How To Handle Missing Information 28 November, 2012

Without Using NULL

How To Handle Missing
Information Without Using NULL

Hugh Darwen

hugh@dcs.warwick.ac.uk
www.dcs.warwick.ac.uk/~hugh

for Warwick University, CS319

SQL’s NULL Is A Disaster

Relational Database Writings 1985-1989
by C.J.Date with a special contribution by H.D. (as Andrew Warden)

Relational Database Writings 1989-1991
by C.J.Date with Hugh Darwen

Relational Database Writings 1991-1994
by C.J.Date

Relational Database Writings 1994-1997
by C.J.Date

Database Explorations
by C.J. Date and Hugh Darwen (2010)

NULL

A Contradiction in Codd’s Proposed Treatment

Cause of more debate and anguish than any other Fatal Flaw.

There's even a split in the relational camp (E.F. Codd proposed
"A-marks", "lI-marks" and a 4-valued logic).

There’s only one NULL. How many different reasons can there
be for something being “missing”?

Why NULL ruins everything —
- UNION of sets, cardinality of sets.

Destruction of functional dependency theory

SQL’s implementation of NULL is even worse than the best
suggested by theoreticians. And it's not completely BYPASSABLE,
because SQL thinks that the sum of the empty set is NULL!

Nor is it CORRECTABLE - the Shackle of Compatibility! °

“Every relation has at least one candidate key”

“One of the candidate keys is nominated to be the primary key”

“Nulls aren’t permitted in the primary key”
“Nulls are permitted in alternate keys”

« Consider the relation resulting from the
projection of PATIENT over RELIGIONJ a “nullable column”.

\ Wait a moment!

« List the candidate keys of this relation. What's this?

* Nominate the primary key.

Surprises Caused by SQL’s NULL

Why NULL Hurts Even More Than It Once Did

1. SELECT * FROM T WHERE X =Y
UNION
SELECT * FROM T WHERE NOT (X =Y)
is not equal to SELECT * FROM T

2. SELECT SUM(X) + SUM(Y) FROM T
is not equal to

SELECT SUM(X + Y) FROM T

3.IF X =Y THEN ‘Yes’; ELSE ‘No’
is not equal to
IF NOT (X =Y) THEN ‘No’; ELSE ‘Yes’

Suppose “x = x” returns Unknown

Can we safely conclude “x IS NULL” ?

Suppose x “is not the null value”?

Can we conclude “x IS NOT NULL"?

Not in modern SQL!

CS319: Theory of Databases

How To Handle Missing Information
Without Using NULL

28 November, 2012

How x = x Unknown Yet x NOT NULL

x IS NULL (Case 1)

For example:

1. xis ROW (1, null) - or even

ROW(null, null)

Hang on!
Are you sure?

ROW(...) is a row “constructor”.

2. xis POINT (1,null)
POINT(a,b) is a “constructor” for values in the
user-defined data type POINT.

3. x is ROW (POINT(1,1), POINT(null,3))

Consequences”?

What does x IS NULL MEAN? Think you know? Well, think again!

CREATE TABLE T (C1INT, C2ROW (F1INT,F2INT));
INSERT INTO T VALUES (NULL, NULL) ;

Query Result Cardinality
SELECT * FROM T WHERE C1 IS NULL 1
SELECT * FROM T WHERE C2 IS NULL 1
SELECT * FROM T WHERE (C1, C1) IS NULL 1
SELECT * FROM T WHERE (C1, C2) IS NULL 1 So far.
so good?
SELECT * FROM T WHERE (C2, C2) IS NULL 1
But even this depends on our charitable interpretation of the ISO SQL standard. s

x IS NULL (Case 2)

x IS NOT NULL

CREATE TABLE T (C1INT, C2ROW (F1INT,F2INT));
INSERT INTO T VALUES (NULL, ROW (NULL, NULL)) ; -- note the difference from Case 1

Query Result Cardinality
SELECT * FROM T WHERE C1 IS NULL 1

SELECT * FROM T WHERE C2 IS NULL 1 m
SELECT * FROM T WHERE (C1, C1) IS NULL 1

SELECT * FROM T WHERE (C1, C2) IS NULL 0 n
SELECT * FROM T WHERE (C2, C2) IS NULL 0 n

So, what does x IS NOT NULL MEAN?

CREATE TABLE T (C1INT, C2ROW (F1INT,F2INT));
INSERT INTO T VALUES (NULL, ROW (NULL, NULL));

Query Result Cardinality
SELECT * FROM T WHERE C1 IS NOT NULL 0

SELECT * FROM T WHERE C2 IS NOT NULL 0

SELECT * FROM T WHERE (C1, C1) IS NOT NULL 0

SELECT * FROM T WHERE (C1, C2) IS NOT NULL 0 m
SELECT * FROM T WHERE (C2, C2) IS NOT NULL 1 m

Effects of Bad Language Design

It Could Have Been Worse ...

