
Hugh Darwen
IBM United Kingdom Limited
Hugh_Darwen@uk.ibm.com

Towards An Agreeable
Model of Type

Inheritance

November 1999 © Hugh Darwen

1

References

Hugh Darwen: "Towards An Agreeable
Model of Type Inheritance", submitted to
Journal of Computer Science and
Information Management, September 1999
issue.

C.J. Date and Hugh Darwen: "Foundation
for Future Database Systems: The Third
Manifesto", Addison-Wesley, 2000 (to
appear, as 2nd edition of "Foundation for
Object/Relational Databases: The Third
Manifesto", Addison-Wesley, 1998).

November 1999 © Hugh Darwen

2

Why Seek a Model of Type
Inheritance?

Because there doesn't seem to be (a
commonly agreed) one.

Because what purports to be type
inheritance in (e.g.) Smalltalk, C++, Java,
SQL:1999 seems to be ad hoc (and, as type
inheritance, not very agreeable).

For relational databases, we wanted a
rigorous definition, in keeping with
relational theory.

November 1999 © Hugh Darwen

3

Assumptions

Value
3
'All logical differences are big differences'
POINT (3 , 4)
{1.5, -3.7, 14.0}

Variable
to which exactly one value is assigned
which might vary from time to time

Operator
read-only operator, on values, yielding a value
when invoked
update operator, on values and at least one
variable (e.g., assignment), yielding no value

Type
declared type, of a variable, parameter, operator
invocation
most specific type, of a value

November 1999 © Hugh Darwen

The language ("D") embraces these concepts:

and conforms to The Third Manifesto!

4

Conformance to The Third Manifesto

D supports type generators for tuple types
and relation types, along with prescribed
operators on tuples and relations.

D (unlike SQL) supports a truth-valued type
consisting of the values true and false, and
is firmly based in two-valued logic.

D (unlike SQL) exhibits conceptual
integrity (slavish adherence to stated
concepts).

D (unlike SQL) adheres to generally agreed
language design principles.

SQL's mistakes are not made in D (so, e.g.,
no nulls, no duplicate rows, no anonymous
columns, column names unique within
table, "=" means equals and tables with no
columns are recognised)

November 1999 © Hugh Darwen

5

Terminology

Subtype, supertype
If T2 is a subtype of T1, then every value in T2 is
a value in T1.

Proper subtype, supertype
T is a subtype (supertype) of T, but is not a proper
subtype (supertype) of T.

Immediate subtype, supertype
T2 is an immediate subtype of T1 iff T2 is a
subtype of T1 and no type is both a proper subtype
of T1 and a proper supertype of T2

Root type
has no proper supertypes

Leaf type
has no proper subtypes

November 1999 © Hugh Darwen

6

Restrictions and Non-restrictions

A value has one most specific type, which
is not necessarily a leaf type.

If every value in T is of some proper
subtype of T, then T has at least two
immediate subtypes and is called a union
type.

A type can have more than one immediate
supertype (multiple inheritance).

Multiple immediate supertypes of T must
have a common supertype.

The values constituting type T (including its
subtypes!) are specified by a possible
representation and a constraint. (Not
necessary if T is a union type. A union type
with no "possrep" is a dummy type.)

November 1999 © Hugh Darwen

7

Running Examples

TYPE ELLIPSE
IS PLANE_FIGURE

POSSREP { A LENGTH, B LENGTH, CTR POINT
 CONSTRAINT A >= B AND B > LENGTH (0.0) } ;

TYPE CIRCLE
IS ELLIPSE

CONSTRAINT THE_A (ELLIPSE) = THE_B (ELLIPSE)
POSSREP { R = THE_A (ELLIPSE) ,

 CTR = THE_CTR (ELLIPSE) } ;

TYPE SQUARE
IS { RECTANGLE, RHOMBUS }

POSSREP ... ; /* no extra constraint needed! */

November 1999 © Hugh Darwen

POSSREP declaration implies certain
operator definitions. "Selectors" are akin to
OO constructors. Counterparts of observers
and mutators too.

