
Hugh Darwen
HD@TheThirdManifesto.com
www.TheThirdManifesto.com

Temporal Data and The
Relational Model

Based on the book of the same title by
C.J. Date, Hugh Darwen, and Nikos
A. Lorentzos

(c) Hugh DarwenMarch 2004

summarised in C.J. Date: Introduction
to Database Systems (8th edition,
Addison-Wesley, 2003), Chapter 23.

University of Warwick
 Course CS319

Temporal Data 1

The chapter in Date first appeared in his 7th edition, as
Chapter 22, but the chapter was quite heavily revised for
the 8th edition.

There is an unfortunate typographical error on page 744.
In the first bulleted paragraph ("The expanded form ..."),
delete the last three words, "defined as follows:".

Temporal Data and The Relational
Model

Authors: C.J. Date, Hugh Darwen,
 Nikos A. Lorentzos

A detailed investigation
into the application of
interval and relation theory
to the problem of temporal
database management

(c) Hugh DarwenMarch 2004

Morgan-Kaufmann, 2002
ISBN 1-55860-855-9

Caveat: not about technology available
anywhere today!

Temporal Data 2

In particular, none of the leading SQL vendors (IBM,
Oracle, Microsoft, Sybase ...) have implemented SQL
extensions to solve the problems we describe.

There was significant interest for a time in the second half
of the 1990s, when an incomplete working draft for an
international standard for such extensions was produced
by the SQL standards committee. However, the project
was abandoned when support for XML documents in SQL
databases became a higher priority to the industry than
temporal extensions.

(Some people question the industry's priorities!)

The Book's Aims

Describe a foundation for inclusion of
support for temporal data in a truly
relational database management system
(TRDBMS).

(c) Hugh Darwen

Propose additional constraint definitions
and new design constructs for
management of temporal data.

Propose additional operators on relations
and relation variables ("relvars") having
interval-valued attributes.

All of the above to be definable in terms
of existing operators and constructs.

Focussing on problems related to data
representing beliefs that hold throughout
given intervals of time.

And explore some interesting side issues.

March 2004

Temporal Data 3

Imagine, for example, a database from which nothing is
ever deleted and in which every record is somehow
timestamped to show the time at which it arrived and, if its
information is no longer current, the time at which it was
superseded or deleted. The interval between those two
times is an interval throughout which the record was "valid"
(i.e., represented a held belief).

Such a database might be called a temporal database, but
there is no precise definition of that term, nor do we really
need one.

The records in a temporal database don't have to be
exclusively about the past and present. They could be
about the future, too (e.g., employees' planned vacations,
project schedules etc.), though beliefs about the future are
usually subject to more uncertainty than those about the
past and present.

The Book's Structure
(Parts I and II)

Part I Preliminaries

Chapter 1: A Review of Relational Concepts
Chapter 2: An Overview of Tutorial D

Part 2 Laying the Foundations

Chapter 3: Time and the Database
Chapter 4: What Is the Problem?
Chapter 5: Intervals
Chapter 6: Operators on Intervals
Chapter 7: The COLLAPSE and EXPAND
 Operators
Chapter 8: The PACK and UNPACK
 Operators
Chapter 9: Generalising the Relational
 Operators

(c) Hugh DarwenMarch 2004

Temporal Data 4

The course broadly follows the structure of the book, but
we assume you have a grasp of relational concepts and
we will not spend time teaching Tutorial D in detail.

The official definition of Tutorial D is in Foundation for
Future Database Systems: The Third Manifesto, by C.J.
Date and Hugh Darwen (Addision-Wesley, 2000, ISBN:
0-201-70928-7)

You are not expected to learn Tutorial D syntax in detail,
but you should try to understand and be able to reproduce,
roughly at least, the examples used in these slides.

The Book's Structure
(Part III)

Part III Building on the Foundations

Chapter 10: Database Design
Chapter 11: Integrity Constraints I:
 Candidate Keys and Related
 Constraints
Chapter 12: Integrity Constraints II:
 General Constraints
Chapter 13: Database Queries
Chapter 14: Database Updates
Chapter 15: Stated Times and Logged Times
Chapter 16: Point and Interval Types
 Revisited

(c) Hugh DarwenMarch 2004

Temporal Data 5

Regarding database design, constraints, queries and
updates, you will be shown the complexity of the problems
that need to be solved, and proposed solutions to those
problems. You should familiarise yourself with the solutions
and be able to describe in broad outline some of the
problems addressed by those solutions. But you do not
need to learn the complicated Tutorial D expressions for
the longhand expansions of the proposed new shorthands!

The topics of Chapters 15 and 16 are not included in this
course.

The Book's Structure
(Appendixes)as

Appendixes

Appendix A: Implementation
 Considerations
Appendix B: Generalizing the EXPAND
 and COLLAPSE Operators
Appendix C: References and Bibliography

(c) Hugh DarwenMarch 2004

Temporal Data 6

None of these topics is included in the course.

Part I: Preliminaries

Chapter 1: A Review of Relational Concepts

Introduction; The running example (based on
Date's familiar "suppliers and parts" database);
Types; Relation values; Relation variables;
Integrity constraints; Relational operators; The
relational model; Exercises (as for every
chapter).

Chapter 2: An Overview of Tutorial D

A relational database language devised for
tutorial purposes by Date and Darwen in
"Foundation for Future Database Systems: The
Third Manifesto" (2nd edition, Addison-Wesley,
2000). Also used in 8th edition of Date's
"Introduction to Database Systems".

(c) Hugh Darwen

Introduction; Scalar type definitions; Relational
definitions; Relational expressions; Relational
assignments; Constraint definitions; Exercises.

March 2004

Temporal Data 7

Note the careful distinction between values (relation
values in particular) and variables (relation variables in
particular).

We normally abbreviate "relation variable" to relvar. The
SQL counterpart, roughly speaking, is the base table,
though strictly speaking this corresponds to what we call
real relvars in particular. (Our counterpart of the SQL
updatable view is the virtual relvar.)

In a separate handout (a single sheet) you will find an
annotated table showing various notations for invoking
operators of the relational algebra: Tutorial D, ISBL,
Predicate Logic (where the operands are predicates rather
than relations) and SQL.

Chapter 3: Time and the Database

Introduction

Timestamped propositions

E.g. "Supplier S1 was under contract
throughout the period from 1/9/1999 (and not
immediately before that date) until 31/5/2002
(and not immediately after that date)."

"Valid time" vs. "transaction time"

Some fundamental questions:

Introduction of quantisation and its
consequences.

(c) Hugh DarwenMarch 2004

Temporal Data 8

Quantisation is the key. Although most people intuitively
think of time as continuous, we consider a time interval to
be a set of discrete, equally spaced points. The "distance"
between adjacent points is according to a chosen scale.
In all our examples the scale is one day unless otherwise
stated (explicitly or implicitly).

