
Race Conditions in Message Sequence Charts

Chien-An Chen, Sara Kalvala, and Jane Sinclair

Department of Computer Science,
University of Warwick,
Coventry CV4 7AL, UK

{cssdc, sk, jane}@dcs.warwick.ac.uk

Abstract. Message Sequence Charts (MSCs) are a graphical language
for the description of scenarios in terms of message exchanges between
communicating components in a distributed environment. The language
has been standardised by the ITU and given a formal semantics by means
of a process algebra. In this paper, we review a design anomaly, called
race condition, in an MSC specification and argue that the current so-
lution correcting race conditions is too weak when implementation is
considered. In this paper, we provide an algorithm on partial orders as
our solution. The result is a strengthened partial order, which is race-free
and remains race-free in the implementation.

1 Introduction

Message Sequence Charts (MSCs) [12] are a trace language, describing scenarios
where messages are exchanged between communicating entities in a distributed
environment. The language was designed to supplement SDL [18] by provid-
ing a graphical representation of behavioural aspects in an SDL specification.
The formalism has been recommended as a standard by the ITU (International
Telecommunication Union). During the last decade, it has evolved incremen-
tally from a plain message exchange diagram to a multi-layered documentation
methodology with rich constructs. Due to their readability and tool support,
MSCs have become a specification language in their own right and have been
enjoying a widespread use in specifying telecommunication protocols and reactive
systems, particularly system requirements during early stages of development.

In addition to their industrial popularity, MSCs have been drawing much at-
tention from researchers. Attempts at a formal semantics of MSCs have emerged
since MSC’92 [6]. Various approaches have been adopted for this task, such as
automata theory [13,14], Petri Nets [10], streams [5] and process algebra [7,9,15].
Synthesising system models or behavioural models from MSC scenarios is also
an active topic [1,19,20]. MSC specifications can be syntactically analysed for
a variety of design anomalies, such as deadlocks, race conditions [2], process
divergence and non-local branching choices [3].

In this paper, we are concerned only with race conditions and their solutions.
The semantics of an MSC used here, called causal ordering, is actually a partial
order characterising execution traces on communication events. A race condition

K. Yi (Ed.): APLAS 2005, LNCS 3780, pp. 195–211, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

196 C.-A. Chen, S. Kalvala, and J. Sinclair

refers to an inconsistency between the causal ordering specified in an MSC and
the ordering that may occur in practice. The current solution [16] to correcting
race conditions asserts that given a causal ordering there exists a unique race-free
partial order that is a minimal weakening of the causal ordering. Dually, there
also exists a unique race-free partial order that is a minimal strengthening of the
causal ordering. Both partial orders have syntactically legal MSCs to match.

Here we focus on the strengthening counterpart of a causal ordering. We
have observed that if enforcing the strengthened ordering properties by adding
extra messages as acknowledgements, new race conditions may occur. In this
situation, more acknowledgement messages are required, so that a simple MSC
diagram can be flooded with unnecessary messages and becomes hard to read
and analyse. Such an observation motivates our work. In this paper, we propose
an algorithm on partial orders as the solution. In addition, justification on the
algorithm is also provided before we implement the approach for tool-support.
The result of our work shows that for a causal ordering, there exists a minimally
strengthened partial order, that is race-free and remains race-free when acknowl-
edgement messages are added to enforce the strengthened ordering properties.
Our approach enables specifiers to illustrate explicitly more design details in an
MSC scenario without the risk of race conditions. Although we use MSCs as the
central language in this paper, our approach can be applied to other languages
with partial-order semantics, e.g. UML Sequence Diagrams [4] and LSCs [8].

This paper is organised as follows. Section 2 gives an overview of the MSC
language we use in this paper and its semantics. The concept of race conditions
and the current solutions are also introduced. In section 3, we present the remain-
ing problems which motivate our work; in section 4, we propose an approach to
correcting race conditions without introducing new ones when acknowledgement
messages are added. Conclusions are presented in section 5. Familiarity with the
theories of relations and partial orders is presumed.

2 Preliminary

2.1 Message Sequence Charts

A basic MSC (bMSC) is a building block for an MSC document. As can be seen
in Fig.1(a), MSC1 contains three instances (or processes), namely P1, P2 and
P3, denoted by vertical axes. Three messages, a, b and c, denoted by arrows, are
exchanged between those instances. The frame around the diagram represents
the environment. MSC1 intuitively describes a scenario where P1 sends message
a to P2; after receiving, P2 sends messages b and c to P3 and P1 respectively.

A temporal ordering is defined along each vertical axis and horizontal arrow in
the sense that (1) the events along an instance axis proceed from top to bottom,
and (2) a message must be sent before it is received. In the bMSC convention,
it is assumed that the communication medium between distributed processes is
reliable, i.e. no message gets lost. Furthermore, the setting of a bMSC is assumed
to be of asynchronous communication. Hence in MSC1 of Fig.1(a), the order of
receiving b and c is undefined. The ordering properties can be strengthened

Race Conditions in Message Sequence Charts 197

by a general ordering construct, denoted by a dashed line with an arrowhead
in the middle. A general ordering symbol is attached to the events that need
to be ordered. As illustrated in MSC2 of Fig.1(b), the general ordering adds a
constraint that receiving c has to occur after receiving b.

