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Abstract. This paper addresses the dynamic scheduling of moldable jobs with 
QoS demands (soft-deadlines) in multiclusters. A moldable job can be run on a 
variable number of resources. Three metrics (over-deadline, makespan and idle-
time) are combined with weights to evaluate the scheduling performance. Two 
levels of performance optimisation are applied in the multicluster. At the multi-
cluster level, a scheduler (which we call MUSCLE) allocates parallel jobs with 
high packing potential to the same cluster; MUSCLE also takes the jobs' QoS 
requirements into account and employs a heuristic to achieve performance bal-
ancing across the multicluster. At the single cluster level, an existing workload 
manager, called TITAN, utilizes a genetic algorithm to further improve the 
scheduling performance of the jobs allocated by MUSCLE. Extensive experi-
mental studies are conducted to verify the effectiveness of the scheduling 
mechanism in MUSCLE. The results show that the comprehensive scheduling 
performance of parallel jobs is significantly improved across the multicluster. 

1   Introduction 

Separate clusters are increasingly being interconnected to create multicluster or grid 
computing architectures [1][2][6][7] and as a result, workload management for these 
architectures is becoming a key research issue. Parallel jobs that run in these domains 
can be classified into two categories: rigid and moldable [11]. In this paper, a mecha-
nism is developed to schedule moldable jobs in multiclusters/grids. A moldable job is 
defined as a parallel job that can be run on a variable number of computers. 

A job’s execution time may not be inversely proportional to its size due to the 
presence of communication among execution components [10][12]. Consequently, 
the smallest product of a job's size and the corresponding execution time results in the 
least consumption of resources. This size is called the preferable size of the job. 

In the multicluster architecture assumed in this paper, the constituent clusters may 
be located in different administrative organizations and as a result be managed with 
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different performance criteria. In this scheduling work, we combine three metrics 
(over-deadline, makespan and idle-time) with additional variable weights; this allows 
the resources in different locations to represent different performance scenarios. 
Over-deadline is defined as the sum of excess time of each job's finish time over its 
deadline; makespan is defined as the duration between the start time of the first job 
and the finish time of the last executed job [8][9]. 

In this work, the multicluster architecture is equipped with two levels of perform-
ance optimisation. A multicluster-level scheduler (called MUSCLE) is developed to 
allocate moldable jobs with QoS demands (deadlines) to constituent clusters. When a 
job is submitted to the multicluster, MUSCLE identifies the job’s preferable size and 
corresponding execution time and then allocates jobs with high packing potential in 
terms of their preferable sizes to the same cluster. It also takes the QoS demands of 
jobs into account and exploits a heuristic to allocate suitable workload to each cluster. 
When MUSCLE makes scheduling decisions to distribute jobs to individual clusters, 
it also determines a seed schedule for the jobs allocated to each cluster assuming the 
jobs are run with their preferable sizes. These seed schedules are sent to the corre-
sponding clusters where an existing workload manager (TITAN [12]) uses a genetic 
algorithm to transform the schedule into one that further improves the (local) com-
prehensive performance. 

The rest of the paper is organized as follows. The system and workload model is 
introduced in Section 2. Section 3 briefly presents the genetic algorithm used in 
TITAN. The design of MUSLCE is proposed in Section 4. Section 5 presents the 
experimental results. Finally, Section 6 concludes the paper. 

2   System and Workload Model 
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Fig. 1. The multicluster job management architecture 

The multicluster architecture assumed in this work (shown in Fig. 1) consists of n 
clusters, C1, C2, …, Cn; where a cluster Ci (1≤i≤n) consists of mi homogeneous com-
puters (i.e., the size of cluster Ci is mi), each with a service rate of ui. There are two 
scheduling levels in the architecture; MUSCLE acts as the global scheduler for the 
multicluster while TITAN schedules the jobs sent by MUSCLE within each local 



cluster. MUSCLE and TITAN are interconnected through an agent system [3][4][5]. 
Users can submit parallel jobs to the multicluster through MUSCLE or through 
TITAN. PACE (Performance Analysis and Characterisation Environment) [10][15] is 
incorporated into the architecture to provide the jobs’ preferable size and correspond-
ing execution time. Parallel jobs are moldable, and a parallel job, denoted by Ji, is 
identified by a 4-tuple (ai, si, eij, di), where ai is Ji’s arrival time, si is its preferable 
size, etij is its execution time in cluster Cj (1≤j≤n) and di is its soft-deadline (QoS). 