Quantisation has the huge advantage of making an interval
correspond to a finite set of points. Computers are much
better at dealing with finite sets than infinite ones and the
Relational Model is explicitly based on finite relations only.

"Valid time" and "transaction time" are rather
inappropriate and unintuitive terms in widespread use in
the temporal database community. The valid time of a
record refers to all the times at which the proposition it
represents is held to be true. The transaction time of a
record refers to all the times at which it was or is "in the
database". We do not pursue these concepts on this
course.

S#
S1
S2
S3
S4
S5

Chapter 4: What Is the problem?

S S# P#
S1 P1
S1 P2
S1 P3
S1 P4
S1 P5
S1 P6
S2 P1
S2 P2
S3 P2
S4 P2
S4 P4
S4 P5

SP

Suppliers and shipments:

S: "Supplier S# is under
contract"

SP: "Supplier S# is able
to supply part P#"

Consider queries: Which suppliers can supply
something? Which suppliers cannot supply
anything?

(c) Hugh Darwen

Nontemporal (current state only).

March 2004

Temporal Data 9

This is what you might call a nontemporal database. We
use it as a starting point from which we will develop, in
three stages, its fully temporal counterpart.

The queries we can make on this database have temporal
counterparts too, and so do the constraints we would like
to declare, and so do the update operations we would like
to be able to perform---as we shall see as the course
unfolds.

S# SINCE
S1 d04
S2 d07
S3 d03
S4 d04
S5 d02

Chapter 4: What Is the problem?

S_SINCE
S# P# SINCE
S1 P1 d04
S1 P2 d05
S1 P3 d09
S1 P4 d05
S1 P5 d04
S1 P6 d06
S2 P1 d08
S2 P2 d09
S3 P2 d08
S4 P2 d06
S4 P4 d04
S4 P5 d05

SP_SINCE

S_SINCE: "Supplier S#
has been under contract
since day SINCE"

SP_SINCE: "Supplier S#
has been able to supply
part P# since day SINCE"

Queries: Since when has supplier S# been able
to supply something? (Not too difficult)
Since when has supplier S# been unable to
supply anything? (Impossible)

(c) Hugh Darwen

"Semitemporalising"

March 2004

Temporal Data 10

"Semitemporalising" because we are doing only half the job,
so to speak. Actually, rather less than half.

Although such "since" relvars are inadequate of themselves,
we shall see (much later) that they do have part to play in a
fully temporal database.

The notation dnn for a day number is used for convenience.
In real life we would normally expect to see a date, such as
2004-03-01.

For each proposition (represented by a tuple), we have a
"since" value indicating the day on which the proposition in
question first became true. It is assumed still to be true at
the present time. We have no record of similar propositions
that used to be true in the past but are no longer true.
Thus, this is still a "current state" database.

And of course the existing technology can easily handle
such databases. Well, comparatively easily, anyway. But
observe that SQL, for example, has no shorthand for
expressing the constraint to the effect that the SINCE value
in an SP tuple had better not be earlier than the SINCE
value in the corresponding S tuple (for a supplier cannot be
able to supply anything while not under contract).

Exercise: Write a Tutorial D or SQL expression for the
constraint just described. For Tutorial D, you can use
IS_EMPTY (rel expr) to express a constraint to the effect
that the result of evaluating rel expr (an expression in
Tutorial D's relational algebra) must at all times be empty.

S# FROM TO
S1 d04 d10
S2 d02 d04
S2 d07 d10
S3 d03 d10
S4 d04 d10
S5 d02 d10

Chapter 4: What Is the problem?fs

S_FROM_TO
S# P# FROM TO
S1 P1 d04 d10
S1 P2 d05 d10
S1 P3 d09 d10
S1 P4 d05 d10
S1 P5 d04 d10
S1 P6 d06 d10
S2 P1 d08 d10
S2 P1 d02 d04
S2 P2 d03 d03
S2 P2 d09 d10
S3 P2 d08 d10
S4 P2 d06 d09
S4 P4 d04 d08
S4 P5 d05 d10

SP_FROM_TO

S_FROM_TO: "Supplier S#
was under contract from
day FROM to day TO"

SP_FROM_TO: "Supplier
S# was able to supply part
P# from day FROM to day
TO"
Queries: During which times was supplier S# able to
supply something? (Very difficult)
During which times was supplier S# unable to
supply anything? (Very difficult)

(c) Hugh Darwen

"Fully temporalising" (try 1)

March 2004

Temporal Data 11

Now we have the times at which true propositions ceased
to be true as well as the times at which they started to be
true. And that means we have a historical record as well
as a record of the current state of affairs (assuming that
today is day 10, so every tuple whose TO value is d10
represents a current state--an interim and inadequate
solution to a difficult problem we will return to later).

By "very difficult", we mean so difficult that we won't even
show how it might be done! But those queries are not
impossible and you are welcome to have a try (in Tutorial
D or SQL). In each case, the result should not show two or
more tuples for the same supplier whose FROM-TO
intervals overlap in time or are such that one immediately
follows the other in time.

Notice "try 1". Although this representation can be
achieved with existing technology, it is not really very
suitable. When working with intervals, we sometimes want
the end points to be considered as included, sometimes
not. For example, how does the system know whether S2
was under contract on day 4, or whether day 4 was
actually the first day on which S2 ceased to be under
contract? Soon we will introduce "try 2" as a better
solution, overcoming this problem.

Chapter 4: What Is the problem?

S_FROM_TO
S# P# FROM TO
S1 P1 d04 d10
S1 P2 d05 d10
S1 P3 d09 d10
S1 P4 d05 d10
S1 P5 d04 d10
S1 P6 d06 d10
S2 P1 d08 d10
S2 P1 d02 d04
S2 P2 d03 d03
S2 P2 d09 d10
S3 P2 d08 d10
S4 P2 d06 d09
S4 P4 d04 d08
S4 P5 d05 d10

SP_FROM_TO

(c) Hugh Darwen

Required Constraints

Same supplier can't be
under contract during
distinct but overlapping
or abutting intervals.

Same supplier can't be
able to supply same part
during distinct but
overlapping or abutting
intervals

These are very difficult!

March 2004

S# FROM TO
S1 d04 d10
S2 d02 d04
S2 d07 d10
S3 d03 d10
S4 d04 d10
S5 d02 d10

Temporal Data 12

Again, you are welcome to try to express these constraints
in Tutorial D or SQL.