The core subset of bMSCs we use is described in the ITU-standard [12]. Our
definition is in a similar style to those that can be found in the early MSC-related
work, e.g. [1,2]. The bMSC notation used in this paper is defined as follows.

�� �� ��

�

�

�

��� ����

�� �� ��

�

�

�

��� ����

Fig. 1. (a)A bMSC diagram (b)A bMSC with a general ordering

Definition 1. A bMSC is defined as a tuple 〈P ,M,msg,O, <C 〉 where:

– P is a finite set of instances, i.e. P = {Pi | i ∈ 1..n}.
– M is a finite set of message names. A set Σ for all the events in a bMSC

can be derived accordingly as Σ = Σout ∪ Σin where Σout = {!aij | i , j ∈
1..n ∧ a ∈ M} and Σin = {?aij | i , j ∈ 1..n ∧ a ∈ M}. The label !aij

denotes an output event that the instance Pi sends a message ‘a’ to Pj , and
similarly an input event ?aij means Pj receives a message ‘a’ from Pi.

– msg : Σout → Σin is a bijection matching each output event to its corre-
sponding input event, i.e. msg = {x ∈ M, i , j ∈ 1..n •!xij �→?xij }.

– O : P(Σ×Σ) is a relation on Σ, recording the constraint of general orderings
in a bMSC. For a pair x �→ y : Σ ×Σ, x �→ y ∈ O if and only if there exists
a general ordering symbol from x to y.

– <C : P(Σ×Σ) is a partial order on Σ. For each Pi ∈ P, an adjacency relation
<i denotes the top-to-bottom temporal ordering of the events occurring on
Pi. The partial order <C is the transitive closure of the relation �C defined
as

�C =
⋃

i:1..n

<i ∪ msg ∪O.

The partial order <C is also known as the causal ordering, which can be under-
stood as a visual order displayed in a bMSC diagram. The semantics of a bMSC
specifically refers to its causal ordering. Unless specified otherwise, the partial
orders in this paper are strict in the sense that they are anti-reflexive. Also note
that the subscripts of the event labels, recording the origin and destination of a
message, are of no importance here and therefore can be ignored. For a message
x ∈ M, its input and output events are represented as ?x and !x respectively.

198 C.-A. Chen, S. Kalvala, and J. Sinclair

A collection of bMSCs can be composed together sequentially or condition-
ally. The High-level MSC, also known as hMSC or road map, is a structuring
mechanism to compose bMSCs. In this paper, we only consider bMSCs, and the
term MSC specifically refers to a bMSC.

2.2 Race Conditions

In discussions of operating systems or distributed systems, where at least two
parallel processes have access to a single resource simultaneously, the term race
condition refers to the situation where, without a synchronisation mechanism,
inconsistencies may arise depending on which process wins the race to commu-
nicate with the resource. In the context of MSCs, however, a race condition does
not match its usual meaning and therefore needs further explanation.

Initially discussed in [2], a race condition in an MSC refers to the likelihood
that the implementation fails to obey the causal ordering described in its MSC
specification. The concept can be illustrated via an example. MSC3 in Fig.2(a)
shows a scenario with a race condition between the events !b and ?c. The spec-
ification requires that the input of c must follow the output of b. Nevertheless,
P3 is specified to send out c after receiving a. Without querying P2, P3 has
no knowledge of when P2 sends b. Therefore, in the implementation of such a
protocol, it is quite possible that the message c arrives at P2 before P2 starts
to send out b, which contradicts the specification.

�� �� ��

�

�

�

��� ����

!a

!b?b

?c

?a

!c

Causal Ordering

Fig. 2. (a)MSC with a race condition (b)Causal ordering <C of MSC3

Formal descriptions of a race condition can be found in the work of Alur
et al. [2] and Mitchell [16] in different styles. In addition to causal ordering,
Alur et al. [2] have defined two other levels of observation, i.e. inferred ordering
and enforced ordering. In their method, detection of race conditions consists
in checking if the inferred ordering is a subset of the transitive closure of the
enforced ordering. They have also proved that detection of race conditions in
a basic MSC1 is decidable, and the tool uBET [11] from Bell Lab has been
developed accordingly to address this problem.

Yet a solution which attempts to correct race conditions in an MSC had
not emerged until Mitchell’s work [16]. Here we quote directly the definition
1 See [17] for detection of race conditions in High-level MSCs.

Race Conditions in Message Sequence Charts 199

of a race condition in [16]. Intuitively, an MSC is race-free iff for an event x
occurring before an input event ?e, x must precede its corresponding output
event !e provided that x is not !e.

Definition 2. An MSC is race-free when its causal ordering <C is race-free. A
partial order < on Σ is race-free if and only if

x <?e ⇒ (x <!e ∨ x =!e)

for every event x ∈ Σ and message e ∈ M.

In Mitchell’s work [16], two solutions are proposed when given a causal order-
ing with race conditions. One is based on a race-free inherent causal ordering
<I , which is a minimal weakening of the causal ordering <C . The other is the
existence of a race-free inherent refinement ordering <R, which is a minimal
strengthening of <C . The overall relationship is <I⊆<C⊆<R. Both <I and <R

have syntactically legal MSCs to match. The mapping between an ordering and
its MSC format is trivial and can be automated. Here we are only concerned
with <R. The following definition differs from that in [16] to maintain <R a
unique minimal strengthening of a causal ordering.2

Definition 3. For a causal ordering <C on Σ, its inherent refinement ordering
<R is the transitive closure of the relation �R defined as

�R = �C ∪ {(x , !e) ∈ Σ × Σout | x �C ?e and ¬ (x ≤C !e)}.

