
A Process-based Semantics for Message Sequence Charts withData

Chien-An Chen Sara Kalvala Jane Sinclair
Department of Computer Science

University of Warwick
Coventry CV4 7AL, UK

{cssdc, sk, jane}@dcs.warwick.ac.uk

Abstract

Message Sequence Charts (MSCs) are a graphical lan-
guage for scenarios of communicating components ex-
changing messages in a distributed environment. The lan-
guage has been standardised by the International Telecom-
munication Union (ITU) and given a formal semantics
by means of a process algebra. Nevertheless, little atten-
tion has been given to MSCs where a message with data
is a building block. In this paper, we investigate the im-
pact that the concept of data flow brings to the conven-
tional semantics, and propose a CCS-like process calculus
as an alternative formal framework. The proposed seman-
tics captures the data flow properties while maintaining
the expressiveness of the conventional semantics. Equiva-
lence of MSCs is also discussed from the perspective of the
corresponding process equivalence.

1. Introduction

Message Sequence Charts (MSCs) describe scenarios
where messages are exchanged between communicating en-
tities in a distributed environment. The syntax and static re-
quirements of the language have been standardised by ITU
in the Z.120 recommendation [13]. Attempts at a formal se-
mantics of MSCs emerged after the language was standard-
ised for the first time (MSC’92) [2]. Different approaches
were adopted for the task, such as automata theory [16],
Petri Nets [8] and process algebra [19, 3]. Notably, Mauw
et al. [17] proposed a formal framework for the Z.120 stan-
dard, which we refer to hereafter as thestandard MSC se-
mantics. Their method transforms the textual representa-
tion of MSCs into a process algebra based onACP (Al-
gebra of Communicating Processes) [1]. Further work on
formalising MSCs still proceeds with respect to the evo-
lution of the language, e.g. MSC’96 [12]. Thehigh-level
MSC, a structural means to composite MSCs, has been for-
malised by Mauw et el [18]. Similarly, Gehrke et al. [7]

extend the standard semantics with the concern ofcondi-
tions, which are a rudimentary form of MSC compositions.
In [15], Kosiuczenko presents a semantics to captureinline
expressions.

Although the semantics of MSCs has been studied us-
ing different approaches, relatively little attention hasbeen
drawn to MSCs where the messages have data as param-
eters. MSCs with data have been syntactically legitimate
since MSC’92 and have been mentioned in tutorials such
as [25, 26]. Nevertheless, none of these documents clearly
specify the meaning of a parameter attached to a message.
This paper mainly contributes to answering the question:
what does an MSC with data mean?

The approach we use is inspired by the work of Mauw
et al.[17]. We firstly propose a process calculus as a deno-
tational domain, and then define a translation scheme that
transforms a textual MSC into a process term. The mean-
ing of an MSC diagram is actually the behaviour of the
corresponding process. The process calculus we define is
a variant of the asynchronous version ofCCS(Calculus of
Communicating Systems) [20] andπ-calculus[10, 11]. We
use asynchrony to capture temporal ordering of events in
an MSC, and value-passing to model data-binding changes
while the MSC proceeds. The CCS syntax and semantics
are modified accordingly to accommodate the MSC lan-
guage. This approach gives a new semantics to MSCs with
the following advantages:

1. Our proposed semantics maintains the expressiveness
of the standard approach while incorporating the fea-
ture of data flow via a uniform process-calculus lan-
guage. This approach has two consequences. First, not
only can our framework model the temporal ordering
of message sending and receiving, but also the data
passed via the message. Second, MSCs without data
can also be captured as MSCs with null-valued data.

2. Our proposed semantics is simpler than the standard
one in the sense that the pending output event for
asynchrony and the handshake mechanism for value-
passing are both well-known in the CCS community.

�� �� ��
�

�
�

�

�	
 ���
�� ��

�
����

�	
 ���

Figure 1. Example of bMSC diagrams.

This paper is organised as follows. Section 2 gives an
overview of the MSC language that is relevant to this paper
and points out the issues that arise when MSCs are extended
with data. In section 3, we propose a process calculus that
is capable of modelling value-passing in an asynchronous
communication environment. Section 4 is concerned with a
translation scheme from an MSC into a process term; read-
ers are also given a simple example illustrating the whole
idea and how the mechanism works. In section 5, we de-
fine an equivalence relation over MSCs in terms of the pro-
cess domain. Section 6 shows the direction of future work
and presents some conclusions.

2. Message Sequence Charts

This section gives an overview of the MSC language
used in this paper. Firstly, we give an intuitive description
of an MSC diagram and then introduce MSCs with data;
meanwhile, two basic assumptions on data are presented.
Then we provide the textual representation of the MSC lan-
guage. In our discussion, we follow the convention that the
lettersa, b, . . . , edenote message names;v represents an ac-
tual data value, andx, y are data variables.

2.1. bMSC notation

A basicMSC (bMSC) is a building block for an MSC
document. As can be seen in Figure 1,MSC1 contains three
instances(orprocesses), namelyP1, P2 andP3, represented
by vertical axes. Threemessages, a, b andc, represented by
arrows, are exchanged between those instances. The block
labellede alongP1 is a local action, and the frame around
the diagram represents theenvironment. MSC1 intuitively
describes a scenario whereP1 sends a messagea to P2 and
then executes an actione; after receivinga, P2 sequentially
sends messagesb to P3 andc to P1.

A temporal ordering is determined along each axis and
arrow in the sense that (1) the events along an instance axis
occur from top to bottom, and (2) a message must be sent
before it is received. Hence, inMSC1, the order of receiv-

ing b andc is undefined. In this paper, we assume that the
communication medium between instances is reliable, i.e.
no messages are lost. Furthermore, the setting of a bMSC
is generally interpreted to be ofasynchronouscommunica-
tion.

