
Hybrid Performance-oriented Scheduling of Moldable
Jobs with QoS Demands in Multiclusters and Grids∗

Ligang He, Stephen A. Jarvis, Daniel P. Spooner, Xinuo Chen and
Graham R. Nudd

Department of Computer Science, University of Warwick
Coventry, United Kingdom CV4 7AL
liganghe@dcs.warwick.ac.uk

Abstract. This paper addresses the dynamic scheduling of moldable jobs with
QoS demands (soft-deadlines) in multiclusters. A moldable job can be run on a
variable number of resources. Three metrics (over-deadline, makespan and idle-
time) are combined with weights to evaluate the scheduling performance. Two
levels of performance optimisation are applied in the multicluster. At the multi-
cluster level, a scheduler (which we call MUSCLE) allocates parallel jobs with
high packing potential to the same cluster; MUSCLE also takes the jobs' QoS
requirements into account and employs a heuristic to achieve performance bal-
ancing across the multicluster. At the single cluster level, an existing workload
manager, called TITAN, utilizes a genetic algorithm to further improve the
scheduling performance of the jobs allocated by MUSCLE. Extensive experi-
mental studies are conducted to verify the effectiveness of the scheduling
mechanism in MUSCLE. The results show that the comprehensive scheduling
performance of parallel jobs is significantly improved across the multicluster.

1 Introduction

Separate clusters are increasingly being interconnected to create multicluster or grid
computing architectures [1][2][6][7] and as a result, workload management for these
architectures is becoming a key research issue. Parallel jobs that run in these domains
can be classified into two categories: rigid and moldable [11]. In this paper, a mecha-
nism is developed to schedule moldable jobs in multiclusters/grids. A moldable job is
defined as a parallel job that can be run on a variable number of computers.

A job’s execution time may not be inversely proportional to its size due to the
presence of communication among execution components [10][12]. Consequently,
the smallest product of a job's size and the corresponding execution time results in the
least consumption of resources. This size is called the preferable size of the job.

In the multicluster architecture assumed in this paper, the constituent clusters may
be located in different administrative organizations and as a result be managed with

∗ This work is sponsored in part by grants from the NASA AMES Research Center (adminis-

trated by USARDSG, contract no. N68171-01-C-9012), the EPSRC (contract no.
GR/R47424/01) and the EPSRC e-Science Core Programme (contract no. GR/S03058/01).

different performance criteria. In this scheduling work, we combine three metrics
(over-deadline, makespan and idle-time) with additional variable weights; this allows
the resources in different locations to represent different performance scenarios.
Over-deadline is defined as the sum of excess time of each job's finish time over its
deadline; makespan is defined as the duration between the start time of the first job
and the finish time of the last executed job [8][9].

In this work, the multicluster architecture is equipped with two levels of perform-
ance optimisation. A multicluster-level scheduler (called MUSCLE) is developed to
allocate moldable jobs with QoS demands (deadlines) to constituent clusters. When a
job is submitted to the multicluster, MUSCLE identifies the job’s preferable size and
corresponding execution time and then allocates jobs with high packing potential in
terms of their preferable sizes to the same cluster. It also takes the QoS demands of
jobs into account and exploits a heuristic to allocate suitable workload to each cluster.
When MUSCLE makes scheduling decisions to distribute jobs to individual clusters,
it also determines a seed schedule for the jobs allocated to each cluster assuming the
jobs are run with their preferable sizes. These seed schedules are sent to the corre-
sponding clusters where an existing workload manager (TITAN [12]) uses a genetic
algorithm to transform the schedule into one that further improves the (local) com-
prehensive performance.

The rest of the paper is organized as follows. The system and workload model is
introduced in Section 2. Section 3 briefly presents the genetic algorithm used in
TITAN. The design of MUSLCE is proposed in Section 4. Section 5 presents the
experimental results. Finally, Section 6 concludes the paper.