Notations on partial orders. For a causal ordering <C on Σ and x <C y where
x , y ∈ Σ, we say that x is an immediate predecessor of y if and only if x �C y.
For illustration, however, we use directed graphs to depict the relevant partial
orders. Each vertex represents an element in Σ, and a directed edge is drawn from
x to y, denoted by x → y, whenever x�Cy. A path exists from x to y, denoted
by x � y, iff x <C y. Since <C is anti-reflexive, we have x
� x , meaning a
path consists of at least one edge in the graph. We let ≤C = <C ∪Id(Σ) denote
the reflexive version of <C such that x ≤C x . The symbol �0 is used to denote
a path with zero or more edges, i.e. x �0 y iff x ≤C y. The graph we use here
is a variant of the Hasse diagram for a partial order in the sense that (1) the
shape is different in order to maintain the similarity between a partial order
and its MSC format, and (2) the edges are arrow-headed so that two events are
ordered iff there is a path between them. For example, Fig.2(b) is the graph for
the causal ordering <C of MSC3. It can be observed that the mapping between
the directed graph and its MSC format is trivial. Also note that the variation
pattern between <C , �C and ≤C also applies to <R.

The intuitive idea of constructing <R from <C of an MSC is to add ordering
properties into <C so that the resulting <R satisfies Definition 2. Note that we

2 Soundness problems of the original definition for the inherent refinement ordering in
[16] will be discussed in our future exposition.

200 C.-A. Chen, S. Kalvala, and J. Sinclair

!a

!b?b

?c

?a

!c

Inherent Refinement Ordering

�� �� ��

�

�

�

��� ����
�

Fig. 3. (a)Inherent refinement ordering <R of MSC3 (b)Matching MSC scenario

use dashed edges for these additional constraints in a graph. Since the added
ordering properties are facilitated by general ordering symbols in MSCs, dashed
edges can maintain the resemblance between an inherent refinement ordering
and its MSC format. As seen in Fig.2(b), <C of MSC3 has a race condition
since !b �?c but !b
�!c. The solution <R is constructed in Fig.3(a) by adding
a dashed edge between !b and !c, so that <R is race-free because !b �?c and
!b �!c. The MSC scenario matching <R is MSC3′ in Fig.3(b).

3 Motivation

In the previous section, we have demonstrated that given an MSC scenario
MSC3, its race-free counterpart MSC3′ can be derived by constructing <R.
A general ordering is used to delay events to avoid a race condition. In this case,
!c is delayed until !b occurrs, so that MSC3′ is race-free. Nevertheless, further
problems may arise when we consider how a general ordering can be imple-
mented in a distributed environment. Mitchell [16] has indicated that the choice
of implementation is up to the system designers who may use any mechanism
that they deem appropriate for a particular circumstance. This effect can always
be achieved by adding extra messages into the MSC with general orderings.

We recall the basic assumption of the MSC setting. Instances communicate
asynchronously in a distributed environment without sharable resources. An
instance can only get the information from others via message passing. Therefore,
the above approach of adding messages is an effective way for specifiers to reveal
explicitly how to implement the general orderings in an MSC specification. For
example, in order to enforce the general ordering !b �→!c ∈ O in MSC3′, an
acknowledgement message can be added as shown in MSC3′′ of Fig.4(a), where
a silent symbol τ is used to label such a message since it does nothing but
maintain the ordering. It can be easily noted that MSC3′′ is not race-free since
?a <C ?τ1 but ?a
<C !τ1, where <C is the causal ordering of MSC3′′.

The problem continues even if we keep on building the inherent refinement
ordering of MSC3′′, which adds a general ordering between ?a and !τ1. Enforc-
ing the general ordering with another message, say τ2, gives us MSC3′′′ as in
Fig.4(b), where a race condition still exists between !b and ?τ2. It goes back
to the case of MSC3. Without a more sophisticated approach, a simple MSC
scenario can be flooded with unnecessary messages and becomes unreadable.

Race Conditions in Message Sequence Charts 201

�� �� ��

�

�

��

�

��� ����
��

�� �� ��

�

�

��

��

�

��� ����
���

Fig. 4. (a)An acknowledgement message (b)MSC flooded with messages

In brief, our work is motivated by the observation that for a race-free inherent
refinement ordering of an MSC with race conditions, an implementation that
enforces the general orderings may not be race-free. The following definition
explains the term implementation we use hereafter under the assumption that
there is no general ordering symbols in the original MSC. Notationally, we use
Rel S as shorthand for the set of relations on S , i.e. Rel S = P(S ×S). We define
a set A consisting of the events caused by the acknowledgement messages, i.e.
A = {!τi | i ∈ N}∪{?τj | j ∈ N}. The symbol |S | denotes the number of elements
in set S . For a relation R on set S , R∗ is the transitive closure of R.