S# DURING
S1 [d04:d10]
S2 [d02:d04]
S2 [d07:d10]
S3 [d03:d10]
S4 [d04:d10]
S5 [d02:d10]

Chapter 5: Intervals

S_DURING
S# P# DURING
S1 P1 [d04 :d10]
S1 P2 [d05 :d10]
S1 P3 [d09 :d10]
S1 P4 [d05 :d10]
S1 P5 [d04 :d10]
S1 P6 [d06 :d10]
S2 P1 [d08 :d10]
S2 P1 [d02 :d04]
S2 P2 [d03 :d03]
S2 P2 [d09 :d10]
S3 P2 [d08 :d10]
S4 P2 [d06 :d09]
S4 P4 [d04 :d08]
S4 P5 [d05 :d10]

SP_DURING

(c) Hugh Darwen

"Fully temporalising" (try 2)

Introduction of
interval types and
their point types.

Here, the type of the DURING attributes is
perhaps INTERVAL_DATE (its point type
being DATE)
A point type requires a successor function - in
this case NEXT_DATE (d). This is based
on the scale of the point type.
March 2004

Temporal Data 13

Now we put both end points together in a single column, so
to speak. A square bracket before the begin point or after
the end point indicates that that point is included in the
interval. But we don't actually store the brackets (or the
colons)! The next slide explains.

Of all the values whose type is DATE, there is one for
which NEXT_DATE (d) is undefined. And that is the
value representing the date of the "end of time".

Similarly, there is one value for which PRIOR_DATE (d)
is undefined: the date of the "beginning of time".

For this course, as in most of the book, we concentrate on
point types like this, in which there is a first value and a last
value. Note, however, that such types cannot be used for
intervals over, for example, days of the week or times of
day. These require so-called cyclic point types, which
have some rather interesting properties and are described
in Chapter 16. You are not required to study cyclic
point types.

Chapter 6: Operators on Intervals

BEGIN (i), END (i), PRE (i), POST (i)
give the various bound points of i.

Membership test (of point in interval)

Interval comparisons: Allen's operators, to
which we add i1 MERGES i2 (= i1 MEETS i2
OR i1 OVERLAPS i2). =, of course, but no <.

Dyadic operators returning intervals:
UNION, INTERSECT, MINUS.

COUNT (i) gives number of points in i.

(c) Hugh Darwen

Interval "selectors". E.g.:
INTERVAL_INTEGER ([1:10]) =
INTERVAL_INTEGER ((0:10]) =
INTERVAL_INTEGER ([1:11)) =
INTERVAL_INTEGER ((0:11))

March 2004

Temporal Data 14

A selector S for type T is an operator that, when invoked,
returns a value of type T. None of the arguments to the
invocation can be of type T. For every value V of type T there
is some invocation of S that returns V.

A literal is a special kind of selector invocation. You can
think of the literal 12 as being an invocation of a operator that
operates on a given sequence of decimal digits and yields the
integer indicated by that sequence. The invocations of
INTERVAL_INTEGER shown in this slide are literals because
in each case both arguments to the invocation are themselves
literals.

Notice how there are four different ways of selecting the
interval that runs from 1 to 10 inclusive. Exercise: How many
ways are there of selecting the interval that runs from the
beginning of time to the end of time?

Allen's comparison operators are described on the next
slide.

The UNION, INTERSECT and MINUS operators are not
defined for all pairs of intervals. They are defined only for
pairs of intervals such that the union, intersection or
difference of their sets of contained points constitutes a single
interval.

So the operands i1 and i2 of UNION must be such that i1
MERGES i2 is true. Exercise: What constraint must the
operands of INTERSECT satisfy? And those of MINUS?

(c) Hugh Darwen

i1 MEETS i2

i1 CONTAINS i2

i1 OVERLAPS i2

i1 SUCCEEDS i2

i1 PRECEDES i2

i1 = i2

to which we add
i1 MERGES i2
short for
i1 MEETS i2 OR i1 OVERLAPS i2

Allen's Interval Comparison
Operators

March 2004

Temporal Data 15

Chapter 7: The COLLAPSE and
EXPAND Operators

(c) Hugh Darwen

COLLAPSE (SI) and EXPAND (SI),
where SI is a set of intervals, each yielding a
set of intervals.

Equivalence relationship: SI1 and SI2 are
equivalent iff every point in an interval in SI1
is a point in some interval in SI2, and vice
versa.

Canonical forms: collapsed form and
expanded form. In each case, no point
appears in more than one member interval.

SI is in collapsed form iff, for all (p1, p2) in
SI, if p1 and p2 are contiguous points, then p1
and p2 are in the same interval (member of
SI).

SI is in expanded form iff every interval in SI
is a unit interval (contains just 1 point).
COLLAPSE (SI) and EXPAND (SI) are
not required to exist in the language.

March 2004

Temporal Data 16

If several different forms are deemed to represent the
same thing under some equivalence relationship, then
certain of those forms might be the preferred ones in
certain circumstances. A form that is the preferred one for
some purpose is a canonical form.

A set of intervals in collapsed form is the smallest of all
the sets of intervals that are equivalent to it under the given
equivalence relationship (ultimately constituting the same
set of points). A set of intervals in expanded form is the
biggest.

The COLLAPSE and EXPAND operators are not very
useful in themselves, but they help with the definition of the
more important operators to come.

Chapter 8: The PACK and UNPACK
Operators

(c) Hugh Darwen

PACK and UNPACK operate on relations,
yielding relations. Based on COLLAPSE
and EXPAND.
Consider:

SD_PART
S# DURING
S2 [d02 : d04]
S2 [d03 : d05]
S4 [d02 : d05]
S4 [d04 : d06]
S4 [d09 : d10]

Packed form of SD_PART "on DURING":
S# DURING
S2 [d02 : d05]
S4 [d02 : d06]
S4 [d09 : d10]

Obtained by PACK SD_PART ON (DURING)

March 2004

Temporal Data 17

So packed form is a canonical form for relations that have
interval-valued attributes. Its main purpose is to avoid
redundancy.

A relation that is not in packed form suffers from problems
similar to those of SQL tables that contain duplicate rows.

Chapter 8: The PACK and UNPACK
Operators

(c) Hugh Darwen

S# DURING
S2 [d02 : d02]
S2 [d03 : d03]
S2 [d04 : d04]
S2 [d05 : d05]
S4 [d02 : d02]
S4 [d03 : d03]
S4 [d04 : d04]
S4 [d05 : d05]
S4 [d06 : d06]
S4 [d09 : d09]
S4 [d10 : d10]

Obtained by UNPACK SD_PART ON (DURING)

Unpacked form of SD_PART "on DURING":

March 2004

Temporal Data 18

In unpacked form every interval is a unit interval,
therefore containing just a single point.

The intervals of an unpacked form could easily be replaced
by their single point values, but for definitional purposes it
is more convenient to keep the intervals. We expect
unpacked forms to exist mostly only conceptually; we do
not expect actually to "see" them very often.

If all relations were in unpacked form, queries, constraints,
and updates would be as easy to express as they are
without the shorthands that we propose. But relations in
unpacked form are difficult to interpret and might be
huge--especially when the scale of the point type is very
small (say, 1 microsecond).