2.2. bMSCs with data

Messages with data are a legitimate syntax since
MSC’92, and have been used extensively in object-oriented
methods to represents a remote procedure call and dy-
namic instance creations, where the data denote the actual
values passed through communicating instances. Nev-
ertheless, this incorporation can cause difficulties in
interpreting what amessagemeans in a bMSC. The prob-
lem can be roughly illustrated usingMSC2 in Figure 1,
whereP1 first send a messagea to P2 and then sends an-
other messagea(v) to P2. Without the second mes-
sagea(v), we can easily interpret the identifiera as a
stream of data flowing fromP1 to P2. Similarly, with-
out the first messagea, the namea occurring free in
a(v) can be regarded as a channel name while the ac-
tual stream of data fromP1 to P2 is denoted byv. Yet
putting the two messages together as shown inMSC2
gives a single identifiera two different meanings. Prob-
lems still remain even if we re-label the first message to
any name not free ina(v). In a bMSC without any data, be-
tween each pair of communicating instances, it is usually
interpreted that there exist implicitly at most two (if bidi-
rectional) communication media, where all the sent
messages arrive, waiting to be picked up according to a cer-
tain queuing mechanism. In this case,P1 throws b and
v sequentially into the medium and leavesa meaning-
less.

In the standard MSC semantics [17], a message, saya
from Pi to Pj, is treated as two distinct atomic actions, e.g.
out(i, j, a) and in(i, j, a). The semantics of a bMSC is the
temporal ordering of the actions with respect to the partial
order derived from the asynchrony in the bMSC. If we di-
rectly extend this framework to bMSCs with data, we could
as a first attempt denote a messagea(v) from Pi to Pj by
out(i, j, a(v)) and in(i, j, a(v)), interpreted as the sending
and receiving of a valuev along channela respectively. We
can see that the input eventin(i, j, a(v)) restricts the coming
value to bev. Nevertheless, the valuev is controlled byPi
and should not be observable toPj until it is passed through
a. In other words, an input event cannot use the value to
be input to prevent the actions being performed. The cur-
rent method violates thenormal operational semantics of
value-passing[24], which means that an input event should
be able to acceptanyvalue decided by the output event.

In this paper, we adopt a uniform view of message ex-
changes in bMSCs: each message has a canonical form

�� �� ��
� �� ���

���� ��� �������

� ! "#$��� � %&'�
�� �� ��

� ��(���� ��� ������ ���

� ! "#$)

Figure 2. Example bMSCs with data binding.

a(e), wherea ranges over channel names andeover data ex-
pressions. A message standing alone is also a messagea(e)
wheree is anull value and can be simplified asa.

2.3. Assumptions on data

MSCs with data had not been discussed in any depth un-
til the emergence of MSC2000 [13], which officially incor-
porates a simple data language. Literature such as [5, 6] pro-
posed some problems and design decisions for this incorpo-
ration. A summary can be found in the work of Engels [4].
In the following, two requirements on our bMSC language
are given and justified accordingly in order to indicate what
ameaningfulbMSC is in our language.

1. Undefined variables are disallowed.Undefined vari-
ables are not bound to any value and are typically re-
garded as universally quantified. They cause explosion
(or infinity) in possible traces, which we prefer to avoid
at this early stage of research. Besides, this require-
ment coincides with the MSC2000 standard [13]. Two
data binding mechanisms, usually appearing in related
work such as [4, 9, 14], are illustrated byMSC3(y) in
Figure 2. One isassignmentin a local action, and the
other is theparameterisedbMSC, where actual instan-
tiation for the parameters is presumed.

2. All variables are local and not sharable.This means
that an instance, sayPi, can only refer to a variablex
if and only if eitherx is local toPi, or x is passed from
somePj via a message. This requirement fits the MSC
spirit and has been adopted in [5]. For example, a naive
way to interpretMSC4 in Figure 2 is that the messages
a(0), b(1) andc(2) are sent sequentially. However, a
closer observation suggests thatMSC4 violates this re-
quirement since whatP3 receives is the actual value of
x+1 notx. P3 has no knowledge of the value ofx, so it
cannot send outc(x+2). Thus, onlyP1 andP2 can re-
fer to the variablex. Note that the parameterised bMSC
is just a syntactical convenience in the sense that a pa-
rameter cannot be regarded as a global variable.

<msc> ::= msc <mscid> (<var>);
<msc body> endmsc

<msc body> ::= <> |
<inst def> <msc body>

<inst def> ::= instance <instid>;
<inst body> endinstance;

<inst body> ::= <> |
<event> <inst body>

<event> ::= in <msg> from <address>;|
out <msg> to <address>;|
action <var> := <exp>;

<msg> ::= <mid> |
<mid>(<exp>)

<address> ::= <instid> |
env

<exp> ::= <val> |
<var> |
f (<exp>1, . . . ,<exp>n)

Table 1. Textual syntax of basic MSCs.

2.4. Textual format

In addition to the graphical layout, a pure textual rep-
resentation is also included in the MSC recommendation
Z.120. The reason we introduce the textual bMSC here is to
give background for a translation function mapping a tex-
tual bMSC to a process term in our process calculus. For the
purpose of explanation, however, graphical syntax is used
throughout this paper.