3   Local-level Scheduling via TITAN 

This section briefly describes the genetic algorithm used in the TITAN workload 
manager [12]. Three metrics (over-deadline, makespan and idle-time) are combined 
with the additional weights to form a comprehensive performance metric (denoted by 
CP), which is used to evaluate a schedule. The CP is defined in Eq.1, where Γ, ω and 
θ are makespan, idle-time and over-deadline, respectively; Wi, Wm and Wo are their 
weights. For a given weight combination, the lower the value of CP, the better the 
comprehensive performance. 
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A genetic algorithm is used to find a schedule with a low CP. The algorithm first 
generates a set of initial schedules (one of these is the seed schedule sent by 
MUSCLE). Crossover and mutation operations are performed to transform the sched-
ules in the current set and generate the next generation. This procedure continues 
until the performance in each generation of schedule stabilizes. 

4   Global-level Scheduling via MUSCLE 

The main operations performed by MUSCLE are as follows. First, MUSCLE deter-
mines which parallel jobs with preferable sizes can be packed into a computer space 
with a given size. These possible compositions of parallel jobs are organized into a 
composition table. After the composition table is constructed, MUSCLE searches the 
table for suitable parallel jobs to allocate to the available computer space in a cluster. 
When the computer space is available in multiple clusters, MUSCLE orders the proc-
essing of the space using a heuristic. 

4.1   Organizing Parallel Jobs 

Suppose the maximum cluster size in the multicluster is mMAX and that at some time 
point, p parallel jobs, J1, J2, …, Jp are collected (into a queue) in the multicluster. 
Algorithm 1 outlines the steps for constructing the composition table. The p jobs are 
filled into suitable rows in the table.  



Algorithm 1. Constructing the composition table 
1. for each parallel job Ji (1≤i≤p) to be scheduled do 
2.   for each j satisfying 1≤j≤ mMAX do 
3.     if si = j 
4.       Append Ji to the tail of the j-th row of the  
         table; 
5.     if si < j 
6.       r←j−si; 
7.       if the r-th row in the table is not NULL 
8.         if there is such a composition of parallel  
           jobs in the r-th row in which no job is  
           in the j-th row of the table; 
9.           Append Ji as well as the parallel jobs in  
             the composition from the r-th row to  
             the tail of the j-th row; 

There are two for-loops in Algorithm 1 and Step 8 searches a row for the qualified 
composition. In the worst case, the time taken by Step 8 is O(p). Hence, the worst-
case time complexity of Algorithm 1 is O(p2mMAX). 

4.2   Searching the Composition Table 

The algorithm for allocating jobs to a computer space with size r in a cluster proceeds 
as follows. First, it searches the composition table from the r-th row up to the first 
row to obtain the first row that is not null. Then, in this row, the algorithm selects the 
composition in which the number of jobs having been allocated is the least. If the 
number is zero, these jobs are allocated to the computer space. If a job Ji, whose size 
is si, in the composition has been allocated, a function is called to search the si-th row 
for alternative jobs for Ji. The function is called recursively if a composition cannot 
be found in the si-th row in which no job in it is allocated. The recursive call termi-
nates when there is only one composition in a searched row (i.e. there are no alterna-
tive jobs) or when the composition consisting of unallocated jobs is found. If the 
algorithm fails to allocate jobs to the computer space with size r, it continues by try-
ing to identify jobs to allocate to the computer space with size r=r-1. The procedure 
continues until r reaches 0. After the allocated jobs have been determined, the sched-
ule for these jobs can also be computed. The time complexity of the procedure is 
based on the number of jobs that are allocated. The best-case time complexity is O(1) 
while the worst-case time complexity is O(p2nMAX). 

As can be seen from the above description, the job allocation algorithm always at-
tempts to identify the jobs that maximally occupy the given computer space. In doing 
so, the number of computers left idle is minimized. 

4.3   Employing a Heuristic to Balance Performance 

A performance metric ε is formed by integrating the workload attributes in clusters. ε 
is defined in Eq.2, where pi is the number of jobs, etSumi is the sum of the execution 
times of all jobs, sizeSumi represents the total job sizes and slkSumi is the total slack 



(the slack of a job is its deadline minus its execution time and its arrival time). When 
multiple clusters offer available computer space, the cluster with the smallest ε is 
given the highest priority and will be allocated the jobs. 
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The complete scheduling procedure for MUSCLE is outlined in Algorithm 2. 
Algorithm 2. MUSCLE scheduling 
1.   while the expected makespan of the jobs yet to be  
     scheduled in clusters is greater than a prede- 
     fined valve 
2.     Collect the arriving jobs in the multicluster; 
3.   Call Algorithm 1 to construct the composition ta- 
     ble for the collected jobs; 
4.   do 
5.     for each cluster do 
6.       Calculate ε using Eq.2  
7.     Get the earliest available computer space in  
       cluster Ci which has the minimal ε; 
8.     Allocate jobs to this space; 
9.     Update the earliest available computer space and  
       the values of the workload attributes in Ci; 
10.  while all collected jobs have not been allocated; 
11.  Go to Step 1; 

The time of Algorithm 2 is dominated by Step 3 and Step 8 in the do-while loop. 
Their time complexities have been analysed in subsection 4.1 and 4.2.  