As we shall see, the proposed shorthands allow us to think
we are operating on unpacked forms even though we
actually see packed forms.

Chapter 8: The PACK and UNPACK
Operators

(c) Hugh Darwen

Packing/Unpacking on no attributes:
Important degenerate cases.
Each yields its input relation.

Unpacking on several attributes:
UNPACK R ON (A1, A2) =

 UNPACK (UNPACK R ON A1) ON A2 =
 UNPACK (UNPACK R ON A2) ON A1

Packing on several attributes:
PACK R ON (A1, A2) =

 PACK (PACK (UNPACK R ON (A1,A2)) ON A1)
 ON A2 �
 PACK (PACK(UNPACK R ON (A1,A2)) ON A2)
 ON A1
 not: PACK (PACK R ON A1) ON A2

Although redundancy is eliminated, result can be
of greater cardinality than R.

March 2004

Temporal Data 19

You can ignore this slide if you wish. On this course
you are not expected to study relations with more than one
interval-valued attribute.

Note that packing on two attributes is not simply packing
on one and then packing the result on the other. In
general, you have to unpack on both first. Even then, the
result of packing on both depends on the order in which
you do the packing. That is why Tutorial D uses the
lunula form of parenthesis for enclosing the attribute name
list, as opposed to the curly brace form, {...}, that we
normally prefer for lists in which the order of elements is
immaterial. In the case of UNPACK, the order is
immaterial, but we thought it would be confusing if
UNPACK and PACK used different notations.

Chapter 9: Generalizing the
Relational Operators

(c) Hugh Darwen

Union, intersect and difference
Restrict, project and join (natural)
Extend and summarize

Syntax:
USING (ACL) � rel op inv �
ACL is attribute-name commalist
we call these "U_" operators

Example:
USING (DURING) � SP_DURING { S#,
 DURING } �
gives (S#, DURING) pairs such that
supplier S# was able to supply some part
throughout the interval DURING.
we call this "U_project"

Common principle:
1. Unpack the operand(s) on ACL
2. Evaluate rel op inv on unpacked forms.
3. Pack result of 2. on ACL

March 2004

Temporal Data 20

One of your handouts gives Tutorial D's relational algebra
operators alongside their counterparts in ISBL, predicate
logic and SQL. But it is not important for you to remember
all these operators in detail. It is much more important for
you to understand the single principle underlying each of
the new "U_" operators (U for USING).

Each "old" operator has a U_ counterpart. What's more,
each U_ operator degenerates to its "old" counterpart
when it is invoked with no USING attributes.

Later we shall see how this same USING construct applies
to constraints and updating operations too.

Notice that the U_project example shown on this slide
solves the first of our two "very difficult" queries ...

Chapter 9: Generalizing the
Relational Operators

(c) Hugh Darwen

More examples

U_MINUS:
USING (DURING)
� S_DURING { S#, DURING } MINUS
 SP_DURING { S#, DURING } �
gives (S#, DURING) pairs such that
supplier S# was unable to supply any part
throughout the interval DURING.

U_SUMMARIZE:
USING (DURING)
� SUMMARIZE SP_DURING
 PER S_DURING { S#, DURING }
 ADD COUNT AS NO_OF_PARTS �
gives (S#, NO_OF_PARTS, DURING)
triples such that supplier S# was able to
supply NO_OF_PARTS parts throughout
the interval DURING.

March 2004

Temporal Data 21

... and notice that the U_MINUS example shown here
solves the second of those two "very difficult" queries.

U_SUMMARIZE turns out to be especially interesting, but
its complications are really beyond the scope of this course
and you are not expected to study it in detail. The next two
slides are included for possible interest only.

Chapter 9: Generalizing the
Relational Operators

(c) Hugh Darwen

U_SUMMARIZE is interesting (1)

U_SUMMARIZE:
USING (DURING)
� SUMMARIZE SP_DURING
 PER S_DURING { DURING }
 ADD COUNT AS NO_OF_PARTS �
note lack of S# in PER relation
gives (NO_OF_PARTS, DURING) pairs
such that NO_OF_PARTS parts were
available from some supplier throughout
the interval DURING

March 2004

Temporal Data 22

Chapter 9: Generalizing the
Relational Operators

(c) Hugh Darwen

U_SUMMARIZE is interesting (2)

U_SUMMARIZE:
USING (DURING)
� SUMMARIZE SP_DURING
 PER S_DURING { S# }
 ADD COUNT AS NO_OF_PARTS �
note lack of DURING in PER relation, so
unpacking effectively applies to first
operand only
for each S#, counts number of distinct
cases of S# being able to supply some
part on some date (!)

March 2004

Temporal Data 23

This is the only exception to the general rule that both
operand relations are conceptually unpacked on the
USING attribute(s). Here, the USING attribute doesn't
even exist in the PER relation, but that's okay because the
operation is still well defined (and possibly useful).

U_JOIN could be subect to similar treatment, not insisting
on both operands having all of the specified USING
attributes.

Chapter 10: Database Design

(c) Hugh Darwen

Structure of chapter:
Introduction
Current relvars only
Historical relvars only
Sixth normal form (6NF)
"The moving point now"
Both current and historical relvars
Concluding remarks
Exercises

At last, we focus on specifically temporal
issues!

March 2004

Temporal Data 24

Chapter 10: Database Designa

(c) Hugh Darwen

Current relvars only:

S# SNAME STATUS CITY
S1 Smith 20 London

S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London

S5 Adams 30 Athens

S# P#
S1 P1
S1 P2
S1 P3
S1 P4
S1 P5
S1 P6
S2 P1
S2 P2
S3 P2
S4 P2
S4 P4
S4 P5

SSSC SP

Note: attribute names of key
members are underlined.

March 2004

Temporal Data 25

Note that SSSC is in 5NF (fifth normal form) and yet is
decomposible. For example, we could split it into three
binary relvars with attributes {S#, SNAME}, (S#, STATUS}
and {S#, CITY}. As it happens, each of those three would
be in 6NF, whereas SSSC, by virtue of being
decomposible, is not in 6NF.

Exercise: Why do we normally not decompose relvars
such as SSSC, with our existing technology? What
constraints would need to be declared if we did
decompose it as suggested?

We shall see that 6NF, while possibly a bad idea here,
becomes a positively good idea when we "temporalize" the
database.

Chapter 10: Database Designfs

(c) Hugh Darwen

Semitemporalizing SSSC (try 1):

S# SNAME STATUS CITY SINCE
S1 Smith 20 London d04
S2 Jones 10 Paris d05
S3 Blake 30 Paris d02
S4 Clark 20 London d09
S5 Adams 30 Athens d09

SSSC_SINCE

Problem:
SINCE gives date of last update. We cannot
tell since when a certain STATUS has held or
a certain CITY has held or a certain NAME
has held, or even since when a certain
supplier has been under contract.