Definition 4. For a causal ordering <C where O = ∅ and its inherent refine-
ment ordering <R, the implementation of <R is a function IMP : RelΣ →
Rel(Σ ∪ A) such that

IMP(<R) = (Υ1(�R))∗

where the function Υ : RelΣ → Rel(Σ∪A) is defined as follows. For a relation R
on Σ, a message x ∈ M, events v1, v2 ∈ Σ and a counter i ∈ 1..(|�R\�C | +1)

Υi(�C) = �C

Υi({v1 �→!x} ∪ R) = Υi+1(R) ∪ {!τi �→?τi , v1 �→!τi , ?τi �→!x , v2 �→?τi}
where v1 �→!x ∈ �R\�C , v1 �→!x
∈ R and v2 �→!x ∈ �C .

The intuition behind the above definition is to construct a causal ordering of the
MSC in which an acknowledgement message is used to enforce a general ordering
symbol. Here we use two graphs as an example. The relation <R depicted in
Fig.5(a) shows the inherent refinement ordering of MSC3. A dashed edge denotes
the difference between �C and �R. The partial order IMP(<R) is displayed in
Fig.5(b) by replacing the dashed edge !b �→!c in <R with !τ1 �→?τ1. Note that
IMP(<R) is not race-free since ?a �?τ1 but ?a
�!τ1. The following proposition
formalises this observation that motivates our work.

Proposition 1. ¬ (∀ <R: RelΣ, <R is race-free ⇒ IMP(<R) is race-free).

This proposition can be easily justified by the counter-example we show in Fig.5.
In the next section, we propose an approach to finding a partial order <RF that
is stronger than <R such that both <RF and IMP(<RF) are race-free.

202 C.-A. Chen, S. Kalvala, and J. Sinclair

!a

!b?b

?c

?a

!c

Inherent Refinement Ordering

!a

!b?b

?c

?a

!c

Implementation

?τ1!τ1

Fig. 5. (a)<R of MSC3 (b)IMP of <R of MSC3

4 Correcting Race Conditions

In this section, we propose our solution for correcting race conditions in an
MSC scenario. The algorithm is expressed in a functional style with the aid of
graphs explaining how the algorithm works. Soundness is then discussed in a
more abstract way. Our intention is to make a formal argument to establish the
correctness of our approach before coding it. Finally, a couple of simple examples
are given for illustration.

4.1 Race-Free Refinement

We have observed that although an inherent refinement ordering is race-free, its
implementation may not be. Our goal is to find another strengthened partial
order <RF , called race-free refinement, such that <R⊆<RF and both <RF and
IMP(<RF) are race-free. We achieve this task by defining a function RF , which
takes an inherent refinement ordering and non-deterministically returns a race-
free refinement, i.e. <RF= RF (<R). For simplicity, our approach is under the
assumption that there is no general ordering construct in the original MSC
diagram, which means all dashed edges appearing in the graphs are added by
inherent refinement orderings.

The basic concept behind our approach can be understood via the two graphs
in Fig.6. The symbol v stands for an event that can be either input or output. In
Fig.6(a), the triangle (v , !x , ?x) is a building block of all the inherent refinement
orderings. The implementation of this graph will add a new input event, say ?τ ,
between !y and !x . This addition causes a risk of a new race condition because
?τ is a successor of !y, but !y may not precede its corresponding output event
!τ , which is a successor of v . Nevertheless, no new race condition will occur if we
have ?τ precede !y, which means the dashed arrow should be lifted up to link v
and !y as shown in Fig.6(b). The new graph is still race-free because v →!y and
!y →!x implies v �!x . This trivial example shows the most basic operation of
the function RF , i.e. lifting up the dashed arrows in <R to a preceding output
event. In a life-size MSC, however, there may be many output events preceding
!x . In this case, we pick up the earliest one which does not precede v . To make
this procedure more precise, we define the function ρ to perform this task.

Race Conditions in Message Sequence Charts 203

v

!x?x

!y ?y v

!x?x

!y ?y

Fig. 6. (a)Graph for <R (b)Graph for RF (<R)

Definition 5. For a partial order < on Σ and two events u1, u2 ∈ Σ, the func-
tion ρ : RelΣ × Σ × Σ → P(Σout) is defined

ρ(<, u1, u2) = min({v : Σout | v ≤ u2 ∧ v
≤ u1})
where min(S) returns a set of minimal elements of a partially ordered set S in
the sense that an element a in S is called a minimal element if no other element
of S strictly precedes a.

The function renders a set of minimal output events such that the events precede
u2 but do not precede or equal to u1 with respect to the partial order <. The
second parameter u1 stands for the pivot-like event as v in Fig.6. The third
parameter u2 holds a place for the starting event, like !x , from which we trace
back to a preceding output event. The application of ρ on the above example
gives us ρ(<R, v , !x) = {!y} where <R represents the partial order depicted
in Fig.6(a). Nevertheless, this example is too trivial in the sense that there is
no event preceding !y. Simply replacing v �→!x with v �→!y gives us a race-free
refinement. If we consider the case where some events precede !y, we need another
mechanism to check whether the newly added edge v �→!y will cause a new race
condition or not in the implementation. This mechanism can be explained more
clearly after the function RF is defined.

Conventions on notation and designation are as follows. We let R,S range
over RelΣ. The lower-case letters e, r range over Σ × Σ and u, v over Σ. For a
pair e ∈ R, e.s ∈ Σ stands for the source vertex of the edge e and e.d ∈ Σ for
the destination vertex. We also define a replacement operator [/] on a set S in
the sense that S [x/y] = {x} ∪ S\{y}.
Definition 6. For a causal ordering <C where O = ∅ and its corresponding
inherent refinement ordering <R, the function RF : RelΣ → RelΣ, which maps
a partial order to a relation, is defined as

RF (<R) = (Φ(�R, �R\�C))∗.