8

Two More Assumptions

1. Declared type constraints are consistent
with our model.
e.g., if RECTANGLE and RHOMBUS are leaf
types, then there is no parallelogram that is both
a rectangle and a rhombus! To reflect reality,
type SQUARE must therefore be defined.

2. If different versions exist of the same
operator, they have identical effects when
given identical operands.
e.g., if C is a circle, AREA(C) can be evaluated
by executing either the general ellipse version of
AREA or the special version for circles.
Performance might vary, though!

(and they are important ones!)

We don't legislate for these. We merely say
that consequences of violation are unclear.

9

Salient Features of Our Model

Value substitutability
Wherever a value of type ELLIPSE is expected, a
value of type CIRCLE can be given. Note: there
is no principle of variable substitutability!

Static type checking
Type mismatches can be caught by inspection of
source code. (One prescribed operator, "TREAT
DOWN", can give run-time type checks, as in
SQL:1999).

"Mutability"
i.e., assignment (and possibly other update
operators)

Specialisation by constraint
e.g, an ellipse with A=B is a circle of radius R
(=A=B), even if it results from invocation of the
ELLIPSE selector as opposed to CIRCLE selector.

The above in spite of Maier and Zdonik's "3 out
of 4" conjecture, that a system can support any 3
of these but not all 4!

November 1999 © Hugh Darwen

10

The Three Sections of Our Definition

1. Single inheritance with scalar types

2. Multiple inheritance

3. Tuple and relation type inheritance
(requires multiple inheritance, because, e.g.,
a tuple of type
TUPLE { E1 CIRCLE, E2 CIRCLE }
is of type
TUPLE { E1 ELLIPSE, E2 CIRCLE }
and also of type
TUPLE { E1 CIRCLE, E2 ELLIPSE },
neither of which is a supertype of the other!)

November 1999 © Hugh Darwen

11

Two Very Special Scalar Types

alpha is the conceptual dummy type that is a
proper supertype of every scalar type except
itself and a proper subtype of none.

Every value is a value of type alpha.

Equals comparison of values is defined for
alpha and therefore for every type.
Assignment is also defined for alpha.

omega is the conceptual dummy type that is
a proper subtype of every scalar type except
itself and a proper supertype of none.

Every scalar read-only operator is therefore
defined for values of type omega.

No value is a value of type omega!

November 1999 © Hugh Darwen

12

An Interesting Question

Let SE be an expression of declared type
SET (ELLIPSE) and let SC be an
expression of declared type SET (CIRCLE).

What is the declared type of

SE INTERSECT SC ??

Should it be the same as the declared type of

SE UNION SC
MINUS
((SE MINUS SC) UNION (SC MINUS SE)) ??

If so, the answer must be SET (ELLIPSE)!

November 1999 © Hugh Darwen

13

Computability of Most Specific Type

O-O pundits tend to reject specialisation by
constraint because of the claimed
unbearable overhead of computing the MST
"every time an object is touched".

We dispute this claim.

It is never necessary to compute the MST.

It is only necessary (sometimes) to test at
run time if a given value has a some type ST
that is more specific than the declared type
DT of the expression denoting it, in the case
where specialised versions of a required
operator exist.

And even then it is not necessary to visit
every type between DT and ST.

November 1999 © Hugh Darwen

14

A Nasty Consequence of Oids

Let E be a Java variable of type ELLIPSE.
Let C be a Java variable of type CIRCLE.

Consider these assignments:

1. C := new CIRCLE (5, POINT (0, 0));
2. E := C ;

3. E.A := 6;

Because new returns an oid, E and C are
both assigned the same pointer, not the
same ellipse.

Assignment 3 assigns to the A component
of the ELLIPSE object pointed to by E.

But that is also the object C points to, no
longer a circle!

November 1999 © Hugh Darwen

15

A New "4 out of 5" Conjecture

Perhaps Maier and Zdonik assumed the
existence of objects (with oids).

In that case, we suggest that a type system
can embrace any four of:

1. Value substitutability.
2. Static type checking.
3. "Mutability".
4. Specialisation by constraint.
5. Objects (with oids).

but not all five.

Happily, our choice was made for us in
1969, by E.F. Codd!

November 1999 © Hugh Darwen

The End

16