5   Experimental Studies 

A simulator is developed to evaluate the performance of the scheduling mechanism in 
MUSCLE. The experimental results focus on demonstrating the performance advan-
tages of the scheduling mechanism in MUSCLE over the scheduling policies fre-
quently used in distributed systems. Weighted Random (WRAND) and Dynamic 
Least Load (DLL) policies are two selected representatives. The DLL policy sched-
ules jobs to the resource with the least workload. In the WRAND policy, the prob-
ability that a job is scheduled to a resource is proportional to its processing capability. 

40,000 parallel jobs are generated; the submissions of parallel jobs follow a Pois-
son process. A job’s preferable size follows a uniform distribution in [MIN_S, 
MAX_S]. Given a job’s preferable size si, suppose that the corresponding execution 
time is eij,si; then when the job’s size is si+k, the corresponding execution time eij,si+k is 
determined by Eq.3, where k can be positive or negative integer and ϕ is the factor 
that determines the scalability of the job regarding its size. 
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When jobs take preferable sizes and the service rate is the average service rate of 
the constituent clusters in the multicluster, their execution time follow a bounded 
Pareto distribution, shown in Eq.4, where el and eu are the lower and upper limit of 
the execution time x. 
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A job’s deadline, di is determined by Eq.5, where dr is the deadline ratio. dr fol-
lows a uniform distribution in [MIN_DR, MAX_DR], which is used to measure the 
deadline range. 

di=max{etij}×(1+dr) (5) 

The performance metrics evaluated in the experiments are the Mean Comprehen-
sive Performance (MCP) and Load Balance Factor (LBF). MCP is the average of CP 
in each cluster and LBF is the standard deviation of these CP’s. 

5.1   Workload Levels 

Table 1. The multicluster setting in Fig.4 

Clusters C1 C2 C3 C4 
Size 20 16 12 10 
Service rate ratio 1.0 1.2 1.4 1.6 
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                                       (a)                                                                  (b) 

Fig. 2. The comparison of MUSCLE, DLL and WRAND under different workload levels in 
terms of (a) mean comprehensive performance (MCP), and (b) Load balance factor (LBF); (Wo, 
Wm, Wi)=(4, 3, 1); (e,, eu)=(5, 100); (MIN_S, MAX_S)=(1, 10); (MIN_DR, MAX_DR)=(1, 5); 
ϕ=0.05; The cluster size and service rate are shown in Table 1 

Fig.2.a and Fig.2.b demonstrate the performance difference among MUSCLE, DLL 
and WRAND scheduling policies under different workload levels. The workload 
level is measured by the mean number of jobs in the queue (for accommodating the 
collected jobs) in the multicluster. It can be observed from Fig.2.a that MUSCLE 



outperforms the DLL and WRAND policies under all workload levels. This is be-
cause the jobs are packed tightly in the seed schedules sent by MUSCLE to the indi-
vidual clusters. Therefore, the further improvement by the genetic algorithm in each 
cluster is based on an excellent “seed”. As can be observed from Fig.2.b, MUSCLE 
outperforms DLL and WRAND in terms of LBF except when the mean number of 
jobs is 40 (in that case, the performance achieved by MUSCLE is slightly worse than 
that by DLL). The reasoning behind this is as follows. When the workload is low, a 
small number of jobs miss their deadlines. DLL is beneficial to obtaining the bal-
anced resource throughput and resource utilization. Therefore, DLL shows a more 
balanced MCP performance. However, as the workload increases further, more jobs 
miss their deadlines. MUSCLE takes the QoS demands into account so that the MCP 
performance remains balanced among the clusters. 

