
How To Handle Missing Information
Without Using NULL

28 November, 2012

CS319: Theory of Databases 1

1

How To Handle Missing
Information Without Using NULL

Hugh Darwen

hugh@dcs.warwick.ac.uk
www.dcs.warwick.ac.uk/~hugh

for Warwick University, CS319

2

SQL’s NULL Is A Disaster

Relational Database Writings 1985-1989
by C.J.Date with a special contribution by H.D. (as Andrew Warden)

Relational Database Writings 1989-1991
by C.J.Date with Hugh Darwen

Relational Database Writings 1991-1994
by C.J.Date

Relational Database Writings 1994-1997
by C.J.Date

Database Explorations
by C.J. Date and Hugh Darwen (2010)

See:

3

NULL

Cause of more debate and anguish than any other Fatal Flaw.

There's even a split in the relational camp (E.F. Codd proposed
"A-marks", "I-marks" and a 4-valued logic).

There’s only one NULL. How many different reasons can there
be for something being “missing”?

Why NULL ruins everything –
- UNION of sets, cardinality of sets.

Destruction of functional dependency theory

SQL’s implementation of NULL is even worse than the best
suggested by theoreticians. And it’s not completely BYPASSABLE,
because SQL thinks that the sum of the empty set is NULL!
Nor is it CORRECTABLE - the Shackle of Compatibility! 4

A Contradiction in Codd’s Proposed Treatment

“Every relation has at least one candidate key”

“One of the candidate keys is nominated to be the primary key”

“Nulls aren’t permitted in the primary key”

“Nulls are permitted in alternate keys”

• Consider the relation resulting from the

projection of PATIENT over RELIGION, a “nullable column”.

• List the candidate keys of this relation.

• Nominate the primary key.

Wait a moment!
What’s this?

5

Surprises Caused by SQL’s NULL

1. SELECT * FROM T WHERE X = Y

UNION

SELECT * FROM T WHERE NOT (X = Y)

is not equal to SELECT * FROM T

2. SELECT SUM(X) + SUM(Y) FROM T

is not equal to

SELECT SUM(X + Y) FROM T

3. IF X = Y THEN ‘Yes’; ELSE ‘No’

is not equal to

IF NOT (X = Y) THEN ‘No’; ELSE ‘Yes’
6

Why NULL Hurts Even More Than It Once Did

Suppose “x = x” returns Unknown

Can we safely conclude “x IS NULL” ?

Suppose x “is not the null value”?

Can we conclude “x IS NOT NULL”?

Not in modern SQL!

How To Handle Missing Information
Without Using NULL

28 November, 2012

CS319: Theory of Databases 2

7

How x = x Unknown Yet x NOT NULL

For example:

1. x is ROW (1, null) - or even ROW(null, null)

2. x is POINT (1,null)

3. x is ROW (POINT(1,1), POINT(null,3))

POINT(a,b) is a “constructor” for values in the
user-defined data type POINT.

ROW(...) is a row “constructor”.

Consequences?

Hang on!
Are you sure?

8

x IS NULL (Case 1)

CREATE TABLE T (C1 INT, C2 ROW (F1 INT, F2 INT)) ;
INSERT INTO T VALUES (NULL, NULL) ;

SELECT * FROM T WHERE C1 IS NULL

Query Result Cardinality

1

SELECT * FROM T WHERE C2 IS NULL 1

SELECT * FROM T WHERE (C1, C2) IS NULL 1

SELECT * FROM T WHERE (C1, C1) IS NULL 1

SELECT * FROM T WHERE (C2, C2) IS NULL 1

But even this depends on our charitable interpretation of the ISO SQL standard.

What does x IS NULL MEAN? Think you know? Well, think again!

So far,
so good?

9

x IS NULL (Case 2)

CREATE TABLE T (C1 INT, C2 ROW (F1 INT, F2 INT)) ;
INSERT INTO T VALUES (NULL, ROW (NULL, NULL)) ; -- note the difference from Case 1

SELECT * FROM T WHERE C1 IS NULL

Query Result Cardinality

1

SELECT * FROM T WHERE C2 IS NULL 1

SELECT * FROM T WHERE (C1, C2) IS NULL 0 !!!

SELECT * FROM T WHERE (C1, C1) IS NULL 1

SELECT * FROM T WHERE (C2, C2) IS NULL 0 !!!

!!!

10

x IS NOT NULL

So, what does x IS NOT NULL MEAN?

CREATE TABLE T (C1 INT, C2 ROW (F1 INT, F2 INT)) ;
INSERT INTO T VALUES (NULL, ROW (NULL, NULL)) ;

SELECT * FROM T WHERE C1 IS NOT NULL

Query Result Cardinality

0

SELECT * FROM T WHERE C2 IS NOT NULL 0

SELECT * FROM T WHERE (C1, C2) IS NOT NULL 0 !!!