March 2004

Temporal Data 26

SSSC_SINCE is also in 5NF but not in 6NF, and 5NF is
still sufficient.

To overcome the problem mentioned on the slide, we
really need a separate "since" attribute for each attribute of
SSSC, so to speak, as shown on the next slide.

Chapter 10: Database Design

(c) Hugh Darwen

Semitemporalizing SSSC (try 2):

Predicate:
Supplier S# has been under contract since
S#_SINCE, has been named NAME since
NAME_SINCE, has had status STATUS
since STATUS_SINCE and has been in city
CITY since CITY_SINCE.

VAR S_SINCE RELATION
{ S# S#, S#_SINCE DATE,
 SNAME CHAR, SNAME_SINCE DATE,
 STATUS INT, STATUS_SINCE DATE,
 CITY CHAR, CITY_SINCE DATE }
KEY { S# } ;

But we clearly cannot develop a fully
temporalized counterpart on similar lines!

March 2004

Temporal Data 27

Again we are in 5NF but not in 6NF, and again 5NF is
sufficient.

Notice how even the key (S#) has a corresponding "since"
attribute, S#_SINCE. It indicates the date on which
supplier S# was placed under contract. Since that date it
is possible that S#'s name, status and city have all
changed, so we do need this date to be separately
recorded, if we need it at all. (If the key is composite, we
do not need a separate "since" attribute for each
component of the key.)

Exercise: What constraints should be declared for
S_SINCE?

Chapter 10: Database Design

(c) Hugh Darwen

Fully temporalizing SSSC:

Predicate:
Supplier S# was under contract throughout
DURING and neither immediately before nor
imediately after DURING.

VAR S_DURING RELATION
{ S# S#, DURING INTERVAL_DATE }
KEY { S#, DURING } ;

VAR S_NAME_DURING RELATION
{ S# S#,
 SNAME CHAR, DURING INTERVAL_DATE }
KEY { S#, DURING } ;
Predicate:
Supplier S# was named SNAME throughout
DURING and neither immediately before nor
imediately after DURING.

And so on. We call this vertical decomposition.

March 2004

Temporal Data 28

For each "since" attribute of SSSC_SINCE, we have a
corresponding "during" relvar. The others, not shown on
the slide, would be S_STATUS_DURING and
S_CITY_DURING.

We call this vertical decomposition because it is
"column-wise", according to the normal tabular
representation of relations.

Chapter 10: Database Design

(c) Hugh Darwen

Sixth Normal Form (6NF)

Recall: A relvar R is in 5NF iff every
nontrivial join dependency that is
satisfied by R is implied by a candidate
key of R.

A relvar R is in 6NF iff R satisfies no
nontrivial join dependencies at all,
in which case R is said to be irreducible.

SSSC and SSSC_SINCE are in 5NF but not
6NF (which is not needed).

S_DURING, SNAME_DURING and so on
are in 6NF, thus allowing each of the
supplier properties NAME, CITY and
STATUS, which vary independently of each
other over time, to have its own recorded
history (by supplier).

March 2004

Temporal Data 29

According to the normal definition of 5NF, a join
dependency is said to hold in relvar R if there exist n
distinct projections of R, p1, p2,... pn, such that n > 1 and at
all times R is equal to p1 JOIN p2 JOIN ... pn. (Cases where
n = 2 are by far the most common.)

A join dependency is "implied by a candidate key of R" if
each of the projections includes each attribute of that
candidate key.

For the purposes of 6NF, the definition is altered slightly
such that the projections become U_projections and the
JOINs become U_JOINs.

Chapter 10: Database Design

(c) Hugh Darwen

"The Moving Point NOW"

We reject any notion of a special marker, NOW,
as an interval bound. (It is a variable, not a
value. Its use would be as much a departure
from the Relational Model as NULL is!)

If current state is to be recorded, along with
history, in S_DURING, S_NAME_DURING,
S_STATUS_DURING and S_CITY_DURING,
then we have a choice of evils:

guess when, in the future, current state
will change

assume current state will hold until the end
of time

Better instead to use horizontal decomposition

March 2004

Temporal Data 30

A special marker, NOW, has been advocated by some
authorities. The problems with this approach are
described in detail on pages 177-180 of the book.

For example, consider the interval [NOW:d14]. What
happens if that interval is recorded somewhere in the
database and the clock reaches day 15? For another
example, what is the effect, on day 14, of assigning the
interval [d01, NOW] to variable I1? Does I1 have the value
[d01:d14] or the "value" [d01:NOW]? Does I1 compare
equal to [d01, NOW] on the day the assignment is
performed? And on the next day?

__

The term horizontal decomposition appeals to the fact
that tuples appear as rows in our normal tabular
representation of relations and tuples representing the
current state of affairs are kept in a separate relvar from
those representing the past. The term is a little loose,
because the current state tuples are not of exactly the
same type as the historical ones.

Chapter 10: Database Design

(c) Hugh Darwen

Horizontal Decomposition

Keep S_SINCE for current state.

Use S_DURING, S_NAME_DURING,
S_STATUS_DURING and S_CITY_DURING
for history only.

Having accepted the inevitability of vertical
and horizontal decomposition, we need to
consider the consequences for constraints ...

March 2004

Temporal Data 31

In other words, if we take as our starting point a proposed
relvar with attributes S#, SNAME, STATUS, CITY,
DURING, we first horizontally decompose to give S_SINCE
and a "during" relvar for the historical information. Then
we vertically decompose the "during" relvar, using
U_project.

Chapter 11: Integrity Constraints I

(c) Hugh Darwen

Candidate Keys and Related Constraints

Example database:

S_SINCE (S#, S#_SINCE, STATUS, STATUS_SINCE)

SP_SINCE (S#, P#, SINCE)

S_DURING (S#, DURING)

S_STATUS_DURING (S#, STATUS, DURING)

SP_DURING (S#, P#, DURING)

We first examine three distinct problems:

The redundancy problem

The circumlocution problem

The contradiction problem

March 2004

A fourth problem, concerning "density",
will come later.

Temporal Data 32

Having explained vertical decomposition, we can now
dispense with S_NAME_DURING and S_CITY_DURING
because their treatment will be the same as that of
S_STATUS_DURING.

Redundancy: saying the same thing more than once.

Circumlocution: saying something in a roundabout way.

Contradiction: saying something that cannot be true, such
as "S1's status is 20 and S1's status is 30".

Chapter 11: Integrity Constraints I

(c) Hugh Darwen

The Redundancy Problem

S_STATUS_DURING (S#, STATUS, DURING)

Consider:

The declared key, {S#, DURING} doesn't
prevent this:

S# STATUS DURING
S4 25 [d05:d06]
S4 25 [d06:d07]

S4 shown twice as having status 25 on day 6.