The grammar of the textual representation of bMSCs
used in this paper is provided in Table 1. The symbol
<> denotes an empty string. The terminals,msc, endmsc,
etc, are reserved keywords. The non-terminals<mscid>,
<instid> and <mid> represent identifiers for a bMSC,
an instance and a message respectively. Since bMSCs with
data are used liberally in the literature, the non-terminal
<exp> requires additional attention.<val> accounts for a
data value and<var> for a data variable. Moreover,f is a
n-ary function, applying a list of<exp> with n entries with
respect to type consistency. Here we useMSC3(y) in Fig-
ure 2 as an example to illustrate the textual syntax.

msc MSC3(y);
instance P1; instance P3;
action x := y + 1; in b(x + 1) from P2;
out a(x) to P2; out c(y) to P1;
in c(y) from P3; endinstance;
endinstance; endmsc

instance P2;
in a(x) from P1;
out b(x + 1) to P3;
endinstance;

It is worth noting that, for the present, the MSC lan-

guage we use is basically limited to communication events
and data binding mechanisms, i.e. assignments in local ac-
tions and instantiation of parameterised bMSCs. Other con-
structs like conditions, inline expressions, compositionof
bMSCs, etc are intentionally left out for simplicity. Like-
wise, we restrict the message parameter to be monadic, but
our framework can be easily extended for polyadic data val-
ues.

3. Process calculus theory

In this section, we firstly present the main concerns in
capturing the meaning of a bMSC with data; then a process
calculusPCbMSC is proposed as a formal framework to im-
plement these ideas.

3.1. Basic concepts

While constructing the formal framework, there are two
concepts we intend to realise in the proposed semantics.
One is the value-passing behaviour between instances, and
the other is the asynchronous communication pattern im-
plied by a bMSC.

Value-Passing.As pointed out in section 2.2, the stan-
dard MSC semantics [17] is unsuitable for capturing value-
passing properties since the input event is specified as wait-
ing for a specific value which should not be observable by
the receiving instance until the value is actually passed.
To remedy this flaw, we apply here the key idea of value-
passing CCS [20], where the value-passing has been mod-
elled via a reduction ofpure synchronisation(orhandshake)
of two parallel actions with complement names, e.g.a and
a. The data values are fused with the port names that syn-
chronising processes use. This corresponds to the reduction
relation of CCS, i.e.

(av.P | a(x).Q)→ (P | Q{v/x})

where a valuev is passed through channela to Q for fu-
ture use. Notationally,av means sending a valuev alonga,
a(x) receiving any value froma. Q{v/x} substitutes all free
occurrences ofx in Q with v.

Asynchrony.Asynchrony in a bMSC means that the
non-blocking output events do not oblige senders and re-
ceivers to synchronise when exchanging messages but
allow the sender to continue with its tasks while the mes-
sage reaches its destination. Typically, a buffering mech-
anism concerned with a certain queuing policy is used to
model asynchrony in a distributed environment. Here, how-
ever, the communication medium is not described as
an observable entity; instead it is realised in the syn-
tax of processes. The approach we use for modelling asyn-
chrony is inspired by the asynchronous CCS andπ-calculus

[10, 11], where the asynchrony is guaranteed by its syn-
tax, and a process is observed byasynchronous experi-
ments. Our work is different from the above in two points.
Firstly, we use the syntax of asynchrony to derive the tem-
poral ordering implied by a bMSC. Secondly, the asyn-
chronous observation cannot be applied here, and we need
a different approach for the equivalence between pro-
cesses.

We next flesh out the above two concepts and form a vari-
ant of a fragment of asynchronous CCS with value passing.
Knowledge of CCS is presumed.

3.2. Syntax

LetN denote a potentially infinite set, ranged over by al-
phabetsa, b, . . . , g, which function as the names of all com-
munication ports. A tuple(a, i, j) ∈ N × N × N denotes
a communication channela from the instancePi to Pj for
somei, j ∈ N. For simplicity, we put it in a subscripted form
asaij . The setN is a set of complement names of the cor-
responding names inN , i.e.N = {a | a ∈ N}. Similarly,
a name inN can also be subscripted asaij to denote a tu-
ple (a, i, j) ∈ N × N × N. We useE for a set of data ex-
pressions ranged over bye, e1, Also we letV be a set
of data values ranged over byv, w, v1, . . . andX be a set
of data variables ranged over byx, y, z. The namesv, w, . . .
are abstractions of certain data values, so their occurrences
are bound. In different applications, the set whichV repre-
sents can vary, e.g. integers, strings, etc. The setP of pro-
cess expressions, whereP, Q, R∈ P , is then defined by the
following syntax,

P ::= 0 | aij (e).0 | (P) | P1|P2 |
π.P | P\L

π ::= aij (x) | !aij | (x← e)i

e ::= null | x | v | f (e1, . . . , en)

where the symbol0 denotes an inactive process. The
guardedprocessπ.P and theparallel composition P| Q
have the usual meaning as those in CCS. In therestric-
tion P\L, the setL ⊆ N × N × N consists of subscripted
port names. Its meaning is tackled operationally in section
3.4. The expressione has identical structure as<exp> de-
fined in the previous section, which means that the data
being passed can be a value, a variable or an-ary func-
tion applied to its arguments.

In the above syntax, we use decorated names to repre-
sent atomic actions required in observing bMSCs. There are
four kinds of such names:

• aij (e) is a data expressione pending alonga between
Pi andPj and ready to be picked up.

• aij (x) means that the instancePj is waiting forsome-
thing from Pi along a port nameda.

• !aij denotes the action ofPi sending a message toPj
alonga.

• (x← e)i is the binding of a variable to an expression,
occurring on the instancePi.