The function Φ : RelΣ × RelΣ → RelΣ is defined inductively as

Φ(R, ∅) = R

Φ(R, {e} ∪ S) =
{

Φ(R,S)\{e} if e ∈ (Φ(R,S)\{e})∗
Γ (Φ(R,S), r)[r/e] otherwise

204 C.-A. Chen, S. Kalvala, and J. Sinclair

where e
∈ S and

r = e.s �→ v such that v ∈ ρ((Φ(R,S))∗, e.s , e.d).

Here we classify the right arrow → into dashed or solid ones. A solid arrow,
denoted by x ⇀ y, describes the ordering formed by message arrows and instance
axes. All other arrows are dashed, represented as x ⇁ y, e.g. the edges in the set
�R\�C or those generated by the functions Φ and Γ . Formally, ⇀ =�C and
⇁ =→ \⇀ where → refers to the binding occurrence of the relation R in Γ .

The function Γ : RelΣ× (Σ ×Σ) → RelΣ, which solves new race conditions
that may arise when r is added by Φ, is defined as follows.

Γ (R, r) =⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R\{x �→ r .d} if ∃ x : Σout\{r .s}, x ⇁ r .d (1)
r1 ∪ Γ (R, r1) if ∃ x : Σin\{r .s}, x ⇀ r .d (2)
Γ (R, r1)[r1/x �→ r .d] if ∃ x : Σin\{r .s}, x ⇁ r .d (3)
r2 ∪ Γ (Γ (R, r1)[r1/x �→ r .d], r2) if ∃ x , y : Σin\{r .s},

x ⇁ r .d ∧ y ⇀ r .d (4)
r1 ∪ Γ (R, r1)\{y �→ r .d} if ∃ x : Σin\{r .s}, y : Σout\{r .s},

x ⇀ r .d ∧ y ⇁ r .d (5)
R otherwise (6)

where

r1 = x �→ v1 such that v1 ∈ ρ(R∗, x , r .s)
r2 = y �→ v2 such that v2 ∈ ρ((Γ (R, r1)[r1/x �→ r .d])∗, y, r .s).

The algorithm for finding a race-free refinement consists of two recursive function
calls, i.e. Φ and Γ . For each dashed edge in <R, the basic operation of lifting
that edge to a preceding output event up to its minimum is performed. This
task is achieved by the iteration of the function Φ and can be illustrated in

e

r

e.s

e.d

!m

?e.d

e

r

r.s

!m

?o
!n

?e.d e.d

r1

Fig. 7. (a)Behaviour of Φ (b)Behaviour of Γ

Race Conditions in Message Sequence Charts 205

a more abstract way as shown in Fig.7(a). The curved edge from !m to e.d
means !m �0 e.d . The event !m is the minimal element with the constraints
such that !m �0 e.d and !m
�0 e.s . In the next section, we will prove in
Lemma 1 that given a pair e ∈ �R \�C , such an !m always exists and could
be simply e.d . The graph in Fig.7(a) depicts the behaviour of Φ, which replaces
e with another pair r = e.s �→!m. We can observe that an acknowledgement
message enforcing r will add an input event preceding !m, causing no new race
conditions.

The above description shows an ideal scenario where no event immediately
precedes !m. Nevertheless, in some MSC scenarios, it is not unusual that there
is another event immediately preceding !m, causing risks of new race conditions
in the implementation. More precisely, if an input event, say ?o, immediately
precedes !m, the addition of r will always cause a new race condition due to
?o
� r .s , which we will prove later in Proposition 2. On the other hand, if
an output event, say !o, immediately precedes !m, the addition of r will never
cause a new race condition. We justify this feature here. From the definition of
ρ, we can deduce !o �0 r .s , otherwise !o will be the !m. The acknowledgement
message τ adds a pair !τ �→?τ such that r .s →!τ and !o →?τ →!m, which is still
race-free since !o →?τ and !o �0 r .s →!τ .

In Fig.7(b), we demonstrate the situation where an input event ?o immedi-
ately precedes !m. In this case, a new race condition will always occur in the
implementation as mentioned earlier. This feature justifies the existence of the
iteration of Γ within each recursive call of Φ. Tackling further race conditions
caused by r is the task of Γ depending on how !m is preceded. There are in total
six cases expressed in the six equations in Γ . The graph of Fig.7(b) illustrates
the equation (2) from Definition 6. The way we solve the problem is by finding
another minimal output event, say !n, such that !n �0 r .s and !n
�0?o, and
adding an edge r1 =?o �→!n. Similarly, we can also prove that there always exists
such an !n, which could be simply r .s . Note that Γ (R, r1) again appears at the
right hand side of = in the equation (2), which means checking if any new race
condition may occur when r1 is added. In this case, a new race condition occurs
iff there exists at least one input event immediately preceding !n. The recursive
structure of Γ basically forms an iteration to add or replace a set of edges r1..n

after r is added under one recursive call of Φ. A more complicated structure of Γ
is the equation (4), where there are two input events immediately preceding !m.
The approach is similar to the above case except that the iteration of Γ occurs
in one recursive call of Γ itself.