SELECT * FROM T WHERE (C1, C1) IS NOT NULL 0

SELECT * FROM T WHERE (C2, C2) IS NOT NULL 1 !!!

11

Effects of Bad Language Design

There are general language design lessons to be learned from this tangled web, as
well as lessons about NULL:

• Great caution is needed when considering pragmatic shorthands.
(C1, C2) IS NULL was originally shorthand for C1 IS NULL AND C2 IS NULL.

• Enclosing an expression in parens should not change its meaning.
(C1) is not the only example in SQL. Think of “scalar subqueries”.

• All data types supported by a language should be “first-class”, for orthogonality.
ROW types were originally not first-class – could not (for example) be the declared types
of columns.

12

It Could Have Been Worse ...

... if SQL had paid proper attention to degenerate cases.

SQL fails to recognise the existence of relations of degree zero (tables with no
columns). These in turn depend on the existence of the 0-tuple. Suppose SQL had
not made this oversight.

CREATE TABLE T (C1 ROW ()) ;
INSERT INTO T VALUES (ROW ()) ;

SELECT * FROM T WHERE NOT (C1 IS NULL)

Query Result Cardinality

1

C1 “is not the null value”; also, no field of C1 “is the null value”.

SELECT * FROM T WHERE C1 IS NULL 1

But it is also true that every field of C1 “is the null value”!

How To Handle Missing Information
Without Using NULL

28 November, 2012

CS319: Theory of Databases 3

13

3-Valued Logic: The Real Culprit

Relational theory is founded on classical, 2-valued logic.

A relation r is interpreted as a representation of the extension of some predicate P.

Let t be a tuple with the same heading as r.

If tuple t is a member of r, then the proposition P(t) is taken to be TRUE;
otherwise (t is not a member of r), P(t) is taken to be FALSE.

There is no middle ground. The Law of The Excluded Middle applies.

There is no way of representing that the truth of P(t) is unknown, or inapplicable,
or otherwise concealed from us.

SQL’s WHERE clause arbitrarily splits at the TRUE/UNKNOWN divide.

14

Case Study Example

The person identified by Id is called Name and has the job of a Job, earning
Salary pounds per year.

??Devinder1237

70,000?Cindy1236

?BankerBoris1235

100,000LawyerAnne1234

SalaryJobNameId

Meaning (a predicate):

BUT WHAT DO THOSE QUESTION MARKS MEAN???

PERS_INFO

15

Summary of Proposed Solution

1. Database design:

a.“vertical” decomposition

b. “horizontal” decomposition

2. New constraint shorthands:

a. “distributed key”

b. “foreign distributed key”

3. New database updating construct:

“multiple assignment”

4. Recomposition by query

to derive (an improved) PERS_INFO

when needed
16

Database Design

a. “vertical” decomposition

Decompose into 2 or more relvars by projection

Also known as normalization.
Several degrees of normalization were described in the 1970s:
1NF, 2NF, 3NF, BCNF, 4NF, 5NF.

The ultimate degree, however, is 6NF: “irreducible relations”.
(See “Temporal Data and The Relational Model”,
Date/Darwen/Lorentzos, 2003.)

A 6NF relvar consists of a key plus at most one other attribute.

17

Vertical Decomposition of PERS_INFO

Devinder1237

Cindy1236

Boris1235

Anne1234

NameId

?1237

?1236

Banker1235

Lawyer1234

JobId

?1237

70,0001236

?1235

100,0001234

SalaryId

CALLED DOES_JOB EARNS

Meaning:

The person identified by Id
is called Name.

Meaning:

The person identified by Id
does the job of a Job.

Meaning:

The person identified by Id
earns Salary pounds per
year.

BUT WHAT DO THOSE QUESTION MARKS MEAN? (reprise) 18

Principle:

b. Horizontal Decomposition

Don’t combine multiple meanings in a single relvar.
“Person 1234 earns 100,000”, “We don’t know what person 1235 earns”, and
“Person 1237 doesn’t have a salary” are different in kind.

The suggested predicate, “The person identified by Id earns Salary pounds
per year”, doesn’t really apply to every row of EARNS.

Might try something like this:

Either the person identified by Id earns Salary pounds per year,
or we don’t know what the person identified by Id earns,
or the person identified by Id doesn’t have a salary.

Why doesn’t that work?

We will decompose EARNS into one table per disjunct.
(DOES_JOB would be treated similarly. CALLED is okay as is.)

(very loosely speaking)

How To Handle Missing Information
Without Using NULL

28 November, 2012

CS319: Theory of Databases 4

19

70,0001236

100,0001234

SalaryId

EARNS

Meaning:

The person identified by Id
earns Salary pounds per
year.