A setA consisting of the four kinds of actions can be de-
fined accordingly asA = L(π) ∪ {aij(e)} whereL(π) de-
notes the set spanned byπ. A non-0 process can only be
guarded by a non-overlined action. We use this mechanism
to incorporate asynchrony. This mechanism also indicates
the difference betweenaij (e) and!aij , where the former rep-
resents a pending message usually guarded by the latter, de-
noting an output event.

Three binding operators bind decorated names or vari-
ables in process expressions. First, the input prefix of
aij(x).P, occurring bound, binds all free occurrences of
x in P. Second, for allaij ∈ L, the restriction opera-
tor P\L also binds the nameaij and its complementaij in P.
Third, all free occurrences ofx in P are bound by the bind-
ing prefix of (x ← e)i .P. A name which is notbound is
called free. We then definebn(P) as a set of the bound
names inP andfn(P) as the free names.

Notably, the above syntax does not includerecursion
since we focus on bMSC where only finite traces are de-
fined. The framework can be extended accordingly when
taking MSC compositions into considerations.

3.3. Structural congruence

A structural congruence [21] can lead to a very com-
pact set of transition rules without losing any expressive-
ness. The following definition is a fragment of the struc-
tural congruence inπ-calculus [22].

Definition 1 The structural congruence≡ is the smallest
equivalence relation over process expressionsP satisfying
the following rules. For P, Q, R ∈ P , x ∈ N × N × N and
L ⊆ N × N× N,

1. P≡ Q if P isα-convertible to Q

2. The Abelian monoid laws for parallel composition, i.e.
commutativity P|Q≡ Q|P, associativity(P|Q)|R≡ P|
(Q|R) and0 as a unit P|0≡ P.

3. 0\L ≡ 0, (P\{x})\L ≡ P\{x} ∪ L

4. If x /∈ fn(P) then(P | Q)\{x} ≡ P | Q\{x}

The first rule states that anα-conversion does not af-
fect the behaviour due to the difference in choice of bound
names. From Rule 2, we know that the processes in paral-
lel composition are unordered and can be safely presented
asP |Q |R without parentheses. Rule 3 states that a sub-
scripted name in the restriction set can be pulled out to be
associated with the process, and Rule 4 means that the scope
of restriction can move into a parallel composition.

3.4. Operational semantics

The operational semantics for our process calculus is de-
fined in terms of alabelled transition system(LTS), where
transition relations are of the formP

α
−→ Q for a set of

actions ranged byα. Here we letAct = A ∪ {?aije} de-
note the action-set ranged byα. The setA has been men-
tioned in the previous section. Here, we introduce a new ac-
tion ?aij e, a dual of!aij , that represents the interaction be-
tween two complement namesaij (x) andaij (e) (denoted by
a silent actionτ in CCS). Its meaning and justification will
be discussed after the presentation of the transition rules.

We then define a functionsn : Act → N × N × N,
which takes an action and returns its subscripted port name,
i.e. sn(!aij) = sn(aij (x)) = sn(aij (e)) = sn(?aij e) = aij

for somei, j ∈ N. The function ispartial in the sense that
sn((x ← e)i) is undefined. Finally, an evaluation function
[[]] : E → V evaluating a data expression and returning a
data value is given: for alle∈ E

[[e]] =

v if e = v
I(x) if e = x
f ([[e1]], . . . , [[en]]) otherwise

where the functionI : X → V represents the actual instan-
tiation for the free variable in a parameterised bMSC, e.g.
the variabley in MSC3(y).

Definition 2 The LTS of the processes is a tuple(P ,−→)
over Act whereP is a set of processes (or states) and
−→⊆ P × Act× P denotes a transition relation. We write
P

α
−→ Q if and only if(P, α, Q) ∈−→. The transition re-

lation−→ is the smallest set that can be inferred from the
rules in Table 2.

It can be easily observed from the transition rules that the
famousτ action, denoting an invisible action in CCS, dose
not exist in our framework. Lack ofτ action indicates an im-
portant paradigm shift between CCS (orπ-calculus) and the
semantics of MSCs. In CCS, the system is like a black box.
The observer observes its behaviour by interacting with its
visible actions. What happens within the box is of no con-
cern hence denoted by the symbolτ . In MSC semantics,
however, the observer is given enough power to see through
the box. The observer observes the system’s behaviour by
seeing how the components communicate with each other.
In brief, it is what happens inside the box that counts for
the MSC semantics. These two paradigms can be illustrated
by Figure 3, where the dashed lines are invisible to the ob-
server. This concern also justifies theCOM rule, where the
fusion of two complement actionsaij (x) andaij (e) gives us
anothervisible action?aij [[e]] instead ofτ . It meansPi re-
ceived a data valued[[e]] from Pj along channela.

The prefix rulePRE1 andPRE2 shows two base cases
on the condition of the prefix. If the prefix is an assign-
ment, then a substitution of freex in P with the evaluation

PRE1 (x← e)i .P
(x←[[e]])i
−→ P{[[e]]/x}

PRE2 α.P
α

−→ P (α 6= (x← e)i) PAR
P

α

−→ P′

P | Q
α

−→ P′ | Q

COM
P

aij (x)
−→ P′, Q

aij (e)
−→ Q′

P | Q
?aij [[e]]
−→ P′{[[e]]/x} | Q′

RES1
P

α

−→ P′

P\L
α

−→ P′\L
(sn(α) /∈ L)

RES2
P

α

−→ P′

P\L
α

−→ P′\L
(α =!aij ∨ α =?aij e for some a, i, j)

STRUCT
P′ ≡ P, P

α

−→ Q, Q≡ Q′

P′
α

−→ Q′

Table 2. The operational semantics.