There are general language design lessons to be learned from this tangled web, as
well as lessons about NULL:

« Enclosing an expression in parens should not change its meaning.
(C1)is not the only example in SQL. Think of “scalar subqueries”.

« Great caution is needed when considering pragmatic shorthands.
(C1, C2) IS NULL was originally shorthand for C1 IS NULL AND C2 IS NULL.

« All data types supported by a language should be “first-class”, for orthogonality.
ROW types were originally not first-class — could not (for example) be the declared types
of columns.

... if SQL had paid proper attention to degenerate cases.

SQL fails to recognise the existence of relations of degree zero (tables with no
columns). These in turn depend on the existence of the 0-tuple. Suppose SQL had
not made this oversight.

CREATE TABLET (C1ROW ());
INSERT INTO T VALUES (ROW ()) ;

Query Result Cardinality
SELECT * FROM T WHERE NOT (C1 IS NULL) 1
SELECT * FROM T WHERE C1 IS NULL 1

C1 “is not the null value”; also, no field of C1 “is the null value”.

But it is also true that every field of C1 “is the null value™!

CS319: Theory of Databases

How To Handle Missing Information 28 November, 2012

Without Using NULL

3-Valued Logic: The Real Culprit

Case Study Example

Relational theory is founded on classical, 2-valued logic.
A relation ris interpreted as a representation of the extension of some predicate P.

Let t be a tuple with the same heading as r.

If tuple t is a member of r, then the proposition P(t) is taken to be TRUE;
otherwise (t is not a member of r), P(f) is taken to be FALSE.

There is no middle ground. The Law of The Excluded Middle applies.

There is no way of representing that the truth of P(t) is unknown, or inapplicable,
or otherwise concealed from us.

SQL’s WHERE clause arbitrarily splits at the TRUE/UNKNOWN divide.

PERS_INFO
Id Name Job Salary
1234 Anne Lawyer 100,000
1235 Boris Banker ?
1236 Cindy ? 70,000
1237 Devinder |? ?

Meaning (a predicate):
The person identified by /d is called Name and has the job of a Job, earning
Salary pounds per year.

BUT WHAT DO THOSE QUESTION MARKS MEAN??? n

Summary of Proposed Solution

Database Design

1. Database design:
a.“vertical” decomposition
b. “horizontal” decomposition
2. New constraint shorthands:
a. “distributed key”
b. “foreign distributed key”
3. New database updating construct:
“multiple assignment”
4. Recomposition by query
to derive (an improved) PERS_INFO
when needed

a. “vertical” decomposition

Decompose into 2 or more relvars by projection

Also known as normalization.
Several degrees of normalization were described in the 1970s:
1NF, 2NF, 3NF, BCNF, 4NF, 5NF.

The ultimate degree, however, is 6NF: “irreducible relations”.
(See “Temporal Data and The Relational Model”,
Date/Darwen/Lorentzos, 2003.)

A 6NF relvar consists of a key plus at most one other attribute.

Vertical Decomposition of PERS_INFO

b. Horizontal Decomposition

CALLED DOES_JOB EARNS

Id Name Id Job Id Salary
1234 Anne 1234 |Lawyer 1234 | 100,000
1235 Boris 1235 |Banker 1235 ?
1236 Cindy 1236 |? 1236 70,000
1237 | Devinder 1237 |? 1237 ?
Meaning: Meaning: Meaning:

The person identified by /d The person identified by /d The person identified by /d
is called Name. does the job of a Job. earns Salary pounds per
year.

BUT WHAT DO THOSE QUESTION MARKS MEAN? (reprise) ”

L. (very loosely speaking)
Principle:

Don’t combine multiple meanings in a single relvar.
“Person 1234 earns 100,000, “We don’t know what person 1235 earns”, and
“Person 1237 doesn’t have a salary” are different in kind.

The suggested predicate, “The person identified by /d earns Salary pounds
per year”, doesn't really apply to every row of EARNS.

Might try something like this:
Either the person identified by /d earns Salary pounds per year,
or we don’t know what the person identified by /d earns,
or the person identified by /d doesn’t have a salary.

Why doesn’t that work?

We will decompose EARNS into one table per disjunct.
(DOES_JOB would be treated similarly. CALLED is okay as is.)

CS319: Theory of Databases

How To Handle Missing Information 28 November, 2012

Without Using NULL

Horizontal Decomposition of EARNS

Horizontal Decomposition of DOES_JOB

EARNS SALARY_UNK UNSALARIED
Id | Salary Id Id
1234 | 100,000 1235 1237
1236 70,000
Meaning: Meaning: Meaning:

The person identified by /d The person identified by /d ~ The person identified by /d
earns Salary pounds per earns something but we doesn’t have a salary.
year. don’t know how much.