2 System and Workload Model

Jobs

Jobs Jobs

… … …
…

Local clusters

MUSCLE

Agent

TITAN

…

Agent

PACE PACE PACE

PACE

Agent

TITAN

Agent

TITAN

Fig. 1. The multicluster job management architecture

The multicluster architecture assumed in this work (shown in Fig. 1) consists of n
clusters, C1, C2, …, Cn; where a cluster Ci (1≤i≤n) consists of mi homogeneous com-
puters (i.e., the size of cluster Ci is mi), each with a service rate of ui. There are two
scheduling levels in the architecture; MUSCLE acts as the global scheduler for the
multicluster while TITAN schedules the jobs sent by MUSCLE within each local

cluster. MUSCLE and TITAN are interconnected through an agent system [3][4][5].
Users can submit parallel jobs to the multicluster through MUSCLE or through
TITAN. PACE (Performance Analysis and Characterisation Environment) [10][15] is
incorporated into the architecture to provide the jobs’ preferable size and correspond-
ing execution time. Parallel jobs are moldable, and a parallel job, denoted by Ji, is
identified by a 4-tuple (ai, si, eij, di), where ai is Ji’s arrival time, si is its preferable
size, etij is its execution time in cluster Cj (1≤j≤n) and di is its soft-deadline (QoS).

3 Local-level Scheduling via TITAN

This section briefly describes the genetic algorithm used in the TITAN workload
manager [12]. Three metrics (over-deadline, makespan and idle-time) are combined
with the additional weights to form a comprehensive performance metric (denoted by
CP), which is used to evaluate a schedule. The CP is defined in Eq.1, where Γ, ω and
θ are makespan, idle-time and over-deadline, respectively; Wi, Wm and Wo are their
weights. For a given weight combination, the lower the value of CP, the better the
comprehensive performance.

omi

omi

WWW
WWWCP

++
++Γ

=
θω (1)

A genetic algorithm is used to find a schedule with a low CP. The algorithm first
generates a set of initial schedules (one of these is the seed schedule sent by
MUSCLE). Crossover and mutation operations are performed to transform the sched-
ules in the current set and generate the next generation. This procedure continues
until the performance in each generation of schedule stabilizes.

4 Global-level Scheduling via MUSCLE

The main operations performed by MUSCLE are as follows. First, MUSCLE deter-
mines which parallel jobs with preferable sizes can be packed into a computer space
with a given size. These possible compositions of parallel jobs are organized into a
composition table. After the composition table is constructed, MUSCLE searches the
table for suitable parallel jobs to allocate to the available computer space in a cluster.
When the computer space is available in multiple clusters, MUSCLE orders the proc-
essing of the space using a heuristic.

4.1 Organizing Parallel Jobs

Suppose the maximum cluster size in the multicluster is mMAX and that at some time
point, p parallel jobs, J1, J2, …, Jp are collected (into a queue) in the multicluster.
Algorithm 1 outlines the steps for constructing the composition table. The p jobs are
filled into suitable rows in the table.

Algorithm 1. Constructing the composition table
1. for each parallel job Ji (1≤i≤p) to be scheduled do
2. for each j satisfying 1≤j≤ mMAX do
3. if si = j
4. Append Ji to the tail of the j-th row of the
 table;
5. if si < j
6. r←j−si;
7. if the r-th row in the table is not NULL
8. if there is such a composition of parallel
 jobs in the r-th row in which no job is
 in the j-th row of the table;
9. Append Ji as well as the parallel jobs in
 the composition from the r-th row to
 the tail of the j-th row;

There are two for-loops in Algorithm 1 and Step 8 searches a row for the qualified
composition. In the worst case, the time taken by Step 8 is O(p). Hence, the worst-
case time complexity of Algorithm 1 is O(p2mMAX).