P1

P2 P3

interacts sees
P1

P2 P3

Figure 3. The CCS paradigm and the MSC
paradigm.

of e is performed after the transition. ThePARrule has the
usual meaning as that in CCS. The rules RES1 and RES2
say that restriction only applies to the complement actions
aij(x) andaij (e) butnot to the actions!aij , ?aij eor (x← e)i .
TheSTRUCTrule corresponds to the structural congruence
defined earlier.

4. From bMSCs toPCbMSC

In this section, we first give a brief discussion on the
scope of a variable occurring in a bMSC diagram. Then, a
mapping function is defined from a textual bMSC to a pro-
cess expression. Finally, a simple example is given.

4.1. The scope of a variable

One of the assumptions on data in a bMSC is that all
the variables are local and not sharable. An instance can
only refer to a variable iff either it is local or is passed from
another instance via a message. This causes a certain de-
gree of complexity in determining the scope of a variable.
A standard case for the above statements can be illustrated
by MSC5 in Figure 4, where the scope ofx coversa(x) and

*+ *, *-
. /0123.4

53. 6+4

789 :;<=
*+ *, *-

> /01
? /0 +

23>453?4 @3>6?4
> /0. 6?A3>6?4

789 :;<B3. / CDE4

Figure 4. The scope of a variable.

b(x + 1). In this case, we can deemP1 as theownerof the
variablex. We use this example to informally introduce two
concepts that will be used later.

1. We say that a variableis bound locallyif the instance
which refers to that variable is its owner, e.g.x in a(x)
is bound locally.

2. We say that a variableis bound by its neighbor Pjfor
somej ∈ N if the instance which refers to that variable
is not the owner but has received the variable fromPj.
In this case,x in b(x + 1) is bound by its neighborP1.

4.2. Mapping bMSCs to processes

The general idea is to represent a bMSC as a single pro-
cess, obtained by composing in parallel the process repre-
sentations of component instances. The process is restricted
by the subscripted channel names appearing in the bMSC.
Within an instance, an output event is split into two atomic
actions; one denotes the actual action of message sending,

and the other represents a pending message, in any kind of
medium, ready to be picked up by the destination instance.
An input event is expressed by an action with a variable
representing the template used in the subsequent process or
computation.

We let the setD(X) denote the domain of textual content
identified by the non-terminalX. For example, an element
in D(<msc>) is a textual bMSC.

Definition 3 We define the translation function[[]]msc :
D(<msc>) → P , which maps a textual bMSC to a pro-
cess term in our PCbMSC inductively as

[[msc <mscid>; <msc body> endmsc]]msc =
([[msc body]]mscbody)\L

where L⊆ N×N×N consists of subscripted channel names
appearing in the considered bMSC. This function means
that the process for a bMSC is restricted by all the sub-
scripted channel names appearing in the concerning bMSC.
Then the function[[]]mscbody : D(<msc body>) → P ,
which puts all the instances in a parallel manner, is defined

[[<>]]mscbody= 0
[[<inst def> <msc body>]]mscbody=

[[<inst def>]]inst | [[<msc body>]]mscbody

The function[[]]inst : D(<inst def>)→ P is defined as

[[instance Pi; <inst body> endinstance]]inst =

[[<inst body>]]
i
body

and with each instance Pi∈ D(<instid>), a function
[[]]ibody : D(<inst body>) → P is associated. It distin-
guishes all the events that make up an instance: if the event
is a message output, it is split into two sequential atomic
actions, i.e. an actual message sending and a pending mes-
sage. The latter can only occur after the former. Formally

[[<>]]
i
body = 0

[[E1; E2; . . . ; En]]
i
body =

[[E1]]
i
out.([[E1]]

i
event.0 | [[E2; . . . ; En]]

i
body)

if E1 is an output event
[[E1]]

i
event.[[E2; . . . ; En]]

i
body

otherwise

where E1...n ⊆ D(<event>), and the function[[]]
i
out :

D(<event>) → A, mapping an output event to an action,
is defined by

[[out a(e) to Pj]]iout =!aij

Finally, the function[[]]
i
event : D(<event>) → A is the

base case for three kinds of events. The first one is

[[in a(e) from Pj]]ievent=

{

aji if e = null
aji (x) otherwise

where the x occurring free in aji (x) has to be a variable that
is not bound with respect to its prefix. Formally, it can be
formulated as x∈ X and x /∈ bn([[E1; . . . ; Ek−1]]

i
body)

where we let the considered eventin a(e) from Pj in in-
stance Pi be Ek ∈ E1...n. The other two cases of this func-
tion is

[[action x := e]]ievent= (x← eσ)i

[[out a(e) to Pj]]ievent=

{

aij if e = null
aij (eσ) otherwise

whereσ : E → E denotes a relabelling function and can be
defined inductively as follows

vσ = v
f (e1, . . . , en)σ = f (e1σ, . . . , enσ)

xσ =

x if x is bound locally or
if x is a parameterised variable

x1 if x is bound by its neighbor

where x1 has to respect the variable used in the input event
that brings x to the instance Pi. Let the considered event
out a(e) to Pj be Ek ∈ E1...n and the input event bring-
ing x to Pi be Es ∈ E1...k−1. The requirement on x1 can be
formally expressed as[[Es]]

i
event= aji (x1).

This style of mapping function also appears in related
work, such as [17, 7], that translates a textual bMSC into
a denotational domain. Our work differs from theirs in two
senses. First, the function[[]]

i
body implements the idea that

an output event has to be split into two atomic actions. The
pending message proceeds in parallel with the events fol-
lowing the output event. Second, a complex mechanism is
used to build the function[[]]ieventto ensure the correct data
binding as the data language is added into a bMSC. It can
be explained via an example as we do next.