5.2   Cluster Size 
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Fig. 3. Performance comparison of MUSCLE, DLL and WRAND under different heterogene-
ity levels of cluster size, measured by a range [a, b]; (e,, eu)=(5, 100); (MIN_S, MAX_S)=(1, 
a); (MIN_DR, MAX_DR)=(1, 5); ϕ=(a+1)/a; the mean number of jobs in the queue is 100 

Parallel jobs have to be packed into the clusters. Cluster size is therefore an important 
parameter for parallel job scheduling. Fig.3.a and Fig.3.b compare the performance of 
MUSCLE, DLL and WRAND under different heterogeneity levels of cluster size. 
The heterogeneity levels of cluster size are measured by the scale of the range from 
which cluster sizes are selected. The multicluster consists of five clusters. Five sets of 
cluster sizes, all with the same average, are uniformly chosen from five ranges, [10, 
42], [14, 38], [18, 34], [22, 30] and [26, 26]. The range [26, 26] means the multiclus-
ter is homogeneous in terms of cluster size. The service rates of computers in all clus-
ters are set to be the same. 

As can be observed from Fig.3.a and Fig.3.b, MUSCLE outperforms DLL and 
WRAND in terms of MCP and LBF in all cases. Further, MCP and LBF performance 
achieved by all three policies improves as the heterogeneity level decreases. This is 



because the decrease in the heterogeneity of the cluster size is beneficial to achieving 
a balanced load for all policies. Thus, the MCP performance is also improved. 

6. Conclusions 

A multicluster-level scheduler, called MUSCLE, is described in this paper for the 
scheduling of moldable jobs with QoS demands in multiclusters. MUSCLE is able to 
allocate jobs with high packing potential (in terms of their preferable sizes) to the 
same cluster and further utilizes a heuristic to control the workload distribution 
among the clusters. Extensive experimental studies have been carried out to verify the 
performance advantages of MUSCLE. 

References 

1. M. Barreto, R. Avila, P. Navaux.: The MultiCluster model to the integrated use of multiple 
workstation clusters. Proc. of the 3rd Workshop on Personal Computerbased Networks of 
Workstations, 2000, pp. 71–80 

2. R. Buyya, M. Baker.: Emerging Technologies for Multicluster/Grid Computing. Proceedings 
of the 2001 IEEE International Conference on Cluster Computing, 2001 

3. J. Cao, D. J. Kerbyson, G. R. Nudd.: Performance Evaluation of an Agent-Based Resource 
Management Infrastructure for Grid Computing. Proc. of 1st IEEE/ACM International 
Symposium on Cluster Computing and the Grid, 2001 

4. J. Cao, D. J. Kerbyson, E. Papaefstathiou, G. R. Nudd.: Performance Modeling of Parallel 
and Distributed Computing Using PACE. Proceedings of 19th IEEE Intl Performance, 
Computing, and Communications Conference, 2000 

5. J. Cao, D. P Spooner, S. A Jarvis, G. R Nudd.: Grid load balancing using intelligent agents. 
To appear in Future Generation Computer Systems special issue on Intelligent Grid Envi-
ronments: Principles and Applications, 2004 

6. L. He, S. A. Jarvis, D. P. Spooner, G. R. Nudd.: Optimising static workload allocation in 
multiclusters. Proceedings of 18th IEEE International Parallel and Distributed Processing 
Symposium (IPDPS'04), April 26-30, 2004 

7. X. He, X. Sun, G. Laszewski.: QoS Guided Min-Min Heuristic for Grid Task Scheduling. 
Journal of Computer Sci&Tech, Special Issue on Grid Computing, 18(4), 2003 

8. B. G. Lawson, E. Smirni.: Multiple-queue Backfilling Scheduling with Priorities and Reser-
vations for Parallel Systems. 8th Job Scheduling Strategies for Parallel Processing, 2002 

9. A. W. Mu'alem, D. G. Feitelson.: Utilization, predictability, workloads, and user runtime 
estimates in scheduling the IBM SP2 with backfilling. IEEE Trans. Parallel & Distributed 
Syst. 12(6), pp. 529-543, 2001 

10. G. R. Nudd, D. J. Kerbyson, E. Papaefstathiou, J. S. Harper, S. C. Perry, D. V. Wilcox.: 
PACE: A Toolset for the Performance Prediction of Parallel and Distributed Systems. In 
The Intl Journal of High Performance Computing, 1999. 

11. E. Shmueli, D. G. Feitelson.: Backfilling with lookahead to optimize the performance of 
parallel job scheduling. 9th Job Scheduling Strategies for Parallel Processing, 2003 

12. D. P Spooner, S. A Jarvis, J Cao, S Saini, G. R Nudd.: Local Grid Scheduling Techniques 
using Performance Prediction. IEE Proc. Comp. Digit. Tech., 150(2):87-96, 2003 