4.2 Searching the Composition Table

The algorithm for allocating jobs to a computer space with size r in a cluster proceeds
as follows. First, it searches the composition table from the r-th row up to the first
row to obtain the first row that is not null. Then, in this row, the algorithm selects the
composition in which the number of jobs having been allocated is the least. If the
number is zero, these jobs are allocated to the computer space. If a job Ji, whose size
is si, in the composition has been allocated, a function is called to search the si-th row
for alternative jobs for Ji. The function is called recursively if a composition cannot
be found in the si-th row in which no job in it is allocated. The recursive call termi-
nates when there is only one composition in a searched row (i.e. there are no alterna-
tive jobs) or when the composition consisting of unallocated jobs is found. If the
algorithm fails to allocate jobs to the computer space with size r, it continues by try-
ing to identify jobs to allocate to the computer space with size r=r-1. The procedure
continues until r reaches 0. After the allocated jobs have been determined, the sched-
ule for these jobs can also be computed. The time complexity of the procedure is
based on the number of jobs that are allocated. The best-case time complexity is O(1)
while the worst-case time complexity is O(p2nMAX).

As can be seen from the above description, the job allocation algorithm always at-
tempts to identify the jobs that maximally occupy the given computer space. In doing
so, the number of computers left idle is minimized.

4.3 Employing a Heuristic to Balance Performance

A performance metric ε is formed by integrating the workload attributes in clusters. ε
is defined in Eq.2, where pi is the number of jobs, etSumi is the sum of the execution
times of all jobs, sizeSumi represents the total job sizes and slkSumi is the total slack

(the slack of a job is its deadline minus its execution time and its arrival time). When
multiple clusters offer available computer space, the cluster with the smallest ε is
given the highest priority and will be allocated the jobs.

ii

iii

mslkSum
sizeSumetSump
×

××
=ε (2)

The complete scheduling procedure for MUSCLE is outlined in Algorithm 2.
Algorithm 2. MUSCLE scheduling
1. while the expected makespan of the jobs yet to be
 scheduled in clusters is greater than a prede-
 fined valve
2. Collect the arriving jobs in the multicluster;
3. Call Algorithm 1 to construct the composition ta-
 ble for the collected jobs;
4. do
5. for each cluster do
6. Calculate ε using Eq.2
7. Get the earliest available computer space in
 cluster Ci which has the minimal ε;
8. Allocate jobs to this space;
9. Update the earliest available computer space and
 the values of the workload attributes in Ci;
10. while all collected jobs have not been allocated;
11. Go to Step 1;

The time of Algorithm 2 is dominated by Step 3 and Step 8 in the do-while loop.
Their time complexities have been analysed in subsection 4.1 and 4.2.

5 Experimental Studies

A simulator is developed to evaluate the performance of the scheduling mechanism in
MUSCLE. The experimental results focus on demonstrating the performance advan-
tages of the scheduling mechanism in MUSCLE over the scheduling policies fre-
quently used in distributed systems. Weighted Random (WRAND) and Dynamic
Least Load (DLL) policies are two selected representatives. The DLL policy sched-
ules jobs to the resource with the least workload. In the WRAND policy, the prob-
ability that a job is scheduled to a resource is proportional to its processing capability.

40,000 parallel jobs are generated; the submissions of parallel jobs follow a Pois-
son process. A job’s preferable size follows a uniform distribution in [MIN_S,
MAX_S]. Given a job’s preferable size si, suppose that the corresponding execution
time is eij,si; then when the job’s size is si+k, the corresponding execution time eij,si+k is
determined by Eq.3, where k can be positive or negative integer and ϕ is the factor
that determines the scalability of the job regarding its size.

)||1(,, ϕk
ks

seie
i

i
sijksiij +×

+
×=+ (3)

When jobs take preferable sizes and the service rate is the average service rate of
the constituent clusters in the multicluster, their execution time follow a bounded
Pareto distribution, shown in Eq.4, where el and eu are the lower and upper limit of
the execution time x.