4.3. A simple example

We useMSC6(x) in Figure 4 as an example to illustrate
the translation and how its corresponding process behaves.
This example is particularly designed to show that a lib-
eral use of data variables in a bMSC can lead to complex
data binding. The function[[]]

i
eventwe define earlier ensures

the correct binding as the bMSC proceeds. In this case, the
occurrences of the variabley in c(y + z) andd(y + z) are
bound differently. If the parameterised variablex is instan-
tiated as1, then the last two messagesP2 sends toP3 will
bec(1) andd(3) though that they both send outy + z.

As a shorthand, we use identifiers of a bMSC and its in-
stances to represent the whole textual content. For readabil-
ity, the process for the wholeMSC6(x) is expressed via the
processes of its components. We also adopt the convention
of CCS orπ-calculus by writing the processα.0 asα where
α ∈ Act for simplicity. The corresponding process trans-
lated fromMSC6(x) is in Table 3.

[[MSC6(x)]]msc = ([[P1]]inst | [[P2]]inst | [[P3]]inst)\{a12, b12, c23, d23}

[[P1]]inst = (y← 0)1.(z← 1)1.!a12.(a12(y) |!b12.(b12(z) | 0))
[[P2]]inst = a12(x1).b12(x2).!c23.(c23(x1 + x2) | (y← (x + x2))2.!d23.(d23(x + x2) | 0))
[[P3]]inst = c23(x1).d23(x2)

Table 3. The process expression for MSC6(x).

Asynchrony is ensured because the pending message, de-
noted as an overlined action, does not block what happens
after the output event. The data flow is modelled by intro-
ducing an intermediate variable, e.g.x1, in the message-
waiting action,a12(x1). By the transition ruleCOM in Table
2, we note that after the handshake with the pending mes-
sage, the intermediate variable disappears, and the value is
passed. The choice ofx1 and the relabelling mechanism de-
fined in [[]]

i
eventensure a correct binding.

By applying the operational semantics defined in Table
2, one of the traces derived from the LTS of[[MSC6(x)]]msc
with I(x) = 1 is,

(y←0)1
−→

(z←1)1
−→

!a12−→
!b12−→

?a120
−→

?b121
−→

!c23−→
(y←2)2
−→

!d23−→
?c231
−→

?d233
−→

For brevity, we only show one path in the LTS of the con-
sidered process, using the above notation. More paths can
be derived. In summary, the semantics of a bMSC here is
captured as a set of sequences of input and output events
along with data information.

5. Behavioural equivalence

In this section, we discuss the equivalence between bM-
SCs in terms of their process domain. Briefly, two bMSCs
are equivalent if and only if their corresponding process ex-
pressions are equivalent. A standard way to give a seman-
tic equivalence to a CCS-like notation is usingbisimula-
tion. Our work is no exception, but the distinction between
strongandweakbisimulation, based on the ability to ob-
serve the invisible action in CCS [20], is no longer applica-
ble here due to the lack of invisible actionτ .

A full discussion of bisimulation for our theory will form
another paper. For space, we only define strong bisimula-
tion [10, 27] here. In this case, the observer can see ev-
ery action performed by a process. Moreover, given the cur-
rent bMSC domain, we argue that the process expressions
derived from the bMSCs behave deterministically with re-
spect to their LTSs. This feature enables us to use a sim-
pler model, namely trace semantics, to observe a process
and apply the trace equivalence for the equivalence between
bMSCs without losing any expressiveness. Also note that a

weaker bisimulation is feasible and may be developed in fu-
ture work.

Definition 4 A bisimulation is a binary relationR ⊆ P×P
over processes satisfying the following two properties. For
all α ∈ Act:

• if (P, Q) ∈ R and P
α
−→ P′, then there exists Q′ such

that Q
α
−→ Q′ and(P′, Q′) ∈ R.

• R is symmetric.

Two processes P and Q are bisimilar, written P=B Q, if
there exists a bisimulationR such that(P, Q) ∈ R.

We adopt the convention of van Glabbeek [27] by defin-
ing a deterministic process in terms of ageneralised action
relationbut in a more convenient style for our proofs:

Definition 5 Let Act∗ denote the set of finite sequences over
Act. We writeε ∈ Act∗ for an empty sequence andϕρ for
concatenation of the two sequencesϕ, ρ ∈ Act∗.

• The generalised action relation=⇒⊆ P × Act∗ × P
is defined inductively in terms of−→. For P, Q, R∈ P
andα ∈ Act,

P
ε

=⇒ P
P

α
−→ Q implies P

α
=⇒ Q whereα ∈ Act∗

P
ϕ

=⇒ Q
ρ

=⇒ R implies P
ϕρ

=⇒ R

• A process P∈ P is deterministic iff

∀P′ : P such that
P

ϕ

=⇒ P′ ∧ P′
α
−→ R∧ P′

α
−→ Q⇒ Q = R

Proposition 1 For all M ∈ D(<msc>), [[M]]mscis determin-
istic.

The proof of the above proposition is in the Appendix.
We then define the trace observation for a process.

Definition 6 A trace observation is a function T: P →
P(Act∗) defined as: for all process terms P∈ P , T(P) =

{ϕ : Act∗ | ∃Q ∈ P such that P
ϕ

=⇒ Q}. Accordingly,
two processes P, Q ∈ P are trace-equivalent, written as
P =T Q, if and only if T(P) = T(Q).

Note that=T is an equivalence relation by virtue of re-
flexity, symmetry and transitivity of equivalence on sets.

