support from Gilles Fourestey and Thomas
Schulthess at CSCS. We wish to thank Lung Scheng Chien and Jonathan Cohen
at NVIDIA for relevant discussions.

References

1. Jack Dongarra and Michael A. Heroux ,“Toward a New Metric for Ranking High
Performance Computing Systems", Sandia Report SAND2013-4744 (2013).

2. Jack Dongarra, Piotr Luszczek, “Introduction to the HPC Challenge Benchmark
Suite”, ICL Technical Report, ICL-UT-05-01, (Also appears as CS Dept. Tech
Report UT-CS-05-544), (2005).

3. Michael A. Heroux, Jack Dongarra and Piotr Luszczek,“HPCG Technical Specifi-
cation", Sandia Report SAND2013-8752 (2013).

4. Graph 500, http://www.graph500.org
5. Green 500, http://www.green500.org
6. CUDA Toolkit, http://developer.nvidia.com/cuda-toolkit
7. CUDA Fortran, http://www.pgroup.com/resources/cudafortran.htm
8. CUBLAS Library, http://docs.nvidia.com/cuda/cublas
9. CUSPARSE Library, http://docs.nvidia.com/cuda/cusparse
10. THRUST Library, http://docs.nvidia.com/cuda/thrust
11. http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-

application-profile-timelines-nvtx/
12. Richard F. Barrett, Michael A. Heroux, Paul T. Lin, Courtenay T. Vaughan, and

Alan B. Williams. “Poster: mini-applications: vehicles for co-design.”, in Proceed-
ings of the 2011 Companion on High Performance Computing Networking, Storage
and Analysis Companion (SC ’11 Companion). ACM, New York, NY, USA, 1-2
(2011)

13. Gene H. Golub, Charles F. Van Loan,“ Matrix Computations”,John Hopkins Uni-
versity Press, Third Edition, (1996)

14. William L. Briggs, Van Emden Henson, Steve F. McCormick,“A Multigrid Tuto-
rial”, SIAM, (2000)

15. Green 500: Energy Efficient HPC System Workloads Power Measurement Method-
ology,(2013)

16. John D. McCalpin, “Memory Bandwidth and Machine Balance in Current High
Performance Computers”, IEEE Computer Society Technical Committee on Com-
puter Architecture (TCCA) Newsletter, December 1995.

17. Everett H. Phillips, Massimiliano Fatica, “Implementing the Himeno benchmark
with CUDA on GPU clusters," IPDPS, pp.1-10, 2010 IEEE International Sympo-
sium on Parallel & Distributed Processing, (2010)

18. Jongsoo Park and Mikhail Smelyanskiy, “Optimizing Gauss-Seidel Smoother in
HPCG”, ASCR HPCG Workshop, Bethesda MD, March 25 2014

19. Michael Luby, “A simple parallel algorithm for the maximal independent set prob-
lem," SIAM Journal on Computing, (1986)

20. Mark T. Jones and Paul E. Plassmann, “A parallel Graph Coloring Heuristic,"
SIAM J. SCI. COMPUT., Vol 14, pp.654–669, (1992)

21. Jonathan Cohen and Patrice Castonguay, “Efficient Graph Matching and
Coloring on the GPU," GPU Technology Conference, San Jose CA, May
14-17 2012, http://on-demand.gputechconf.com/gtc/2012/presentations/S0332-
Efficient-Graph-Matching-and-Coloring-on-GPUs.pdf