March 2004

Avoided in the packed form of
S_STATUS_DURING.

Temporal Data 33

Chapter 11: Integrity Constraints I

(c) Hugh Darwen

The Circumlocution Problem

S_STATUS_DURING (S#, STATUS, DURING)

Still considering:

The declared key, {S#, DURING} doesn't
prevent this:

S# STATUS DURING
S4 25 [d05:d05]
S4 25 [d06:d07]

Longwinded way of saying that S4 has
status 25 from day 5 to day 7.

March 2004

Also avoided in the packed form of
S_STATUS_DURING.

Temporal Data 34

Chapter 11: Integrity Constraints I

(c) Hugh Darwen

Solving The Redundancy and
Circumlocution Problems

VAR S_STATUS_DURING RELATION
{ S# S#,
 STATUS CHAR, DURING INTERVAL_DATE }
KEY { S#, DURING }
PACKED ON (DURING) ;

"PACKED_ON (DURING)" causes an update
to be rejected if acceptance would result in
S_STATUS_DURING �
PACK S_STATUS_DURING ON (DURING)

This kills two birds with one stone. We see no
compelling reason for distinct shorthands to
separate the two required constraints.

March 2004

Temporal Data 35

Chapter 11: Integrity Constraints I

(c) Hugh Darwen

The Contradiction Problem

S_STATUS_DURING (S#, STATUS, DURING)

Still considering:

The declared key, {S#, DURING} and
PACKED ON (DURING) don't prevent this:

S# STATUS DURING
S4 25 [d04:d06]
S4 10 [d05:d07]

S4 has two statuses on days 5 and 6.

March 2004

Avoided in the unpacked form of
S_STATUS_DURING!

Temporal Data 36

Chapter 11: Integrity Constraints I

(c) Hugh Darwen

Solving The Contradiction Problem

VAR S_STATUS_DURING RELATION
{ S# S#,
 STATUS CHAR, DURING INTERVAL_DATE }
KEY { S#, DURING }
PACKED ON (DURING)
WHEN UNPACKED ON (DURING)
 THEN KEY { S#, DURING } ;

"WHEN UNPACKED_ON (DURING)
 THEN KEY { S#, DURING }"
causes an update to be rejected if acceptance
would result in failure to satisfy a uniqueness
constraint on { S#, DURING } in the result of
UNPACK S_STATUS_DURING ON (DURING).

March 2004

Temporal Data 37

We call this shorthand a WHEN-THEN constraint.

Chapter 11: Integrity Constraints I

(c) Hugh Darwen

WHEN / THEN without PACKED ON

Example (presidential terms):

DURING PRESIDENT
[1974:1976] Ford
[1977:1980] Carter
[1981:1984] Reagan
[1985:1988] Reagan
[1993:1996] Clinton
[1997:2000] Clinton

TERM

PACKED ON (DURING) not desired
because it would lose distinct consecutive
terms by same president (e.g., Reagan and
Clinton)

Perhaps not good design (better to include a
TERM# attribute?) but we don't want to
legislate against it.

But we can't have two presidents at same time!

March 2004

Temporal Data 38

The question arises as to whether a WHEN-THEN
constraint is ever needed without a PACKED ON
constraint. This example is our best attempt to find such a
case. It is not a very compelling example. (Can you think
of a better one?)

Omitting the PACKED ON constraint would permit the
tuple ([1994:1995], Clinton) to appear in addition to those
shown in the example, though the WHEN-THEN constraint
prohibits ([1994:1995], Lincoln) from being inserted.

Notice in passing that there appear to be a couple of gaps
in the historical record here, for the intervals 1989-1992
and 2001 to the present day. Did the person responsible
for the example accidentally miss something out or is there
mischief afoot? In case you think another kind of
constraint is needed to prevent such "accidents", you are
absolutely right! We call this kind of constraint a
"denseness" constraint. We shall come across the need
for these in our suppliers-and-shipments database very
shortly.

It seems that mostly both PACKED ON and WHEN-THEN
are required, so a further shorthand is justified.

Chapter 11: Integrity Constraints I

(c) Hugh Darwen

Neither WHEN / THEN nor PACKED ON

Example (measures of inflation):

DURING PERCENTAGE
[m01:m03] 18
[m04:m06] 20
[m07:m09] 20
[m07:m07] 25

.......... ..
[m01:m12] 20

INFLATION

But the predicate for this is not:

"Inflation was at PERCENTAGE
throughout the interval DURING"

but rather, perhaps:
"Inflation was measured to be
PERCENTAGE over the interval DURING"

March 2004

Temporal Data 39

Can you think of a compelling example of a "during" relvar
where neither a PACKED ON constraint nor a
WHEN-THEN constraint is needed? We can't, as this
feeble example--our best attempt to find one--illustrates.

Chapter 11: Integrity Constraints I

(c) Hugh Darwen

WHEN / THEN and PACKED ON both required

VAR S_STATUS_DURING RELATION
{ S# S#,
 STATUS INTEGER,
 DURING INTERVAL_DATE }
USING (DURING) KEY { S#, DURING } ;

"USING (ACL) KEY { K }", where K includes
ACL, is shorthand for:

WHEN UNPACKED ON (ACL)
 THEN KEY { K }
PACKED ON (ACL)
KEY { K }
(KEY { K } is implied by WHEN/THEN +
PACKED ON anyway)

We call this constraint a "U_key" constraint.

March 2004

Temporal Data 40

Here is the promised shorthand to cover the normal case,
where both PACKED ON (DURING) and WHEN
UNPACKED ON (DURING) THEN KEY ... are both
required. Yet another application of the USING construct.
(And there are more to come, when we deal with
updating.)

Chapter 12: Integrity Constraints II

(c) Hugh Darwen

General Constraints

Example database is still:

S_SINCE (S#, S#_SINCE, STATUS, STATUS_SINCE)

SP_SINCE (S#, P#, SINCE)

S_DURING (S#, DURING)

S_STATUS_DURING (S#, STATUS, DURING)

SP_DURING (S#, P#, DURING)

We examine nine distinct requirements, in
three groups of three.
In each group, one requirement relates to
redundancy (and sometimes also to
contradiction), one to circumlocution and one
to denseness.

with added U_keys. But more constraints are
needed.

March 2004

Temporal Data 41

That the requirements fall neatly into three groups of three
is partly an accident of our chosen example. However, the
method of grouping follows a general pattern that can be
applied in any database design.