1

)/(1
)(−−

−
= α

α

αα
x

ee
e

xf
ul

l (4)

A job’s deadline, di is determined by Eq.5, where dr is the deadline ratio. dr fol-
lows a uniform distribution in [MIN_DR, MAX_DR], which is used to measure the
deadline range.

di=max{etij}×(1+dr) (5)

The performance metrics evaluated in the experiments are the Mean Comprehen-
sive Performance (MCP) and Load Balance Factor (LBF). MCP is the average of CP
in each cluster and LBF is the standard deviation of these CP’s.

5.1 Workload Levels

Table 1. The multicluster setting in Fig.4

Clusters C1 C2 C3 C4
Size 20 16 12 10
Service rate ratio 1.0 1.2 1.4 1.6

0

100

200

300

400

500

40 50 60 70 80 90 100
Mean number of jobs in the queue

M
C

P

MUSCLE
DLL
WRAND

0

100

200

300

400

500

40 50 60 70 80 90 100

Mean number of jobs in the queue

LB
F

MUSCLE
DLL
WRAND

 (a) (b)

Fig. 2. The comparison of MUSCLE, DLL and WRAND under different workload levels in
terms of (a) mean comprehensive performance (MCP), and (b) Load balance factor (LBF); (Wo,
Wm, Wi)=(4, 3, 1); (e,, eu)=(5, 100); (MIN_S, MAX_S)=(1, 10); (MIN_DR, MAX_DR)=(1, 5);
ϕ=0.05; The cluster size and service rate are shown in Table 1

Fig.2.a and Fig.2.b demonstrate the performance difference among MUSCLE, DLL
and WRAND scheduling policies under different workload levels. The workload
level is measured by the mean number of jobs in the queue (for accommodating the
collected jobs) in the multicluster. It can be observed from Fig.2.a that MUSCLE

outperforms the DLL and WRAND policies under all workload levels. This is be-
cause the jobs are packed tightly in the seed schedules sent by MUSCLE to the indi-
vidual clusters. Therefore, the further improvement by the genetic algorithm in each
cluster is based on an excellent “seed”. As can be observed from Fig.2.b, MUSCLE
outperforms DLL and WRAND in terms of LBF except when the mean number of
jobs is 40 (in that case, the performance achieved by MUSCLE is slightly worse than
that by DLL). The reasoning behind this is as follows. When the workload is low, a
small number of jobs miss their deadlines. DLL is beneficial to obtaining the bal-
anced resource throughput and resource utilization. Therefore, DLL shows a more
balanced MCP performance. However, as the workload increases further, more jobs
miss their deadlines. MUSCLE takes the QoS demands into account so that the MCP
performance remains balanced among the clusters.

5.2 Cluster Size

0

100

200

300

400

500

[10, 42] [14, 38] [18, 34] [22, 30] [26, 26]

heterogeneity of cluster size

M
C

P

MUSCLE
DLL
WRAND

0

100

200

300

400

500

[10, 42] [14, 38] [18, 34] [22, 30] [26, 26]

heterogeneity of cluster size

LB
F

MUSCLE
DLL
WRAND

 (a) (b)

Fig. 3. Performance comparison of MUSCLE, DLL and WRAND under different heterogene-
ity levels of cluster size, measured by a range [a, b]; (e,, eu)=(5, 100); (MIN_S, MAX_S)=(1,
a); (MIN_DR, MAX_DR)=(1, 5); ϕ=(a+1)/a; the mean number of jobs in the queue is 100

Parallel jobs have to be packed into the clusters. Cluster size is therefore an important
parameter for parallel job scheduling. Fig.3.a and Fig.3.b compare the performance of
MUSCLE, DLL and WRAND under different heterogeneity levels of cluster size.
The heterogeneity levels of cluster size are measured by the scale of the range from
which cluster sizes are selected. The multicluster consists of five clusters. Five sets of
cluster sizes, all with the same average, are uniformly chosen from five ranges, [10,
42], [14, 38], [18, 34], [22, 30] and [26, 26]. The range [26, 26] means the multiclus-
ter is homogeneous in terms of cluster size. The service rates of computers in all clus-
ters are set to be the same.