DOES_JOB JOB_UNK UNEMPLOYED

Id Job id Id
1234 |Lawyer 1236 1237
1235 |Banker

Meaning: Meaning: Meaning:

The person identified by /d The person identified by /d ~ The person identified by Id
does Job for a living. does some job but we don't doesn’t have a job.
know what it is.

What We Have Achieved So Far

Constraints for New PERS_INFO database

What started as a single table (PERS_INFO) is now a database (sub)schema (let’s call
it PERS_INFO again), consisting of:

CALLED (Id, Name)
DOES_JOB (Id, Job)
JOB_UNK (1d)
UNEMPLOYED (1Id)
EARNS (Id, Salary)
SALARY_UNK (1d)
UNSALARIED (Id)

Next, we must consider the constraints needed to hold this design together (so to
speak).

21

-

. No two CALLED rows have the same Id. (Primary key)

N

. Every row in CALLED has a matching row in either DOES_JOB,
JOB_UNK, or UNEMPLOYED.

No row in DOES_JOB has a matching row in JOB_UNK.

No row in DOES_JOB has a matching row in UNEMPLOYED.

No row in JOB_UNK has a matching row in UNEMPLOYED.

Every row in DOES_JOB has a matching row in CALLED. (Foreign key)
Every row in JOB_UNK has a matching row in CALLED. (Foreign key)
Every row in UNEMPLOYED has a matching row in CALLED. (Foreign key)

© ® N o o~ oW

. Constraints 2 through 8 repeated, mutatis mutandis, for
CALLED with respect to EARNS, SALARY_UNK and UNSALARIED.

WE NEED SOME NEW SHORTHANDS TO EXPRESS 2, 3,4 AND 5.

Proposed Shorthands for Constraints

Updating the Database: A Problem

1. |d is a distributed key for (DOES_JOB, JOB_UNK, UNEMPLOYED).
This addresses Constraints 3, 4 and 5.

2. |d is a distributed key for (EARNS, SALARY_UNK, UNSALARIED).

3. Id is a foreign distributed key in CALLED, referencing (DOES_JOB,
JOB_UNK, UNEMPLOYED).
This addresses Constraint 2.

4.1d is a foreign distributed key in CALLED, referencing (EARNS,
SALARY_UNK, UNSALARIED).

Plus regular foreign keys in each of DOES_JOB, JOB_UNK, UNEMPLOYED,
EARNS, SALARY_UNK, UNSALARIED, each referencing CALLED.

(Might also want UNEMPLOYED to imply UNSALARIED — how would that be
expressed?)

So, now we have a schema and constraints. Next, how to add the data and
subsequently update it? Are the regular INSERT/UPDATE/DELETE operators good

enough?
23

How can we add the first row to any of our 7 tables?
Can't add a row to CALLED unless there is a matching row in DOES_JOB,

JOB_UNK or UNEMPLOYED and also a matching row in EARNS, SALARY_UNK or
UNSALARIED.

Can’t add a row to DOES_JOB unless there is a matching row in CALLED.
Ditto JOB_UNK, UNEMPLOYED, EARNS, SALARY_UNK and UNSALARIED.

Impasse!

CS319: Theory of Databases

How To Handle Missing Information 28 November, 2012
Without Using NULL

Updating the Database: Solution ‘ ‘ To Derive PERS_INFO Relation from PERS_INFO Database
Multiple Assignment”: doing several updating operations in a single “mouthful”. WITH (EXTEND JOB_UNK ADD (Job unknown’ AS Job_info)) AS T1,
(EXTEND UNEMPLOYED ADD (‘Unemployed’ AS Job_info)) AS T2,
For example: (DOES_JOB RENAME (Job AS Job_info)) AS T3,
o (EXTEND SALARY_UNK ADD (‘Salary unknown’ AS Sal_info)) AS T4,
:mgggqggtg :mg fgg'—ﬁz}i'{ddigﬁ“}ame Cindy'}, (EXTEND UNSALARIED ADD (‘Unsalaried’ AS Sal_info)) AS T5,
-~ ~ : . (EXTEND EARNS ADD (CHAR(Salary) AS Sal_info)) AS T6,
INSERT_TUPLE INTO EARNS { Id 1236, Salary 70000 } ; (T6 { ALL BUT Salary }) AS T7,

(UNION (T1, T2, T3)) AS T8,

This o o s “atomict. Eithor it all work i work (UNION (T4, T5,T7)) AS T,
is triple operation is “atomic”. Either it all works or none of it works. (JO'N (CALLED, T8, T9)) AS PERS_lNFO -

PERS_INFO

Note very carefully the punctuation!