4.2 Soundness

Here we provide justification for the function RF that we claim can correct
race conditions without introducing new ones when extra messages are added
to enforce general orderings. Although RF is defined on partial orders, the style
of our soundness discussion is based on analysing the behaviour of the function
on the corresponding graphs, to which two template diagrams in Fig.7 serve
as visual aids. The first proposition justifies the existence of Γ in the sense

206 C.-A. Chen, S. Kalvala, and J. Sinclair

that a new race condition will always occur in implementation if an input event
immediately precedes the output event found by ρ in Φ, e.g. ?o →!m in Fig.7(b).

Proposition 2. In the context of Γ in RF, if there exists an event x : Σin\{r .s}
such that x → r .d, then x
� r .s.

Proof. There are two cases for x → r .d . One is x ⇀ r .d , and the other is
x ⇁ r .d . We show that x
� r .s in both cases.

Case 1: x ⇀ r .d . Assume x � r .s ; there are two possible routes, i.e. x ⇀�0 r .s
and x ⇁�0 r .s . The former case leads to a contradiction since x ⇀ r .d but
r .d
�0 r .s . The latter case implies an event v ∈ Σ such that x ⇁ v �0 r .s .
Due to the nature of �R, v must be an output event. So we have x ⇁!y for an
output event !y. The structure of �R enable us to deduce x ⇀?y from x ⇁!y,
which contradicts the fact that r .d is an output event.

Case 2: x ⇁ r .d . This case implies x ⇀?r .d , where ?r .d denotes the input event
of r .d . Assuming x � r .s , there are two routes, i.e. x ⇁�0 r .s and x ⇀�0 r .s .
The former leads to a contradiction since x ⇁ r .d but r .d
�0 r .s . The latter
also results in a contradiction because x ⇀�0 r .s implies ?r .d �0 r .s . Since
r .d →?r .d and ?r .d �0 r .s , we get r .d � r .s , which violates ρ. �

When explaining the mechanism of Φ, we have already mentioned that given
a pair e ∈ �R \�C , we can always find a minimal output event v such that
v �0 e.d and v
�0 e.s . The same applies to Γ . Referring to Fig.7, we can say
that !m always exists in the application of Φ, and so does !n in Γ . In the lemma
below, we prove this property by showing that !m could be simply e.d , and !n
could be simply either r .s or the corresponding output event of r .s .

Lemma 1. In the context of RF, the application of ρ gives a non-empty set.

Proof. There are two places where the function ρ is called, i.e. Φ and Γ . In the
case of Γ , the third parameter r .s can be either an input or an output event.

Case 1: Φ. The event e.d is a legitimate !m because e.d is an output event, and
we also have e.d
�0 e.s and e.d �0 e.d .

Case 2: Γ . There are two sub-cases here.

Case 2.1: If r .s is an output event, r .s is a legitimate !n. We prove by contradic-
tion. We assume r .s is not a legitimate !n, which means r .s �0?o. Since ?o →!m
and !m �0 e.d , we can deduce r .s � e.d . In this case, the edge e would not
have not existed in <R to correct a race condition in the first place, which is a
contradiction.

Case 2.2: If r .s is an input event, the corresponding output event of r .s , denoted
by !r .s is a legitimate !n. Similarly, we assume !r .s is not a legitimate !n, i.e.
!r .s �0?o. We know !r .s
=?o, so !r .s �?o. Since <R is race-free, !r .s �?o
implies !r .s �!o. We also know that !o �0 r .s , otherwise !o will be the !m.
Since !o
= r .s , we have !o � r .s hence !o �!r .s . A cycle arises in <R due to
!r .s �!o and !o �!r .s , which is a contradiction. �

Race Conditions in Message Sequence Charts 207

We can observe that the mechanism of RF is to add or replace edges into the
graph of an inherent refinement ordering <R. The following lemma asserts that
the edges added by RF are finite, which implies that the algorithm terminates.
We prove the lemma by showing that each edge that may be added by one
recursive call of Γ is between a pair of unordered input and output events.

Lemma 2. For an inherent refinement ordering <R, the application of RF in-
serts a finite number of edges into the graph of <R.

Proof. The structure of RF requires that for an edge e in �R\�C , the function
Φ replaces e with the edge r , and for each r , a set of edges r1..n may be added
by Γ . Since �R\�C is finite, the number of edges replaced by Φ is finite. For
an ri ∈ r1..n added by Γ , there must exist an ri−1 and an input event, say ?o,
such that ?o → ri−1.d and ?o = ri .s . Proposition 2 asserts ?o
� ri−1.s . Since
ri .d �0 ri−1.s , we have ?o
� ri .d before ri is inserted. We also know that
ri .d
�0?o from the definition of ρ. Since ri .d
=?o, we have ri .d
�?o. So an
important feature of ri arises in the sense that ri only links a pair of unordered
input and output events in <R. We let the set of such pairs be U . We can assert
r1..n ⊆ U ⊆ Σ × Σ. Since Σ × Σ is finite, the set r1..n is therefore finite. �

With the above lemma, we know that the task of RF consists in adding a finite
number of edges into the graph of <R. Here arises another question: how can
we ensure that the relation RF (<R) is still a partial order? For an anti-reflexive
relation, its transitive closure is a partial order if and only if there exists no cycle
in the graph of that relation. Therefore our next observation is that the relation
RF (<R) is a partial order by proving the graph of RF (<R) is acyclic in the
following proposition.