1235

Id

SALARY_UNK

Meaning:

The person identified by Id
earns something but we
don’t know how much.

1237

Id

UNSALARIED

Meaning:

The person identified by Id
doesn’t have a salary.

Horizontal Decomposition of EARNS

20

Horizontal Decomposition of DOES_JOB

Banker1235

Lawyer1234

JobId

DOES_JOB

Meaning:

The person identified by Id
does Job for a living.

1236

Id

JOB_UNK

Meaning:

The person identified by Id
does some job but we don’t
know what it is.

1237

Id

UNEMPLOYED

Meaning:

The person identified by Id
doesn’t have a job.

21

What We Have Achieved So Far

What started as a single table (PERS_INFO) is now a database (sub)schema (let’s call
it PERS_INFO again), consisting of:

CALLED (Id, Name)

DOES_JOB (Id, Job)

JOB_UNK (Id)

UNEMPLOYED (Id)

EARNS (Id, Salary)

SALARY_UNK (Id)

UNSALARIED (Id)

Next, we must consider the constraints needed to hold this design together (so to
speak).

22

1. No two CALLED rows have the same Id. (Primary key)

Constraints for New PERS_INFO database

2. Every row in CALLED has a matching row in either DOES_JOB,
JOB_UNK, or UNEMPLOYED.

3. No row in DOES_JOB has a matching row in JOB_UNK.

4. No row in DOES_JOB has a matching row in UNEMPLOYED.

5. No row in JOB_UNK has a matching row in UNEMPLOYED.

9. Constraints 2 through 8 repeated, mutatis mutandis, for
CALLED with respect to EARNS, SALARY_UNK and UNSALARIED.

6. Every row in DOES_JOB has a matching row in CALLED. (Foreign key)

7. Every row in JOB_UNK has a matching row in CALLED. (Foreign key)

8. Every row in UNEMPLOYED has a matching row in CALLED. (Foreign key)

WE NEED SOME NEW SHORTHANDS TO EXPRESS 2, 3, 4 AND 5.

23

1. Id is a distributed key for (DOES_JOB, JOB_UNK, UNEMPLOYED).
This addresses Constraints 3, 4 and 5.

Proposed Shorthands for Constraints

2. Id is a distributed key for (EARNS, SALARY_UNK, UNSALARIED).

3. Id is a foreign distributed key in CALLED, referencing (DOES_JOB,
JOB_UNK, UNEMPLOYED).
This addresses Constraint 2.

4. Id is a foreign distributed key in CALLED, referencing (EARNS,
SALARY_UNK, UNSALARIED).

Plus regular foreign keys in each of DOES_JOB, JOB_UNK, UNEMPLOYED,
EARNS, SALARY_UNK, UNSALARIED, each referencing CALLED.
(Might also want UNEMPLOYED to imply UNSALARIED – how would that be
expressed?)

So, now we have a schema and constraints. Next, how to add the data and
subsequently update it? Are the regular INSERT/UPDATE/DELETE operators good
enough?

24

How can we add the first row to any of our 7 tables?

Can’t add a row to CALLED unless there is a matching row in DOES_JOB,
JOB_UNK or UNEMPLOYED and also a matching row in EARNS, SALARY_UNK or
UNSALARIED.

Can’t add a row to DOES_JOB unless there is a matching row in CALLED.
Ditto JOB_UNK, UNEMPLOYED, EARNS, SALARY_UNK and UNSALARIED.

Impasse!

Updating the Database: A Problem

How To Handle Missing Information
Without Using NULL

28 November, 2012

CS319: Theory of Databases 5

25

“Multiple Assignment”: doing several updating operations in a single “mouthful”.

For example:

INSERT_TUPLE INTO CALLED { Id 1236, Name ‘Cindy’ } ,
INSERT_TUPLE INTO JOB_UNK { Id 1236 } ,
INSERT_TUPLE INTO EARNS { Id 1236, Salary 70000 } ;

Note very carefully the punctuation!

This triple operation is “atomic”. Either it all works or none of it works.

Loosely speaking: operations are performed in the order given (to cater for the same
target more than once), but intermediate states might be inconsistent and are not visible.

So, we now have a working database design. Now, what if the user wants to
derive that original PERS_INFO table from this database?

Updating the Database: Solution

26

WITH (EXTEND JOB_UNK ADD (‘Job unknown’ AS Job_info)) AS T1,

Q.E.D.