Loosely speaking: operations are performed in the order given (to cater for the same
target more than once), but intermediate states might be inconsistent and are not visible.
Q.E.D.
So, we now have a working database design. Now, what if the user wants to
derive that original PERS_INFO table from this database?

25 26

How Much of All That Can Be Done Today?

The New PERS_INFO

« Vertical decomposition: can be done in SQL

PERS_INFO + Horizontal decomposition: can be done in SQL
d N Job inf Sal inf + Primary and foreign keys: can be done in SQL
— ame ob_into al_lnfo « Distributed keys: can be done in (awful) longhand, if at all
1234 Anne Lawyer 100,000 « Foreign distributed keys can be done in (awful) longhand, if at all
" « Multiple assignment: hasn’t caught the attention of SQL DBMS vendors, but
phora’s D4 supports it. (So does Dave Voorhis's Rel.
1235 Boris Banker Salary unknown Alphora's D4 it. (So does Dave Voorhis's Rel
N * Recomposition query: can be done but likely to perform horribly.
1236 Clndy Job unknown 70,000 Might be preferable to store PERS_INFO as a single table under the covers,
so that the tables resulting from decomposition can be implemented as mappings
1237 Devinder Unemployed Unsalaried to that. But current technology doesn'’t give clean separation of physical storage from
logical design.

Perhaps something for the next generation of software engineers
LOOK — NO QUESTION MARKS, NO NULLS! to grapple with?

27 28

Appendix A:
Walk-through of Recomposition Query

We look at each step in turn, showing its effect.

(Appendix A follows)

CS319: Theory of Databases 5

How To Handle Missing Information 28 November, 2012

Without Using NULL

T1: EXTEND JOB_UNK ADD (‘Job unknown’ AS Job_info) T2: EXTEND UNEMPLOYED ADD (‘Unemployed’ AS Job_info)

JOB_UNK ™ UNEMPLOYED T2
Id Id Job_info Id Id Job_info
1236 1236 | Job unknown 1237 1237 | Unemployed

31

T3: DOES_JOB RENAME (Job AS Job_info) T4: EXTEND SALARY_UNK ADD (‘Salary unknown’ AS Sal_info)

DOES_JOB T3 SALARY_UNK T4

Id Job Id Job_info Id Id Sal_info
1234 |Lawyer 1234 |Lawyer 1235 1235 | Salary unknown
1235 |Banker 1235 |Banker

T5: EXTEND UNSALARIED ADD (‘Unsalaried’ AS Sal_info) T6: EXTEND EARNS ADD (CHAR(Salary) AS Sal_info)
UNSALARIED T5 EARNS T6
Id Id Sal_info Id Salary Id Salary | Sal_info
1237 1237 |Unsalaried 1234 | 100,000 1234 | 100,000 |100,000
1236 70,000 1236 70,000|70,000

Salary and Sal_info differ in type.
Sal_info contains character
representations of Salary values
(hence left justified!).

35

CS319: Theory of Databases

How To Handle Missing Information
Without Using NULL

28 November, 2012

0

CS319: Theory of Databases

T7: T6 { ALL BUT Salary } T8:UNION (T1,T2,T3)
=(T1UNION T2) UNION T3
T6 T7 i T
Id Job_info Id Job_info
Id | Salary | Sal_info Id | Sal_info 1236 | Job unknown 1237 |Unemployed
1234 | 100,000|100,000 1234 100,000
1236 | 70,000|70,000 1236 70,000 JE ™
Id Job_info Id Job_info
1234 |Lawyer 1234 |Lawyer
1235 |Banker 1235 |Banker
1236 |Job unknown
1237 |Unemployed
T9: UNION (T4, T5, T7) PERS_INFO: JOIN (CALLED, T8, T9)
= (T4 UNION T5) UNION T7 CALLED T8 9
T4 5 Id Name Id Job_info 1d Sal_info
Id Sal_info Id Sal_info 1234 | Anne | 1234 |Lawyer 1234 100,000
1235 |Salary unknown 1237 |Unsalaried 1235 | Boris [|1235 |Banker 1235 |Salary unknown
1236 | Cindy |/1236 |Job unknown ||1236 |70,000
T7 T9 1237 | Devinder ||1237 |Unemployed (/1237 |Unsalaried
Id Sal info Id Sal_info PERS_INFO
1234 |100,000 1234 (100,000 Id Name Job_info Sal_info
1236 |70,000 1235 |Salary unknown 1234 Anne |Lawyer 100,000
1236 |70,000 1235 Boris Banker Salary unknown
1237 |Unsalaried 1236 Cindy |Job unknown |70,000
39 1237 Devinder |Unemployed |Unsalaried 40
The Very End