Proposition 3. For an <R, the graph of RF (<R) is acyclic.

Proof. Since the function RF recursively adds a finite number of edges, r1..n ,
into the adjacency version of an inherent refinement ordering (Lemma 2), we can
represent RF (<R) as �R ∪r1..n . We prove by induction on every n ∈ N that
RF (<R) =�R ∪r1..n is acyclic.

Base case: Setting n = 0, we get RF (<R) =�R. Hence RF (<R) is cycle-free
because <R is a partial order.

Induction steps: Let n = k be an arbitrary number and suppose that �R ∪r1..k

is acyclic. When n = k + 1, we have RF (<R) =�R ∪r1..k ∪ {rk+1}. There are
two cases for rk+1.

Case 1: rk+1 is generated by Φ, which means there exists an element e ∈�R\�C

such that rk+1 = e.s �→!m where !m ∈ ρ((�R ∪r1..k)∗, e.s , e.d). Due to Lemma
1, there will always be an !m such that !m
�0 e.s , so rk+1 will not form a cycle.

Case 2: rk+1 is generated by Γ , which implies there exists an ri in r1..k and
an input event ?o such that ?o → ri .d and rk+1 =?o �→!n where !n ∈ ρ((�R

∪r1..k)∗, ?o, ri .s). Similarly, Lemma 1 asserts !n always exists such that !n
�0?o.
Hence rk+1 will not form a cycle.

208 C.-A. Chen, S. Kalvala, and J. Sinclair

Since rk+1 does not form a cycle in both cases, the graph of RF (<R) is acyclic. �

The final two propositions justify our intention in this paper. For an inher-
ent refinement ordering <R, we have found a strengthened partial order <RF=
RF (<R) such that both <RF and IMP(<RF) are race-free. Note that the appli-
cation of IMP on <RF requires its variant �RF , which is actually the relation
Φ(�R, �R\�C) before the transitive closure operator is performed.

Proposition 4. For an <R, <RF is race-free.

Proof. We prove by contradiction. Supposing that <RF has race conditions.
Since <R is race-free, for <RF to get a new race condition, the function RF
must add an extra edge linking an event v ∈ Σ with an input event ?x such that
v →?x but v
�!x . This contradicts the definition of RF since all the edges added
or replaced by RF link an event with an output event in the form of v →!x . �

Proposition 5. For an <R, IMP(<RF) is race-free.

Proof. We prove by contradiction. Supposing that IMP(<RF) is not race-free.
The graph of the relation <RF) must satisfy either one of the following two
cases. We show that both cases contradict the mechanism of RF .

Case 1: ∃ r :�RF \�C such that v : Σ, v
= r .s ∧ v ⇁ r .d .
In terms of the graph, this case holds when there are two dashed edges pointing
to a single output event. This situation contradicts the definition of Γ no matter
v is an input or an output event. If v ∈ Σout , the equation (1) or (5) of Γ
applies, both of which eliminate the pair v �→ r .d from the relation. If v ∈ Σin ,
the equation (3) or (4) is applicable, replacing v �→ r .d with a different edge.

Case 2: ∃ r :�RF \�C such that v : Σ, v
= r .s ∧ v ⇀ r .d ∧ v
� r .s .
This case also contradicts the definition of Γ no matter v is an input or an
output event. If v ∈ Σin , either equation (2) or (5) applies, and both equations
add another edge so that v � r .s . If v ∈ Σout , then we have v � r .s . Otherwise,
due to the definition of ρ, the edge r should have linked r .s with v instead of
r .d in the first place. �

4.3 Examples

We use a couple of MSC scenarios with a reasonable level of complexity to illus-
trate our approach. For economy of space, we only show the MSC scenarios of an
inherent refinement ordering and its corresponding race-free refinement instead
of the partial orders. MSC4 in Fig.8 is an MSC with race conditions between
three pairs of events, i.e. (!a, ?c), (!c, ?e) and (?b, ?d). The MSC matching its
inherent refinement ordering is depicted as MSC4′. In MSC4′, general ordering
symbols are added to delay output events so that the resulting semantics satis-
fies the criteria of a race-free partial order. Nevertheless, if an acknowledgement
message τ is used here to enforce the general ordering !a �→!c, we can see that a
new race condition arises between !b and ?τ . This situation also applies to the
other two general orderings (!c, ?e) and (?b, ?d).

Race Conditions in Message Sequence Charts 209

�� �� �� ��

�

�

� �

�

��� ����

�� �� �� ��

�

�

� �

�

��� ����
�

�� �� �� ��

�

�

�

�

�

��� ����
��

Fig. 8. A simple example

�� �� �� ��

�

�

��

�

��� ����

�� �� �� ��

�

�

�

�

�

��� ����
�

�� �� �� ��

�

�

�

�

�

��� ����
��

Fig. 9. A simple example

As illustrated beside MSC4′, MSC4′′ in Fig.8 is the matching MSC scenario
of the race-free refinement, i.e. <RF , that we propose as the solution in this
paper. In this case, adding acknowledgement messages to enforce the general
orderings does not cause new race conditions.