Lemma 1 For P, Q ∈ P andϕ ∈ Act∗,

P =B Q ∧ P
ϕ

=⇒ P′ ∧ Q
ϕ

=⇒ Q′ ⇒ P′ =B Q′

The proof of the above lemma is trivial by mathematical
induction on the length of the traceϕ. This property is used
in the proof of the following proposition:

Proposition 2 For M1, M2 : D(<msc>), [[M1]]msc =B

[[M2]]msc if and only if[[M1]]msc =T [[M2]]msc

This proposition states that given the current bMSC do-
main, bisimulation and trace model coincide. For determin-
istic processes, this coincidence was found by Park [23],
and also documented in [27]. For completeness, we provide
our own reasoning in the Appendix.

Definition 7 For M1, M2 : D(<msc>), M1 = M2 if and
only if [[M1]]msc =T [[M2]]msc.

This definition states that two bMSCs are equivalent iff
their process expressions are trace-equivalent.

6. Conclusion and future work

In this paper, we present an alternative semantics for a
bMSC with data flow. A textual bMSC is firstly transformed
into the process domain, and then the operational semantics
are used to describe how the process behaves. The process
calculus used here is inspired by asynchronous CCS with
value-passing. Asynchrony is used to capture the temporal
ordering of atomic actions in a bMSC, and value-passing
can effectively model the data-binding changes while a
bMSC executes.

Jonsson et al. [14] have also developed semantics to
MSCs with data. They adopt thestate-basedapproach for
this task in the sense that the behaviour of an MSC is a se-
quence of computation steps betweenconfigurations, which
record the current state and data binding of the MSC. A la-
beled transition system is defined accordingly. The alterna-
tive we propose here tackles the problem via aevent-based
view. The behaviour of an MSC is a sequence of atomic ac-
tions incorporating the data information. Equivalences be-
tween MSCs can also be discussed from the process do-
main, using different bisimulations.

Here we have only considered a limited set of MSC con-
structs and defined data variables. Future work can be car-
ried out along these two threads. From the MSC aspect,
two important elements can be incorporated into our bMSC
language, i.e.coregionsand inline expressions, which can
cause non-determinism in our process domain. In this case,
the trace model used in this paper will not be strong enough
to distinguish two processes, and therefore new equivalence
relations are needed. Furthermore, the composition of bM-
SCs needs to be introduced to form a complete MSC lan-
guage. From the data aspect, we plan to demonstrate that

the current framework can be extended to capture undefined
variables.

References

[1] J. Baeten and C. Verhoef.Process Algebra. Cambridge Uni-
versity Press, 1990. Cambridge Tracts in Theoretical Com-
puter Science 18.

[2] CCITT. CCITT Recommendation Z.120: Message Sequence
Chart (MSC). Geneva, 1992.

[3] J. de Man. Towards a formal semantics of Message Sequence
Charts. InSDL’93 Using Objects, Darmstadt, 1993. Elsevier
Science Publishers, Amsterdam. Proceeding of the 6th SDL
Forum.

[4] A. Engels. Design decisions on data and guards in
MSC2000. In S. Graf, C. Jard, and Y. Lahav, editors,
SAM2000, Proceedings of the 2nd Workshop of the SDL Fo-
rum Society on SDL and MSC, pages 33–46, Col de Porte,
Grenoble, June 2000.

[5] A. Engels, L. Feijs, and S. Mauw. MSC and data: Dynamic
variables. In R. Dssouli, G. von Bochmann, and Y. La-
hav, editors,SDL’99, Proceedings of the 9th SDL Forum,
pages 105–120, Montreal, Canada, June 1999. Elsevier Sci-
ence Publishers.

[6] L. Feijs and S. Mauw. MSC and data. In Y. Lahav, A. Wolisz,
J. Fisher, and E. Holz, editors,Proceedings of the 1st Work-
shop of the SDL Forum Society on SDL and MSC, pages
85–94, Berlin, Germany, June 1998. Humboldt-Universität
zu Berlin.

[7] T. Gehrke, M. Huhn, A. Rensink, and H. Wehrheim. An al-
gebraic semantics for Message Sequence Charts documents.
In Proceedings of FORTE/PSTV ‘98, Paris, 1998.

[8] J. Grabowski, P. Graubmann, and E. Rudolph. Towards a
Petri net based semantics definition for Message Sequence
Charts. InSDL’93 Using Objects, Darmstadt, 1993. Pro-
ceeding of the 6th SDL Forum.

[9] O. Haugen. MSC-2000 interaction diagrams fot the new mil-
lennium.Computer Networks, 35:721–732, 2001.

[10] K. Honda and M. Tokoro. An object calculus for asyn-
chronous communication. InThe Fifth European Con-
ference on Object-Oriented Programming. Springer-Verlag,
July 1991.

[11] K. Honda and M. Tokoro. On asynchronous communication
semantics. InObject-based Concurrent Computing (LNCS
612). Springer-Verlag, June 1992.

[12] ITU-TS. Recommendation Z.120: Message Sequence Chart
(MSC). Geneva, 1996.

[13] ITU-TS. Recommendation Z.120: MSC 2000. Geneva, 2001.

[14] B. Jonsson and G. Padilla. An execution semantics for MSC-
2000. InProceedings of the 10th SDL Forum, Copenhagen,
Denmark, June 2001.

[15] P. Kosiuczenko. Formalizing MSC’96: Inline expres-
sions. Technical report, Ludwig-Maximilians-Universit¨at
München, Institut für Informatik, 1997. Nr. 9705.

[16] P. Ladkin and S. Leue. What do Message Sequence Charts
mean? In R. Tenney, P. Amer, and M. Uyar, editors,For-
mal Description Techniques VI, IFIP Transactions C, North-
Holland, 1994. Proceeding of the 6th International Confer-
ence on Formal Description Techniques.