As can be observed from Fig.3.a and Fig.3.b, MUSCLE outperforms DLL and
WRAND in terms of MCP and LBF in all cases. Further, MCP and LBF performance
achieved by all three policies improves as the heterogeneity level decreases. This is

because the decrease in the heterogeneity of the cluster size is beneficial to achieving
a balanced load for all policies. Thus, the MCP performance is also improved.

6. Conclusions

A multicluster-level scheduler, called MUSCLE, is described in this paper for the
scheduling of moldable jobs with QoS demands in multiclusters. MUSCLE is able to
allocate jobs with high packing potential (in terms of their preferable sizes) to the
same cluster and further utilizes a heuristic to control the workload distribution
among the clusters. Extensive experimental studies have been carried out to verify the
performance advantages of MUSCLE.

References

1. M. Barreto, R. Avila, P. Navaux.: The MultiCluster model to the integrated use of multiple
workstation clusters. Proc. of the 3rd Workshop on Personal Computerbased Networks of
Workstations, 2000, pp. 71–80

2. R. Buyya, M. Baker.: Emerging Technologies for Multicluster/Grid Computing. Proceedings
of the 2001 IEEE International Conference on Cluster Computing, 2001

3. J. Cao, D. J. Kerbyson, G. R. Nudd.: Performance Evaluation of an Agent-Based Resource
Management Infrastructure for Grid Computing. Proc. of 1st IEEE/ACM International
Symposium on Cluster Computing and the Grid, 2001

4. J. Cao, D. J. Kerbyson, E. Papaefstathiou, G. R. Nudd.: Performance Modeling of Parallel
and Distributed Computing Using PACE. Proceedings of 19th IEEE Intl Performance,
Computing, and Communications Conference, 2000

5. J. Cao, D. P Spooner, S. A Jarvis, G. R Nudd.: Grid load balancing using intelligent agents.
To appear in Future Generation Computer Systems special issue on Intelligent Grid Envi-
ronments: Principles and Applications, 2004

6. L. He, S. A. Jarvis, D. P. Spooner, G. R. Nudd.: Optimising static workload allocation in
multiclusters. Proceedings of 18th IEEE International Parallel and Distributed Processing
Symposium (IPDPS'04), April 26-30, 2004

7. X. He, X. Sun, G. Laszewski.: QoS Guided Min-Min Heuristic for Grid Task Scheduling.
Journal of Computer Sci&Tech, Special Issue on Grid Computing, 18(4), 2003

8. B. G. Lawson, E. Smirni.: Multiple-queue Backfilling Scheduling with Priorities and Reser-
vations for Parallel Systems. 8th Job Scheduling Strategies for Parallel Processing, 2002

9. A. W. Mu'alem, D. G. Feitelson.: Utilization, predictability, workloads, and user runtime
estimates in scheduling the IBM SP2 with backfilling. IEEE Trans. Parallel & Distributed
Syst. 12(6), pp. 529-543, 2001

10. G. R. Nudd, D. J. Kerbyson, E. Papaefstathiou, J. S. Harper, S. C. Perry, D. V. Wilcox.:
PACE: A Toolset for the Performance Prediction of Parallel and Distributed Systems. In
The Intl Journal of High Performance Computing, 1999.

11. E. Shmueli, D. G. Feitelson.: Backfilling with lookahead to optimize the performance of
parallel job scheduling. 9th Job Scheduling Strategies for Parallel Processing, 2003

12. D. P Spooner, S. A Jarvis, J Cao, S Saini, G. R Nudd.: Local Grid Scheduling Techniques
using Performance Prediction. IEE Proc. Comp. Digit. Tech., 150(2):87-96, 2003