The other example can be found in Fig.9, where MSC5 has race conditions
in two places. Two general ordering symbols are added to form its inherent re-
finement scenario as shown in MSC5′. Our solution, however, requires only one
general ordering symbol to solve the problem as depicted in MSC5′′. As to the

210 C.-A. Chen, S. Kalvala, and J. Sinclair

implementation, MSC5′ needs two additional messages, causing new race con-
ditions. Yet MSC5′′ needs only one, ending up with another race-free scenario.

5 Conclusion

In this paper, we have investigated race conditions in a specification language,
namely MSCs, based on partial-order semantics. The existing solution to cor-
recting race conditions in an MSC is a canonical refinement, called inherent
refinement ordering, which strengthens the causal ordering of the MSC with aid
of general ordering constructs. We claim that new race conditions may occur
if specifiers intend to reveal explicitly in MSCs how the general orderings are
implemented by adding acknowledgement messages. This observation makes the
inherent refinement orderings too weak for solving race conditions in practice.

This paper contributes an approach to finding a minimal strengthening par-
tial order, called race-free refinement, of an inherent refinement ordering. We
prove that for an inherent refinement ordering there exists a race-free refinement
such that its matching MSC is race-free and remains race-free when acknowl-
edgement messages enforcing general orderings are added. The approach is an
algorithm on partial orders. The algorithm is presented in a functional style and
can be later implemented for tool-support.

References

1. Rajeev Alur, Kousha Etessami, and Mihalis Yannakakis. Inference of Message
Sequence Charts. IEEE Transaction on Software Engineering, 29:623–633, July
2003.

2. Rajeev Alur, Gerard J. Holzmann, and Doron Peled. An analyzer for Message
Sequence Charts. Software Concepts and Tools, 17(2):70–77, 1996.

3. Hanêne Ben-Abdallah and Stefan Leue. Syntactic detection of process divergence
and non-local choice in Message Sequence Charts. In Proceedings of TACAS’97
(LNCS 1217), Netherland, April 1997. Springer-Verlag.

4. Grady Booch, Ivar Jacobson, and James Rumbaugh. The Unified Modeling Lan-
guage Reference Manual. Addison-Wesley, 1998. ISBN 0-201-30998-x.

5. Manfred Broy. On the meaning of Message Sequence Charts. In Proceedings of the
1st Workshop of the SDL Forum Society Workshop on SDL and MSC, volume I,
pages 13–34, 1998.

6. CCITT. CCITT Recommendation Z.120: Message Sequence Chart (MSC). Geneva,
1992.

7. C. Chen, S. Kalvala, and J. Sinclair. A process-based semantics for Message Se-
quence Charts with data. In Australian Software Engineering Conference 2005
(ASWEC2005), Brisbane, March 2005.

8. W. Damm and D. Harel. LSCs: Breathing life into Message Sequence Charts.
Formal Methods in System Design, 19(1):45–80, 2001.

9. Thomas Gehrke, Michaela Huhn, Arend Rensink, and Heike Wehrheim. An alge-
braic semantics for Message Sequence Charts documents. In Formal Description
Techniques and Protocol Specification, Testing and Verification (FORTE/PSTV
‘98), Kluwer, 1998.

Race Conditions in Message Sequence Charts 211

10. J. Grabowski, P. Graubmann, and E. Rudolph. Towards a Petri net based seman-
tics definition for Message Sequence Charts. In SDL’93 Using Objects, Darmstadt,
1993. Proceeding of the 6th SDL Forum.

11. G. J. Holzmann, D. Peled, and M. H. Redberg. Design tools for requirements
engineering. Bell Lab Technical Journal, 2(1):86–95, 1997.

12. ITU-TS. Recommendation Z.120: Message Sequence Chart (MSC). Geneva, 1996.
13. P. B. Ladkin and S. Leue. Interpreting message flow graphs. Formal Aspects of

Computing, 7(5):473–509, 1995.
14. P.B. Ladkin and S. Leue. What do Message Sequence Charts mean? In R.L.

Tenney, P.D. Amer, and M.U. Uyar, editors, Formal Description Techniques VI,
IFIP Transactions C, North-Holland, 1994. Proceeding of the 6th International
Conference on Formal Description Techniques.

15. S. Mauw and M.A. Reniers. An algebraic semantics of basic Message Sequence
Charts. The Computer Journal, 37(4):269–277, 1994.

16. Bill Mitchell. Inherent causal orderings of partial order scenarios. In International
Colloquim on Theoretical Aspects of Computing (LNCS 3407), China, September
2004. Springer-Verlag.

17. Anca Muscholl and Doron Peled. Message sequence graphs and decision problems
on mazurkiewicz traces. In MFCS, pages 81–91, 1999.

18. A. Olsen, O. Færgemand, B Møller Pedersen, R. Reed, and J.R.W. Smith. Systems
Using SDL-92. North Holland, 1994.

19. J. Schumann and J. Whittle. Generating statechart designs from scenarios. In
Proceeding of the 22nd International Conference on Software Engineering, 2000.

20. S. Uchitel, J. Kramer, and J. Magee. Synthesis of behavioral models from scenarios.
IEEE Transaction on Software Engineering, 29(2), February 2003.

	Introduction
	Preliminary
	Message Sequence Charts
	Race Conditions

	Motivation
	Correcting Race Conditions
	Race-Free Refinement
	Soundness
	Examples

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