Chapter 12: Integrity Constraints II

(c) Hugh Darwen

Requirement Group 1

Requirement R1:
If the database shows supplier Sx as being
under contract on day d, then it must contain
exactly one tuple that shows that fact.
Note: avoiding redundancy

Requirement R2:
If the database shows supplier Sx as being
under contract on days d and d+1, then it must
contain exactly one tuple that shows that fact.
Note: avoiding circumlocution

Requirement R3:
If the database shows supplier Sx as being
under contract on day d, then it must also show
supplier Sx as having some status on day d.
Note: to do with denseness

March 2004

Temporal Data 42

These are the three that relate to a supplier being under
contract.

If we were recording suppliers' names and cities as well as
their statuses, then Requirement R3 would be
accompanied by two more similar requirements relating to
name and city.

This sets the theme, which recurs with some subtle
variations, as we are about to see ...

Chapter 12: Integrity Constraints II

(c) Hugh Darwen

Requirement Group 2

Requirement R4:
If the database shows supplier Sx as having
some status on day d, then it must contain
exactly one tuple that shows that fact.
Note: avoiding redundancy and contradiction

Requirement R5:
If the database shows supplier Sx as having
status s on days d and d+1, then it must
contain exactly one tuple that shows that fact.
Note: avoiding circumlocution

Requirement R6:
If the database shows supplier Sx as having
some status on day d, then it must also show
supplier Sx as being under contract on day d.
Note: to do with denseness

March 2004

Temporal Data 43

Requirement R4 is obviously of the same kind as
Requirement R1, but here it addresses contradiction as
well as redundancy. We don't want more than one tuple
indicating that S1 has status 20 on day 1, for example, nor
do we want one tuple showing S1 as having status 20 on
day 1 and another showing S1 as having status 30 on day
1.

Requirement R6 is not only similar in kind to Requirement
R3: it is the inverse of R3.

Chapter 12: Integrity Constraints II

(c) Hugh Darwen

Requirement Group 3

Requirement R7:
If the database shows supplier Sx as being
able to supply part Py on day d, then it must
contain exactly one tuple that shows that fact.
Note: avoiding redundancy

Requirement R8:
If the database shows supplier Sx as being
able to supply part Py on days d and d+1, then
it must contain exactly one tuple that shows
that fact.
Note: avoiding circumlocution

Requirement R9:
If the database shows supplier Sx as being
able to supply some part on day d, then it must
also show supplier Sx as being under contract
on day d.
Note: to do with denseness

March 2004

Temporal Data 44

The variation here is that Requirement R9, unlike R3 and
R6, is not accompanied by its inverse: a supplier who is
unable to supply anything on a certain day is permitted to
be under contract on that day.

Chapter 12: Integrity Constraints II

(c) Hugh Darwen

Meeting the Nine Requirements (a):
current relvars only

S_SINCE { S#, S#_SINCE, STATUS, STATUS_SINCE }
 KEY { S# }

CONSTRAINT CR6 IS_EMPTY
 (S_SINCE WHERE STATUS_SINCE < S#_SINCE)

SP_SINCE { S#, P#, SINCE }
 KEY { S#, P# }
 FOREIGN KEY { S# } REFERENCES S_SINCE

CONSTRAINT CR9 IS_EMPTY
 ((S_SINCE JOIN SP_SINCE)
 WHERE SINCE < S#_SINCE)

March 2004

Temporal Data 45

This slide show Tutorial D constraint declarations that are
needed to meet the nine requirements in the
"semitemporal" counterpart of our database. Perhaps there
is no compelling need for any new shorthands yet.

IS_EMPTY (rel expr) is Tutorial D's shorthand hand for rel
expr { } = TABLE_DUM (the relation with no attributes and
no tuples).

Chapter 12: Integrity Constraints II

(c) Hugh Darwen

Meeting the Nine Requirements (b):
historical relvars only

S_DURING { S#, DURING }
 USING (DURING) KEY { S#, DURING }
 USING (DURING) FOREIGN KEY { S#, DURING }
 REFERENCES S_STATUS_DURING

SP_DURING { S#, P#, DURING }
 USING (DURING) KEY { S#, P#, DURING }
 USING (DURING) FOREIGN KEY { S#, DURING }
 REFERENCES S_DURING

S_STATUS_DURING { S#, STATUS, DURING }
 USING (DURING) KEY { S#, DURING }
 USING (DURING) FOREIGN KEY { S#, DURING }
 REFERENCES S_DURING

March 2004

Temporal Data 46

And here are the Tutorial D constraint declarations, using
shorthands we have already seen, to handle the case
where all the relvars are "during" ones--in other words,
where horizontal decomposition has not been needed.

Chapter 12: Integrity Constraints II

(c) Hugh Darwen

Meeting the Nine Requirements (c):
current and historical relvars

Very difficult, even with shorthands defined so
far. E.g.,

Requirement R9:
If the database shows supplier Sx as being
able to supply any part Py on day d, then it
must also show supplier Sx as being under
contract on day d.

CONSTRAINT BR9_A IS_EMPTY
((S_SINCE JOIN SP_SINCE) WHERE S#_SINCE > SINCE)

CONSTRAINT BR9_B
WITH (EXTEND S_SINCE ADD INTERVAL_DATE ([
S#_SINCE : LAST_DATE ()]) AS DURING { S#, DURING }
AS T1,
(T1 UNION S_DURING) AS T2,
SP_DURING { S#, DURING } AS T3 :
USING (DURING) ���� T3 is_subset_of T2 ����

(Note U_ form of relational comparison operator)

March 2004

Temporal Data 47

You can study these constraints if you really want to satisfy
yourself that they are correct and do the required job, but
the whole point of this slide is to show what a compelling
case there is for some much more powerful shorthand than
any we have yet introduced.

Tutorial D features used here include WITH, which
assigns names to expressions, allowing you to break down
a complicated expression into several parts, and the "is
subset of" relational comparison operator, for which
Tutorial D uses the usual mathematical symbol, not
available in the technology used to make these slides!

Chapter 12: Integrity Constraints II

(c) Hugh Darwen

Meeting the Nine Requirements (c):
current and historical relvars

So, to cut a long story short:

VAR S_SINCE RELATION
 { S# S#,
 S#_SINCE DATE SINCE_FOR { S# }
 HISTORY_IN (S_DURING),
 STATUS INTEGER,
 STATUS_SINCE DATE SINCE_FOR { STATUS }
 HISTORY_IN
 (S_STATUS_DURING) }
 KEY { S# } ;

VAR SP_SINCE RELATION
 { S# S#,
 P# P#,
 SINCE DATE SINCE_FOR { S#, P# }
 HISTORY_IN (SP_DURING) }
 KEY { S#, P# }
 FOREIGN KEY { S# } REFERENCES S_SINCE ;

and we conjecture that the historical relvar
definitions can be generated automatically.

March 2004

Temporal Data 48

And here are the proposed shorthands. SINCE_FOR
associates an attribute of a point type (such as DATE, as
here) with another attribute in an intuitive way, and
HISTORY_IN associates a "during" relvar with that "since"
attribute in an equally intuitive way.