[17] S. Mauw and M. Reniers. An algebraic semantics of ba-
sic Message Sequence Charts.The Computer Journal,
37(4):269–277, 1994.

[18] S. Mauw and M. Reniers. Operational semantics
for MSC’96. Computer Networks and ISDN Systems,
31(17):1785–1799, 1999.

[19] S. Mauw, M. van Wijk, and T. Winter. A formal semantics of
synchronous interworkings. InSDL’93 Using Objects, Pro-
ceeding of the 6th SDL Forum, Darmstadt, 1993. Elsevier
Science Publishers, Amsterdam.

[20] R. Milner. Communication and Concurrency. Prentice-Hall,
1989. ISBN 0-13-114984-9.

[21] R. Milner. Functions as processes. InAutomata, Language
and Programming (LNCS 443). Springer-Verlag, 1990.

[22] R. Milner. The polyadicπ-calculus: a tutorial. Technical re-
port, Laboratory of Foundations of Computer Science, Com-
puter Science Department, University of Edinburgh, 1991.

[23] D. Park. Concurrency and automata on infinite sequences.
In 5th GI Conference (LNCS 104), pages 167–183. Springer-
Verlag, 1981.

[24] S. Reeves and D. Streader. State-based and process-based
value-passing. Appearing in ST.EVE Workshop, Pisa,
September 2003.

[25] E. Rudolph, P. Graubmann, and J. Grabowski. Tutorial on
Message Sequence Charts.Computer Networks and ISDN
Systems - SDL and MSC, 28(12), 1996.

[26] E. Rudolph, P. Graubmann, and J. Grabowski. Tutorial on
Message Sequence Charts (MSC’96). InTutorial of the 1st
joint International Conference on Formal Description Tech-
niques for Distributed Systems and Communication Proto-
cols, and Protocol Specification, Testing, and Verification
(FORTE/PSTV’96), Kaiserslautern, Germany, October 1996.

[27] R. van Glabbeek. The linear time - branching time spec-
trum I The semantics of concrete, sequential processes. In
J. Bergstra, A. Ponse, and S. Smolka, editors,Handbook of
Process Algebra, chapter 1, pages 3–99. Elsevier, 2001.

Appendix

Proposition 1 For all M ∈ D(<msc>), [[M]]mscis determin-
istic.

Proof We prove by contradiction. Suppose there exists an
M : D(<msc>) such that it isnot the case that[[M]]msc is de-
terministic. According to Definition 5, the process[[M]]msc
satisfies the following property:

∃P′ : P such that
[[M]]msc

ϕ

=⇒ P′ ∧ P′
α
−→ Q ∧ P′

α
−→ R∧ Q 6= R

The actionα has three cases discussed as below:

• α =!aij . The predicateQ 6= R suggests thatα de-
notes two different events in a bMSC, and the predi-
ateP′

α
−→ Q ∧ P′

α
−→ R requires no temporal order-

ing on the two events. In other words, the two events
can never be on the same instance axis (without the
coregionor inline-expressionconstructs). This leads to
a contradiction becauseα has the form!aij , which de-
notes an output event on the instancePi.

• Similar arguments are applicable whenα has the other
forms. They all lead to contradictions. 2

Proposition 2 For M1, M2 : D(<msc>), [[M1]]msc =B

[[M2]]msc if and only if[[M1]]msc =T [[M2]]msc

Proof Due to Proposition 1, we know that for all bMSCs
in our MSC domainD(<msc>), their process expressions
are deterministic. Hence this proposition can be rephrased
as for two deterministic processesP, Q ∈ P , P =B Q ⇔
P =T Q.

• ⇒
To proveP =T Q, we show thatT(P) ⊆ T(Q) and
T(Q) ⊆ T(P), i.e.

∀ t : Act∗ such thatt ∈ T(P)⇒ t ∈ T(Q) ∧
∀ t : Act∗ such thatt ∈ T(Q)⇒ t ∈ T(P)

We use mathematical induction on the length of traces
t, denoted by|t|, in T(P). Here we only showT(P) ⊆
T(Q). Similar arguments can be applied the other way
around.
First, when| t |= 0, t is an empty sequenceε hence
ε ∈ T(Q). Then we assume that when| t |= n, t has
the formϕ ∈ Act∗ andt ∈ T(Q). According to Def-
inition 6, we know that there exists aQ′ ∈ P such
that Q

ϕ

=⇒ Q′. When | t |= n + 1, we have to show
thatt ∈ T(Q). SinceT(P) is aprefix-closedset,t must
have the formϕα whereα ∈ Act. Due to Definition 5,
we knowP

ϕ

=⇒ P′
α
−→ P′′ for someP′ andP′′ in P .

From Lemma 1,Q′ =B P′, soQ′
α
−→ Q′′ for someQ′′.

Henceϕα ∈ T(Q).

• ⇐
Let R be the set containing the pairs of trace-
equivalent processes, i.e.

R = {(P, Q) : P × P | P =T Q}

Supposing thatP
α
−→ P1 whereα ∈ Act, then we have

a uniqueP1 andT(P1) = {ϕ : Act∗ | αϕ ∈ T(P)}
whereα is a singleton trace. Due to the assumption
thatP =T Q, we haveQ

α
−→ Q1 whereQ1 is unique

and T(Q1) = {ϕ : Act∗ | αϕ ∈ T(Q)}. Hence
(P1, Q1) ∈ R. The same argument applies to(Pn, Qn)

whereP
ϕ

=⇒ Pn andQ
ϕ

=⇒ Qn.
R is symmetric due to the commutativity of set equiva-
lence. HenceR is a bisimulation. 2