(EXTEND UNEMPLOYED ADD (‘Unemployed’ AS Job_info)) AS T2,

(DOES_JOB RENAME (Job AS Job_info)) AS T3,

(EXTEND SALARY_UNK ADD (‘Salary unknown’ AS Sal_info)) AS T4,

(EXTEND UNSALARIED ADD (‘Unsalaried’ AS Sal_info)) AS T5,

(EXTEND EARNS ADD (CHAR(Salary) AS Sal_info)) AS T6,

(T6 { ALL BUT Salary }) AS T7,

(UNION (T1, T2, T3)) AS T8,

(UNION (T4, T5, T7)) AS T9,

(JOIN (CALLED, T8, T9)) AS PERS_INFO :

PERS_INFO

To Derive PERS_INFO Relation from PERS_INFO Database

27

The New PERS_INFO

UnsalariedUnemployedDevinder1237

70,000Job unknownCindy1236

Salary unknownBankerBoris1235

100,000LawyerAnne1234

Sal_infoJob_infoNameId

PERS_INFO

LOOK – NO QUESTION MARKS, NO NULLS!

28

• Vertical decomposition: can be done in SQL

• Horizontal decomposition: can be done in SQL

• Primary and foreign keys: can be done in SQL

• Distributed keys: can be done in (awful) longhand, if at all

• Foreign distributed keys can be done in (awful) longhand, if at all

• Multiple assignment: hasn’t caught the attention of SQL DBMS vendors, but
Alphora’s D4 supports it. (So does Dave Voorhis’s Rel.)

• Recomposition query: can be done but likely to perform horribly.
Might be preferable to store PERS_INFO as a single table under the covers,
so that the tables resulting from decomposition can be implemented as mappings
to that. But current technology doesn’t give clean separation of physical storage from
logical design.

Perhaps something for the next generation of software engineers
to grapple with?

How Much of All That Can Be Done Today?

29

(Appendix A follows)

The End

30

We look at each step in turn, showing its effect.

Appendix A:
Walk-through of Recomposition Query

How To Handle Missing Information
Without Using NULL

28 November, 2012

CS319: Theory of Databases 6

31

Job unknown1236

Job_infoId

1236

Id

JOB_UNK T1

T1: EXTEND JOB_UNK ADD (‘Job unknown’ AS Job_info)

32

Unemployed1237

Job_infoId

1237

Id

UNEMPLOYED T2

T2: EXTEND UNEMPLOYED ADD (‘Unemployed’ AS Job_info)

33

T3

T3: DOES_JOB RENAME (Job AS Job_info)

Banker1235

Lawyer1234

JobId

DOES_JOB

Banker1235

Lawyer1234

Job_infoId

34

T4: EXTEND SALARY_UNK ADD (‘Salary unknown’ AS Sal_info)

Salary unknown1235

Sal_infoId

1235

Id

SALARY_UNK T4

35

Unsalaried1237

Sal_infoId

1237

Id

UNSALARIED T5

T5: EXTEND UNSALARIED ADD (‘Unsalaried’ AS Sal_info)

36

70,0001236

100,0001234

SalaryId

EARNS

70,000

100,000

Salary

70,0001236

100,0001234

Sal_infoId

T6

Salary and Sal_info differ in type.
Sal_info contains character
representations of Salary values
(hence left justified!).

T6: EXTEND EARNS ADD (CHAR(Salary) AS Sal_info)

How To Handle Missing Information
Without Using NULL

28 November, 2012

CS319: Theory of Databases 7

37

70,0001236

100,0001234

Sal_infoId

T7

70,000

100,000

Salary

70,0001236

100,0001234

Sal_infoId

T6

T7: T6 { ALL BUT Salary }

38

Job unknown1236

Job_infoId

T1

Unemployed1237

Job_infoId

T2

T3

Banker1235

Lawyer1234

Job_infoId

Lawyer1234

Banker1235

Job unknown1236

Unemployed1237

Job_infoId

T8

= (T1 UNION T2) UNION T3

T8: UNION (T1, T2, T3)

39

Salary unknown1235

Sal_infoId

T4

Unsalaried1237

Sal_infoId

T5

T7

70,0001236

100,0001234

Sal_infoId
100,0001234

Salary unknown1235

70,0001236

Unsalaried1237

Sal_infoId
T9

= (T4 UNION T5) UNION T7

T9: UNION (T4, T5, T7)

40

Devinder1237

Cindy1236

Boris1235

Anne1234

NameId

CALLED

Lawyer1234

Banker1235

Job unknown1236

Unemployed1237

Job_infoId

T8

100,0001234

Salary unknown1235

70,0001236

Unsalaried1237

Sal_infoId

T9

UnsalariedUnemployedDevinder1237

70,000Job unknownCindy1236

Salary unknownBankerBoris1235

100,000LawyerAnne1234

Sal_infoJob_infoNameId

PERS_INFO

PERS_INFO: JOIN (CALLED, T8, T9)

41

The Very End