All the constraints we have described under "the nine
requirements" are implicitly declared by these uses of
SINCE_FOR and HISTORY_IN.

Chapter 13: Database Queries

(c) Hugh Darwen

Twelve generic queries of varying
complexity are presented and then solved
a. for current relvars only
b. for historical relvars only
c. for both current and historical relvars

The c. section raises requirement for virtual
relvars (views) that "undo" horizontal
decomposition, such as:

VAR S_DURING_NOW_AND_THEN VIRTUAL
 S_DURING UNION
 (EXTEND S_SINCE
 ADD INTERVAL_DATE ([S#_SINCE : LAST_DATE ()])
 AS DURING) { S#, DURING }

March 2004

Temporal Data 49

Recall that a virtual relvar is Tutorial D's counterpart of
SQL's "updatable view".

The one illustrated here provides a much more convenient
target for the familiar database updating operations than
the "since" and "during" relvars, and also factors out a
subexpression that is likely to be required in very many
queries.

Its form is common to all horizontal decompositions, which
makes it possible to conceive of a shorthand for generating
it, as we shall eventually see in the next chapter.

Chapter 14: Database Updates

(c) Hugh Darwen

Thirteen generic update operations of
varying complexity are presented in terms of
addition, removal or replacement of
propositions. E.g.:

Add the proposition "Supplier S2 was able
to supply part P4 on day 2".

Remove the proposition "Supplier S6 was
able to supply part P3 from day 3 to day 5".

Replace the proposition "Supplier S2 was
able to supply part P5 from day 3 to day 4"
by the proposition "Supplier S2 was able to
supply part P5 from day 2 to day 4".

Inevitable conclusion is need for U_update
operators ...

March 2004

Temporal Data 50

Chapter 14: Database Updates

(c) Hugh Darwen

"U_INSERT":

USING (ACL) INSERT R r
is shorthand for
R := USING (ACL) R UNION r

"U_DELETE":

USING (ACL) DELETE R WHERE p
is shorthand for
R := USING (ACL) R WHERE NOT p

and there's "U_UPDATE" too, of course
(difficult to define formally)

But U_update operators aren't all that's
needed ...

U_ update operators

March 2004

Temporal Data 51

":=" is Tutorial D's assignment operator.

Even with these U_ update operators, correctly applying
required updates to a horizontally decomposed database
can be excruciatingly difficult. We really need to be able to
use that virtual relvar in which current state and history are
combined, as a target of updates, so that the system can
take care of special needs such as, for example, data
deleted from the "since" relvar" being appropriately added
to the corresponding "during" relvar.

Chapter 14: Database Updates

(c) Hugh Darwen

Replace the propositon "Supplier S1 was
under contract from day 4 to day 8" by
"Supplier S2 was under contract from day 6
to day 7".
(A trifle unreasonable but must be doable!)

S# DURING
S1 [d03 : d10]
S2 [d02 : d05]

S_DURING

We introduce PORTION:
UPDATE S_DURING WHERE S# = S# ('S1')
 PORTION { DURING = INTERVAL_DATE ([d04 : d08]) }
{ S# : = S# ('S2') ,
 DURING := INTERVAL_DATE ([d06 : d07]) } ;

S# DURING
S1 [d03 : d03]
S1 [d09 : d10]
S2 [d02 : d07]

yielding:

March 2004

Temporal Data 52

This topic is not included in the course.

Chapter 14: Database Updates

(c) Hugh Darwen

Finally, we need to be able to apply update
operators to the virtual relvar that combines
current state with history.

VAR S_SINCE RELATION
 { S# S#,
 S#_SINCE DATE SINCE_FOR { S# }
 HISTORY_IN (S_DURING)
 COMBINED_IN (S_DURING_NOW_AND_THEN),
 STATUS INTEGER,
 STATUS_SINCE DATE SINCE_FOR { STATUS }
 HISTORY_IN
 (S_STATUS_DURING)
 COMBINED_IN
 (S_STATUS_ DURING_NOW_AND_THEN }
 KEY { S# } ;

So we propose to add a COMBINED_IN
specification to relvar declaration syntax, for
that express purpose. E.g.:

March 2004

Temporal Data 53

Chapter 15: Stated Times and
Logged Times

(c) Hugh Darwen

Stated times = "valid times"
Logged times = "transaction times"

Justification for proposed terms:

The stated times of proposition p are times
when, according to our current belief, p was,
is or will be true.

The logged times of proposition q are times
(in the past and present only) when the
database recorded q as being true.

[If q includes a stated time, then some
might call "q during logged time [t1:t2]"
a "bitemporal" proposition and hence
talk about "bitemporal relations". We
don't.]

March 2004

Temporal Data 54

This topic is not included in the course.

Chapter 15: Stated Times and
Logged Times

(c) Hugh Darwen

We propose a LOGGED_TIMES_IN
specification to be available in relvar
declarations. E.g.:

VAR S_DURING RELATION
 { S# S#,
 DURING INTERVAL_DATE }
USING (DURING) KEY { S#, DURING }
LOGGED_TIMES_IN (S_DURING_LOG) ;

Attributes of S_DURING_LOG are S#, DURING
and a third one, for logged times.

March 2004

Temporal Data 55

This topic is not included in the course.

Chapter 16: Point Types Revisited

(c) Hugh Darwen

Detailed investigation of point types and the
significance of scale (preferred term to
"granularity"). Includes discussion of:

If point type pt2 is a proper subtype of pt1
(under specialisation by constraint), what
are the consequences for types
INTERVAL_pt2 and INTERVAL_pt1?
(E.g.: EVEN_INTEGER and INTEGER)

What about nonuniform scales, as with pH
values, Richter values and prime numbers?

What about cyclic point types, such as
WEEKDAY and times of day?
Consequences of a < b being equivalent to
a � b for all (a,b), leading to modified
definitions of various interval operators.

Is there any point in considering continuous
point types? We conclude not, because you
lose some operators and gain none.

March 2004

Temporal Data 56

These topics are not included in the course.

Appendixes

(c) Hugh Darwen

A. Implementation Considerations
Various useful transformations.
Avoiding unpacking.
The SPLIT operator.
Algorithms for implementing U_ operators.

B. Generalizing EXPAND and COLLAPSE
On sets of relations, sets of sets, sets of bags,

other kinds of sets.
PACK, UNPACK and U_ operators therefore

also defined for relations with attributes having
such types.

C. References and Bibliography
Over 100 references.

March 2004

Temporal Data 57

These topics are not included in the course.

Hugh Darwen
HD@TheThirdManifesto.com
www.TheThirdManifesto.com

Temporal Data and The
Relational Model

(c) Hugh DarwenMarch 2004

Temporal Data 58

